七年级下册数学《_变量之间的关系》

合集下载

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.

北师大版七年级数学下册第3章变量之间的关系PPT课件

北师大版七年级数学下册第3章变量之间的关系PPT课件
为13.5 cm
知3-练
4 某烤鸭店在确定烤鸭的烤制时间时,主要依据的是 下表的数据:
鸭的质量/kg 0.5 1 1.5 2 2.5 3 3.5 4 烤制时间/min 40 60 80 100 120 140 160 180
设烤鸭的质量为 x kg,烤制时间为 t min,估计当 x=3.2时,t 的值为( C ) A.140 B.138 C.148 D.160
总结
知2-讲
运用定义法来解答.区别自变量和因变量有以下 三种方法: (1)看变化的先后顺序,自变量是先发生变化的量,因
变量是后发生变化的量; (2)看变化的方式,自变量是一个主动变化的量,因变
量是一个被动变化的量; (3)看因果关系,自变量是起因,因变量是结果.
知2-练
1 王老师开车去加油站加油, 数量 2.45 (升)
知识点 3 用表格表示两个变量间的关系
议一议
我国从1949年到2009年的人口统计数据如下(精确到
0.01亿):
时间/年 1949 1959 1969 1979 1989 1999 2009
人口 /亿 5.42 6.72 8.07 9.75 11.07 12.59 13.35
(1)如果用x表示时间,y表示我国人口总数,那么随着x的
知3-讲
例2 声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)
之间的关系如下表,从表中可知音速y随气温x的升高而 __加__快__.在气温为20℃的一天举行运动会,某人看到发令
枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发
令地点__6_8_.6__米.
气温x/℃
0
5 10 15 20
(3)当底边长从 12 cm变化到 3 cm时,三角形的面积从 ______cm2变化到 ______cm2. y=3x表示了右图中三角形底边

七年级数学下册第三章变量之间的关系知识归纳

七年级数学下册第三章变量之间的关系知识归纳

第三章变量之间的关系自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量.(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

(3)利用具体情境来体会两者的依存关系。

二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。

(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。

2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量; (3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值.(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。

三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。

2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。

3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式.(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。

4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。

初一数学(下)变量之间的关系知识点(最新人教版教案)

初一数学(下)变量之间的关系知识点(最新人教版教案)

变量之间的关系知识点及常见题型一、基础知识1、常量:在一组数据中或者关系式中不会没发生变化的量;2、变量:变化的量(1)自变量:可以自己发生变化的量;(2)因变量:随自变量的变化而变化的量。

二、表示方式1、表格(1)借助表格可以感知因变量随自变量变化的情况;(2)从表格中可以获取一些信息,能够做出某种预测或估计; 2、关系式(1)能根据题意列简单的关系式; (2)能利用关系式进行简单的计算; 3、图像(1)识别图像是否正确;(2)利用图像尽可能地获取自变量因变量的信息。

第一节 小车下滑的时间课前引入1.小张从学校给妈妈打电话,在这个过程中,打电话的时间越长,电话费就越( )。

2.银行的年利率是2.25%,存入的本金越多,( )也越多,在这个问题中,( )是固定不变的。

( )随( )的改变而改变。

3.球的体积V 与球的半径的关系式V=34πr 3中,( )是一个定值。

( )随( )的改变而改变。

经典例题下表是某同学做“观察水的沸腾”实验时所记录的数据:(1)时间为8分钟时,水的温度是多少?(2)上表反应了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (3)水的温度是怎样随时间变化的?(4)根据表格,你认为13分钟、14分钟时水的温度是多少?(5)为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气?过手练习1、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A、明明B、电话费C、时间D、爷爷2上述问题中,第五排、第六排分别有个、个座位;第排有个座位.3、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量,是自变量,是因变量。

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着自变量的变化,因变量变化的趋势是什么?(3)你认为入学儿童的人数会变成零吗?5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30)(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?(5)根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少?第二节 变化中的三角形课前引入1.计划购买40元的某种文化用品,则所购买的总数N (个)和单价想X (元)的关系式为( )。

七年级下变量关系知识点

七年级下变量关系知识点

七年级下变量关系知识点变量关系是初中数学的重要基础知识之一,包括正比例关系、反比例关系和其他变量之间的关系。

七年级下学期,在学习代数之前,我们需要掌握一些基本的变量关系知识点。

一、正比例关系正比例关系是指两个变量之间的关系呈现一定的比例关系,即其中一个变量的值是另一个变量的某个倍数。

例如,当小明每天学习1小时时,他每天进步10分;每天学习两小时时,他每天进步20分。

这里学习时间与进步分数的关系呈现出正比例关系,即每小时学习可以进步10分。

正比例关系可以用数学公式表示为y=kx,其中x和y分别表示两个变量,k表示比例常数。

在上述例子中,进步分数y就是学习时间x的10倍,即y=10x。

二、反比例关系反比例关系是指两个变量之间的关系呈现出等比例关系,即一个变量的增加导致另一个变量的减少,两者之间的乘积保持不变。

例如,当一辆车的速度增加时,它需要的时间减少;而当速度减慢时,所需时间增加。

这里速度与时间的关系呈现出反比例关系。

反比例关系可以用数学公式表示为y=k/x。

在上述例子中,所需时间y是车速度x的倒数,即y=k/x。

三、变量之间的其他关系除了正比例关系和反比例关系,变量之间还可能存在其他的复杂关系。

例如,小明每天自行车骑行一小时,他在一天能吃下3000卡路里;如果他骑行两个小时,他能吃下6000卡路里。

这里骑行时间与卡路里的摄入量之间呈现出无规律的关系。

在实际问题中,变量之间的关系并不一定呈现出简单的比例关系。

我们需要通过逐步探究与分析,寻找变量之间的规律关系,从而归纳总结出一定的函数关系。

总结七年级下一些基本的变量关系知识点包括正比例关系、反比例关系和其他变量之间的关系。

这些知识点是进一步学习函数的基础,也是实际问题中解决数量关系问题的基础。

通过多做例题,我们可以更加深入地理解变量关系,并应用于实际问题中。

北师大版七年级数学下册第三章变量之间的关系PPT课件全套

北师大版七年级数学下册第三章变量之间的关系PPT课件全套

2、测量小车从不同的高 度下滑的时间,并将得 到的数据填入下表:
支撑物高 度/厘米 小车下滑 时间/秒
10 20 30 40 50 60 70 80 90 100
(1)支撑物高度为70厘米时,小车下滑时间是多少 ? (2)如果用h表示支撑物高度,t表示小车下滑时间 ,随着h逐渐变大,t的变化趋势是什么? (3)h每增加10厘米,t的变化情况相同吗?
氮肥施用 量/千克/ 公顷 土豆产量/ 吨/公顷

15.18
21.36
25.72
32.29
34.03
39.45
43.15
43.46
40.83
30.75
(3)根据表格中的数据,你认为氮肥的施用量 是多少时比较适宜?说说你的理由. (4)粗略说一说氮肥的施用量对土豆产量的影 响.


4.某电影院地面的一部分是扇形,座位按 下列方式设置: 排数 1 座位数 60 2 64 3 68 4 72
1.如果正方形的边长为 a ,则正方形的周长C=( 4a ) 2.圆的半径为r,则圆的面积S=(
1 ) ah 2
r
2

3.三角形的一边为a,这边上的高为h,则三角形 的面积S=(
4.梯形的上底,下底分别为a, b,高为h,则梯形的面积
1 2 5.圆锥的底面半径为r, 高为h,则圆锥的体积V=(3 r h )
高不变 底面半径变
底面半径不变 高变
变化中的圆锥
h r
h
r
2、 如图,圆锥的底面半径是2厘米,当圆锥的 高由小到大变化时,圆锥的体积也随之变化。 (1)在这个变化过程中,自变量、因 变量各是什么? (2)如果圆锥的高为h(厘米),那么 3 圆锥的体积V( 厘米 )与h之间的关系 式为 . (3)当高由1厘米变化到10厘米时,2㎝

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(答案解析)(2)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(答案解析)(2)

一、选择题1.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数2.在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r3.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种关系,其关系图象大致为()A.B.C.D.4.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t的关系的大致图象是()A.B.C.D.5.下列说法中正确的是 ( )A.变量 x , y 满足 x + 3y = 1 ,则 y 是 x 的函数B.变量 x , y 满足23y x=--,则 y 是 x 的函数C.变量 x , y 满足∣ y ∣= x ,则 y 是 x 的函数D.变量 x , y 满足 y2 = x ,则 y 是 x 的函数6.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x7.小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的图象是( )A.B.C.D.8.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x9.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.2t B.Q=20﹣0.2tC.t=0.2Q D.t=20﹣0.2Q10.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.11.在关于圆的面积的表达式S=πr2中,变量有( )A.4个B.3个C.2个D.1个12.如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=2.39,BC=3.57.动点M从点A出发,沿A→B→C→D→A匀速运动,到点A停止.设点M运动的路程为x,点M到四边形EFGH的某一个顶点的距离为y,如果表示y关于x的函数关系的图象如图2所示,那么四边形EFGH的这个顶点是( )A.点E B.点F C.点G D.点H二、填空题13.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.14.函数y=中自变量x的取值范围是________.3x+15.一个三角形的面积始终保持不变,它的一边的长为xcm,这边上的高为ycm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2;-(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x 多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).16.李老师带领x名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=________.17.如图所示,梯形的上底长是5厘米,下底长是13厘米,当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是__________,因变量是__________. (2)梯形的面积2(cm )y 与高x (厘米)之间的关系式为__________. (3)当梯形的高由10厘米变化到1厘米时,梯形的面积由__________2cm 变化到__________2cm .18.如图,梯形的上底长是5 cm,下底长是11 cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是____________,因变量是____________; (2)梯形的面积y(cm 2)与高x(cm)之间的关系式为____________;(3)当梯形的高由10 cm 变化到1 cm 时,梯形的面积由____________变化到____________. 19.如图①,在直角梯形ABCD 中,动点P 从点B 出发,沿BC 、CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y .若y 关于x 的函数图象如图②所示,则△BCD 的面积是__.20.如图,是小明从学校到家里行进的路程s (米)与时间t (分)的函数图象.观察图象,从中得到如下信息: ①学校离小明家1000米; ②小明用了20分钟到家; ③小明前10分钟走了路程的一半; ④小明后10分钟比前10分钟走得快,其中正确的有_____(填序号).三、解答题21.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25min ,于是立即步行回家取票同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB 、OB 分别表示父子俩送票、取票过程中离体育馆的路程()s m 与所用时间(min)t 之间的图像,结合图像解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)图中O 点表示________;A 点表示________;B 点表示________.(2)从图中可知,小明家离体育馆________m ,父子俩在出发后________min 相遇. (3)你能求出父亲与小明相遇时距离体育馆还有多远? (4)小明能否在比赛开始之前赶回体育馆?22.一根长80cm 的弹簧,一端固定,如果另一端挂上物体,那么在弹性范围内,物体的质量每增加1kg ,弹簧伸长2cm . (1)填写下表: 所挂物体的质量/kg 1234… 弹簧的总长度/cm…(2)如何表示在弹性范围内所挂物体的质量(kg)与弹簧的总长度(cm)之间的数量关系? 23.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油实验,得到如下数据: 轿车行驶的路程10 20 30 40 ···()s km油箱剩余油量()w L 50 49.2 48.4 47.6 46.8 ···(1)该轿车油箱的容量为 L ,行驶100km 时,油箱剩余油量为 L(2)根据上表的数据,写出油箱剩余油量()w L 与轿车行驶的路程()s km 之间的表达式w = .(3)某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时油箱剩余油量为26L ,求,A B 两地之间的距离?24.下图表示购买某种商品的个数与付款数之间的关系 (1)根据图形完成下列表格 购买商品个数(个) 2 4 6 7 付款数(元)(2)请写出表示付款数y (元)与购买这种商品的个数x (个)之间的关系式.25.甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程 后,乙开始出发,当乙超出甲 150 米时,乙停在原地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图所示是甲、乙两人在跑步的全过程中经过的路程 y (米)与甲出发的时间 x (秒)之间关系的图象.(1) 在跑步的全过程中,甲一共跑了 米,甲的速度为 米/秒.(2)求图中标注的 a 的值及乙跑步的速度.(3)乙在途中等候了多少时间?26.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥12,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:x 121322523468…y 1343213122120763273…②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】结合表格中数据变化规律进而得出y是x的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A、x与y都是变量,且x是自变量,y是x的函数,正确,不合题意;B、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D、y不是x的函数,错误,符合题意.故选:D.【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.2.B解析:B【解析】【分析】根据常量、变量的定义,可得答案.【详解】在圆的面积公式S=πr2中,π是常量,S、r是变量,故选B.【点睛】本题考查常量与变量,常量是在事物的变化中保持不变的量.3.B解析:B【分析】理解洗衣机的四个过程中的含水量与图象的关系是关键.【详解】因为进水时水量增加,函数图象的走势向上,所以可以排除D,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除C,对于A、B,因为题目中明确说明了一开始时洗衣机内无水.故选B.【点睛】本题考查了函数的图象,关键是理解题意,从图象中准确读取信息.4.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.5.A解析:A【解析】A选项中,“若变量x、y满足x+3y=1,则y是x的函数”这种说法是正确的;B选项中,因为无论x取何值,式子y=都无意义;所以“若变量x、y满足y=,则y是x的函数”的说法是错误的;C选项中,因为当x的值为正时,和它对应的y的值有两个,所以“变量 x , y 满足| y ∣= x ,则 y 是 x 的函数”的说法是错误的;D选项中,因为当x的值为正时,和它对应的y的值有两个,所以“变量 x , y 满足 y2 = x ,则 y 是 x 的函数”的说法是错误的.故选A.点睛:判断一个含有两个变量x、y的关系式中,变量y是否是变量x的函数,需注意以下两点:(1)变量x的取值要使式子要有意义;(2)对于变量x每取定的一个值,变量y 都有唯一确定的值与之对应.6.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.7.C解析:C【解析】试题分析:先加速行驶,可得速度变快,图象从原点开始,成上升趋势;再匀速行驶,可得速度不变,图象平行于x轴;到达公交车站,汽车减速,速度变慢,直至变为0,图象成下降趋势;根据等车,可得速度为零;根据公交加速,可得速度变快,图象成上升趋势;根据匀速行驶,可得速度不变,图象平行于x轴.由此可知只有选项C符合题意.故选C.点睛:本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数值随自变量的增大是增大还是减小.8.D解析:D【解析】∵3千米以上每增加1千米收费1.80元,∴出租车行驶里程数x(x≥3)与收费y之间的关系式为:y=8+1.8(x-3)=1.8x+2.6.故选D.9.B解析:B【分析】根据“油箱中剩余的油量=原有存油量-流出的油量”结合题中已知条件列式表达即可.【详解】由题意可得:Q=20-0.2t.故选B.【点睛】读懂题意,知道“油箱中剩余的油量=原有存油量-流出的油量”是解答本题的关键.10.C解析:C【解析】因为慢车和快车从相距500千米的甲乙两地同时出发,则时间为0小时,两车相距距离为500千米,经过4小时,两车相遇,则此时两车相距距离为0,相遇之后快车经过小时先到达甲地,此时两车相距(75+50) ×=千米>250千米,然后再经过小时,慢车到达乙地,此时两车相距500千米,故选C.11.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C. 12.C解析:C【解析】∵2.39+3.57+1.185=7.145,∴点M运动的路程为7.145时,到达G点,这个顶点是点G.故选C二、填空题13.变为【分析】根据三角形面积公式利用底边和高之积的一半即三角形的面积进行计算即可得到答案【详解】解:三角形的面积最小值为最大值为故三角形的面积变化范围是三角形的面积由15变为50故答案为:变为【点睛】解析:15变为50【分析】根据三角形面积公式利用底边和高之积的一半即三角形的面积进行计算,即可得到答案.【详解】解:三角形的面积最小值为1310 2⨯⨯,最大值为1101050 2⨯⨯=,故三角形的面积变化范围是三角形的面积由15变为50.故答案为:15变为50.【点睛】本题主要考查了三角形的面积公式,能利用三角形面积公式计算三角形面积的是解题的关键.14.x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时应该是取让两个条件都满足的公共部分【详解】根据题意得到:x+3>0解得x>-3故答案为x>-3解析:x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【详解】根据题意得到:x+3>0,解得x>-3,故答案为x>-3.【点睛】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.15.(1)小;(2)2;(3)大于【分析】根据三角形的面积公式及函数图象的特征即可得到结果【详解】(1)当x越来越大时y越来越小;(2)这个三角形的面积等于xy=2cm2;(3)无论x多么的大y总是大于解析:(1)小;(2)2;(3)大于【分析】根据三角形的面积公式及函数图象的特征即可得到结果.【详解】(1)当x 越来越大时,y 越来越小;(2)这个三角形的面积等于12xy=2cm 2; (3)无论x 多么的大,y 总是大于零. 考点:本题考查的是三角形的面积公式,函数的图象【点睛】解答本题的关键是读懂题意,得到图象的特征及规律,再根据这个规律解决问题. 16.10x +20【解析】根据总费用=成人票用钱数+学生票用钱数可得y=10x+20故答案为10x+20解析:10x +20【解析】根据总费用=成人票用钱数+学生票用钱数,可得y=10x+20.故答案为10x+20.17.梯形的高梯形的面积909【解析】(1)自变量是梯形的高因变量是梯形的面积;(2)梯形的面积y(cm²)与高x(cm)之间的关系式为:y=(5+13)x×=9x ;(3)当梯形的高是l0cm 时y=9×1解析:梯形的高 梯形的面积 9y x = 90 9【解析】(1)自变量是梯形的高,因变量是梯形的面积;(2)梯形的面积y(cm²)与高x(cm)之间的关系式为:y=(5+13)x×12=9x ; (3)当梯形的高是l0cm 时,y=9×10=90,当梯形的高是l0cm 时,y=9×1=9,梯形的面积由90cm²变化到9cm².故答案为:梯形的高, 梯形的面积, y=9x , 90, 9. 18.梯形的高梯形的面积y=8x80cm28cm2【解析】(1)由题意可知:在上述变化过程中自变量是梯形的高;因变量是梯形的面积;(2)梯形的面积y(cm2)与高x(cm)之间的关系式为:;(3)∵当梯形解析:梯形的高 梯形的面积 y=8x 80cm 2 8cm 2【解析】(1)由题意可知:在上述变化过程中,自变量是“梯形的高”;因变量是“梯形的面积”;(2)梯形的面积y(cm 2)与高x(cm)之间的关系式为:1(511)82y x x =+=; (3)∵当梯形的高10x =时,梯形的面积10880y =⨯=(cm 2), 当梯形的高1x =时,梯形的面积188y =⨯=(cm 2),∴当梯形的高由10cm 变化到1cm 时,梯形的面积由80cm 2变化到8cm 2.故答案为:(1). 梯形的高 (2). 梯形的面积 (3). y=8x (4). 80cm 2 (5). 8cm 2.19.3【解析】动点P 从直角梯形ABCD 的直角顶点B 出发沿BCCD 的顺序运动则△ABP面积y在BC段随x的增大而增大;在CD段△ABP的底边不变高不变因而面积y不变化由图2可以得到:BC=2CD=3∴S△解析:3【解析】动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化,由图2可以得到:BC=2,CD=3,∴S△BCD=12×2×3=3,故答案为:3.【点睛】本题考查了动点问题的函数图象,理解问题,弄清题意,能够通过图象知道随自变量的增大,函数值是增大还是减小是解题的关键.20.①②④【解析】①由图象的纵坐标可以看出学校离小明家1000米故①正确;②由图象的横坐标可以看出小明用了20到家故②正确;③由图象的纵横坐标可以看出小明前10分钟走的路程较少故③错误;④由图象的纵横坐解析:①②④【解析】①由图象的纵坐标可以看出学校离小明家1000米,故①正确;②由图象的横坐标可以看出小明用了20到家,故②正确;③由图象的纵横坐标可以看出,小明前10分钟走的路程较少,故③错误;④由图象的纵横坐标可以看出,小明后10分钟比前10分钟走得快,故④正确;故答案为①,②,④.点睛: 主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.三、解答题21.(1)体育馆,小明家,小明与他父亲相遇的地方;(2)3600,15;(3)父亲与小明相遇时距离体育馆还有900m;(4)小明能在比赛开始之前赶回体育馆.【分析】(1)观察图象得到图中线段AB、OB分别表示父、子送票、取票过程,于是得到O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15×x+3x×15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;(4)由(3)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间=900180=5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.【详解】解:(1)∵图中线段AB 、OB 分别表示父、子送票、取票过程,∴O 点表示体育馆,A 点表示小明家;B 点表示小明与他父亲相遇的地方;(2)∵O 点与A 点相距3600米,∴小明家离体育馆有3600米,∵从点O 点到点B 用了15分钟,∴父子俩在出发后15分钟相遇;(3)设小明的速度为x 米/分,则他父亲的速度为3x 米/分,根据题意得15×x+3x×15=3600,解得x=60米/分,∴15x=15×60=900(米)即父亲与小明相遇时距离体育馆还有900米;(4)∵从B 点到O 点的速度为3x=180米/秒, ∴从B 点到O 点的所需时间=900180=5(分), 而小明从体育馆到点B 用了15分钟, ∴小明从点O 到点B ,再从点B 到点O 需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.故答案为:体育馆,小明家,小明与他父亲相遇的地方;3600,15;900;小明能在比赛开始之前赶回体育馆.【点睛】本题考查了函数图象:函数图象反映两个变量之间的变化情况,结合图象信息,读懂题目意思,从复杂的信息中分离出数学问题即相遇问题是解决本题的关键.22.(1)82 84 86 88;(2)(802)cm y x =+【解析】【分析】(1)根据题意,运用代数法即可完成.(2)根据弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度,可得函数解析式.【详解】解:(1)80+1×2=82;80+2×2=84;80+3×2=86;80+4×2=88;故答案为:82 、84 、86 、88.(2)设所挂物体的质量为(0)kg x x ,弹簧从长度为y ;那么弹簧伸长的长度为2cm x ,所以弹簧的总长度: (802)cm y x =+.【点睛】本题考查了函数解析式,利用了弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度;解题的关键在于正确的审题.23.(1)50,42;(2)500.08w s =-;(3)A 、B 两地之间的距离是300km.【分析】(1)由表格中的数据可知,该轿车的油箱容量为50L ,汽车每行驶10km ,油量减少0.8L ,据此可求油箱剩余油量;(2)由表格中的数据可知汽车每行驶10km ,油量减少0.8L ,据此可求w 与s 的关系式; (3)把w =26代入(2)中的关系式求得相应的s 值即可.【详解】解:(1)由表格中的数据可知,该轿车的油箱容量为50L ,行驶100km 时,油箱剩余油量为100500.84210-⨯=(L ); 故答案是50,42; (2)观察表格在的数据可知,汽车每行驶10km ,油量减少0.8L ,据此可得w 与s 的关系式为500.08w s =-;故答案为500.08w s =-;(3)当w =26时,50-0.08s =26,解得s =300.答:A 、B 两地之间的距离是300km.【点睛】本题考查的是一次函数的应用,关键是读懂题意,找出规律,正确列出w 与s 的关系式,明确行驶路程为0时,即为油箱的容量.24.(1)4;8;12;14;(2)付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .【解析】【分析】根据折线统计图即可写得答案根据题意可得关系式为y =kx ,代入x 与y 的值即可解得k 为2,及关系式为y =2x .【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为:4;8;12;14;(2)设付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =kx , 根据题意得:4=2k ,解得k =2,∴付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .【点睛】本题考查一元一次方程,根据题意列出关系式并解出k 的值是解题的关键.25.(1) 900;1.5;(2)a 的值为 750 米,乙的跑步速度为 2.5(米 / 秒);(3)100 秒【解析】试题分析:(1)由图中信息可知,甲一共跑了900米,用时600秒,由此即可求得甲的速度为1.5米/秒;(2)由图中的信息可知,第500秒时,甲共跑了a 米,由此结合(1)中所得甲的速度即可求得a 的值;(3)由图中信息结合(2)中所得a 的值,可知乙在60秒内跑了150米,由此可得乙的速度为:2.5米/秒,由此即可计算出乙从出发到休息时所用时间为750÷2.5=300(秒);由图中信息结合(1)中所得甲的速度可知,乙是在甲出发100秒后出发的;这样结合图中信息就可得乙在中途等候的时间为:500-100-300=100(秒).试题(1)由图中信息可知,甲一共跑了900米,用时600秒,∴甲的速度为:900÷600=1.5(米/秒);(2)由图中信息可得,图中:a=1.5×500=750(米);(3)由图中信息结合a=750可得:乙的速度为:(900-750)÷(560-500)=2.5(米/秒),由图中信息可得:乙出发时甲已经跑了:150÷1.5=100(秒),乙从出发到中途等候时共跑了750÷2.5=300(秒),∴乙在中途等候的时间为:500-100-300=100(秒).点睛:本题解题的要点是弄清函数图象中以下几个点的实际意义:(1)点A 表示甲跑完150米时所用的时间,也是乙出发的时间;(2)B 表示乙跑完a 米,开始休息时的时间;(3)C 点表示甲跑完a 米,追上乙时所对应的时间为500秒;(4)D 表示乙跑完全程900米时,所对应的时间是第560秒;(5)E 表示甲跑完全程900米,用时600秒. 26.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- ,由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-, (2)①根据解析式,补全下表: x 12 1 322 5234 6 8 … y 134 32 1312 1 2120 76 32 73 134 …(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,∴y 2<y 1<y 3,故答案为y 2<y 1<y 3,②观察图象得:x ≥12,图象最低点为(2,1), ∴当直线y =k 与该图象有两个交点时,1<k ≤134 , 此时x 的范围是:12≤x ≤8. 故答案为1<k ≤134,12≤x ≤8. 【点睛】 此题考查待定系数法求反比例函数的解析式,列出方程式解题关键。

七年级变量间的关系知识点

七年级变量间的关系知识点

七年级变量间的关系知识点在七年级数学学习中,变量是一个重要的概念。

变量是可以赋值而不是具体的数字或者对象,因此它可以用来表示一组不同的数值或者自然语言中的实体。

在本篇文章中,我们将会详细讨论七年级中变量间的关系知识点。

一、变量的定义和使用在代数表达式中,我们通常使用字母来表示一个变量。

这个变量可以代表任意实数,我们可以将其赋值为特定的数字或表达式,来求得代数式的值。

例如:设 a = 2,则 a + 3 = 5b = 4,则 b - 1 = 3我们用变量来存储一组数字,这些数字可以是实数、整数、分数等。

通过变量的方式,我们可以轻松地对表达式进行变化和操作,大大方便了数学问题的解决。

二、变量间的关系1. 变量的相等关系在使用变量的时候,我们经常会碰到一些等式。

比如:2x + 1 = 5y - 3 = 2这里的“=”代表两边的值相等。

这种关系被称为“等式”。

在等式中,我们可以将其中一个变量用另一个变量表示出来,从而建立两个变量之间的关系。

例如:2x + 1 = 52x = 4x = 2由此可见,不同变量之间可以建立相等和不等的关系。

2. 变量的大于小于关系有时候我们需要判断两个变量之间的大小关系。

比如:3x + 2 > 5x - 1y + 4 < 2y - 3这里的“>”和“<”分别代表“大于”和“小于”,用于判断两个变量之间的大小关系。

我们可以通过移项、合并同类项、化简等方法,将不等式变形为关于变量的简单形式。

3x + 2 > 5x - 1-2x > -3x < 3/23. 变量之间的比例关系变量之间的比例关系在我们的日常生活中也经常出现。

比如:小明比小红高出 10 厘米,小明的身高是小红身高的 1.2 倍。

这里的“高出”“身高”“倍数”等词汇涉及到了变量之间的比例关系。

我们可以通过设置比例、计算比例中的变量,来解决涉及到变量间的比例关系的问题。

小明比小红高出 10 厘米,小明的身高是小红身高的 1.2 倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

()s t ()m S 64o 812AB 《变量之间的关系》一、选择题(每题3分,共24分)1.在某次试验中,测得两个变量m 和v 之间的4组对应数据如下表:1 2 3 4则m 与v 之间的关系最接近于下列各关系式中的 【 】. A .22v m =-B .21v m =-C . 33v m =-D .1v m =+2、长方形的周长为24cm ,其中一边为x (其中0>x ),面积为y 2cm ,则这样的长方形中y 与x 的关系可以写为( )A 、2x y = B 、()212x y -= C 、()x x y ⋅-=12 D 、()x y -=1223、地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式2035+=x y 来表示,则y 随x 的增大而( )A 、增大B 、减小C 、不变D 、以上答案都不对 4、如图1所示,OA 、BA 分别表示甲、乙两名学生运动 的路程与时间的关系图象,图中S 和t 分别表示运动路程 和时间,根据图象判断快者的速度比慢者的速度每秒快 ( ) A 、m B 、2mC 、mD 、1m5、表格列出了一项实验的统计数据,表示皮球从高度d 下时弹跳高度b 与下落高d 的关系,试问下面的哪个式子能表示这种关系(单位cm )( )A 、2d b =B 、d b 2=C 、25+=d bD 、2d b =6、弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下x 0 1 2 3 4 5 y101112下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0cmC .物体质量每增加1kg ,弹簧长度y 增加D .所挂物体质量为7kg 时,弹簧长度为50 80 100 15025405075图17、在关系式y=3x+5中,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是变量,它的值与x 无关;④用关系式表示的不能用图象表示;⑤y 与x 的关系还可以用列表法和图象法表示,其中说法正确的是( )A 、①②⑤B 、①②④C 、①③⑤D 、①④⑤8、张大伯出去散步,从家走了20min ,到了一个离家900m 的阅报亭,看了10min 报纸后,用了15min 返回到家,如图2图象中能表示张大伯离家时间与距离之间关系的是( )9.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S 1,S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是【 】.10.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:其中,符合图象描述的说法有 (1)他们都行驶了18千米; (2)甲在途中停留了小时; (3)乙比甲晚出发了小时;(4)相遇后,甲的速度小于乙的速度; (5)甲、乙两人同时到达目的地。

个 个 个 个(6)3. 一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s (千米)和行驶时间t (小时)的关系的是 【 】. 12.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出……那么,当输入数据8时,输出的数据是 【 】. A.861 B.863 C.865 D.86713. 如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是 【 】. A.第3分时汽车的速度是40千米/时 B.第12分时汽车的速度是0千米/时 C.从第3分到第6分,汽车行驶了120千米ABD S (千米)18t (小时)甲乙 O1图2乙甲O路程(S)10050D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时14 向高为10厘米的容器中注水,注满为止,若注水量V (厘米3)与水深h (厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的 【 】.15、水池中原有3升水,现每分钟向池内注1升,则水池内水量Q (升)与注水时间t (分)之间关系的图象大致为( )16、对关系式x y 212-=的描述不正确的是( ) A .当x 看作自变量时,y 就是因变量 B .随着x 值的增大,y 值变小 C .在非负数范围内,y 可以最大值为3 D .当y=0时,x 的值为23 17、土地沙漠化是人类生存的大敌,某地原有绿地a 万公顷,由于人们环保意识不强,植被遭到严重破坏,经观察前段时间土地沙化速度为万公顷/年,当人们意识到环境恶化的危害性之后,决定改变环境,以每年万公顷的速度进行绿化,那么t 年以后该地的绿地面积与时间的关系可用下图中的哪一个来近似地刻画( )18、小强将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与时间的关系可以用下图中的哪一幅来近似地刻画( ) 19、如图所示是某市某天的温度随时间变化的图象,通过观察可知:下列说法中错误的是( ) A .这天15点时温度最高 B .这天3点时温度最低C .这天最高温度与最低温度的差是13℃D .这无力点时温度是30℃20、某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按一定的速度注水,水池注满后停止注水,又立即按一定的速度放完水池的水,若水池的存水量为V (m ),放水或注水时间为t (min ),则V 与t 的关系的大致图象只能是( )21、小亮的奶奶出去散步,从家走了20分钟到一个离家900米的报亭,奶奶看了10分钟报纸后,用了15分钟返回家.下面图中的哪一幅能表示奶奶离家的时间与距离之间的关系( )二、填空题(每题3分,共24分)1.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:排 数 1 2 3 4 … 座位数50535659…上述问题中,第五排、第六排分别有 个、 个座位;第n 排有 个座位. 2、假定甲、乙两人在一次赛跑中,路程与时间的图3关系如图3所示,那么可以知道:① 甲、乙两人中先到达终点的是 . ② 乙在这次赛跑中的速度为 m/s. 3、声音在空气中传播的速度y(m/s)与气温x(oC)之间在如下关系:33153+=x y(1)当气温x=15 oC 时,声音的速度y= m/s .(2)当气温x=22 oC 时,某人看到烟花燃放5s 后才听到声音响,则此人与燃放的烟花所在地相距 m4拖拉机工作时,油箱中的余油量Q (升)与工作时间t (时)的关系式为406Q t =-.当4t =时,Q =_________,从关系式可知道这台拖拉机最多可工作_________小时. 5、一个长方形周长为12,一边长为x ,面积y 随x 的变化而变化,则y 与x 的关系式是_________.当2x =时,y =_________. 6.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为 7.如图,是甲、乙两家商店销售同一种产品的销售价y (元)与销售量x (件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是8.下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用 枚棋子;(2)第n 个“上”字需用 枚棋子.9.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.10.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .11.根据图6中的程序,当输入x =3时,输出的结果y = .12小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分?.图3 输入x 值(-2≤x ≤-1) (-1<x ≤1) (1<x ≤2)输出y 值 xy4 3 2 11 2(2,甲 乙 第13题第一个“上”字 第二个“上”字 第三个“上”字第17题图图413、(本小题满分10分)如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中,__________是自变量,_________是因变量. (2)甲的速度________乙的速度.(大于、等于、小于) (3)6时表示________(4)路程为150km ,甲行驶了____小时,乙行驶了_____小时.(5)9时甲在乙的________(前面、后面、相同位置) (6)乙比甲先走了3小时,对吗?__________三1、如图4,在一个半径为18cm 的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化. (1)在这个变化过程中,自变量、因变量各是什么?(2)如挖去的圆半径为x (cm ),圆环的面积y (2cm )与x 的关系式是_________; (3)当挖去圆的半径由1cm 变化到9cm 时,圆环面的面积由_________2cm 变化到_________2cm .2、如图6,长方形ABCD 的边长分别为AB=12cm,AD=8cm,点P 、Q 都从点A 出发,分别沿AB-CD 运动,且保持AP=AQ ,在这个变化过程中,图中的阴影部分的面积也随之变化.当AP 由2cm 变到8cm 时,图中阴影部分的面积是增加了,还是减少了?增加或减少了多少平方厘米?提升能力 超越自我1、如图7,表现了一辆汽车在行驶途中的速度随时间的变化情况. (1)A 、B 两点分别表示汽车是什么状态?(2)请你分段描写汽车在第0分到第19分的行驶状况.(3)司机休息5分钟后继续上路,加速1分钟后开始以60km/h 的速度匀速行驶,5分钟后减速,用了2分钟汽车停止,请在原图上画出这段时间汽车速度与时间的关系图图4图6图7时间/1836 3696路程/百米图72、某中学校长决定带领市级“三好学生”去北京旅游,甲旅行社承诺:“如果校长买全票一张,则学生可享受半价优惠”;乙旅行社承诺:“包括校长在内所有人按全票的6折优惠”.若全票价为240元(1)设学生数为x ,甲、乙旅行社收费分别为甲y (元)和乙y (元),分别写出两个旅行社收费的表达式.(2)哪家旅行社收费更优惠?参考答案跟踪反馈 挑战自我一、1、B ;2、C ;3、A ;4、C ;5、D ;6、B ;7、A ;8、D ;二、1、列表法,图象法,关系式法;2、y=25+;3、61,64,50+3(n-1); 4、s=a 2;5、甲,8;6、340,1721;7、16;203;8、26y x x =-;8; 三、1、(1)通话时间与电话费;其中通话时间是自变量,电话费是因变量;(2)6元.2、(1)自变量很小圆的半径,因变量是圆环的面积;(2)2324ππy x =-;(3)323π;243π.3、①时间和退耕还林的面积,其中时间是自变量,退耕还林的面积是因变量. ②逐年增加;③2970亩.4、①28y x =+;②28cm ,38cm ;③6;11.5、略.只要表述合理即可.四、1、(1)物体的质量与弹簧的长度,物体的质量,弹簧的长度; (2);(3)逐渐增大;(4)y=12+;(5);2、当AP=2时,96-4=92,当AP=8时,96-32=64,减少,减少了92-64=28平方厘米;提升能力 超越自我1、(1)匀速运动,停止;(2)停止,停止;(3)画图略2、(1)甲y =240+120x ;乙y =240×60%(x+1);(2)分三种情况讨论(略)。

相关文档
最新文档