广西桂林市逸仙中学八年级数学12.2.1《作轴对称图形》教案(新人教版八年级上)
人教版初中八年级上册数学《作轴对称图形》精品教案

13.2 画轴对称图形第1课时作轴对称图形【知识与技能】1.通过动手操作体验如何作轴对称图形.2.能作出一个图形经一次或二次轴对称变换后的图形.3.能利用轴对称变换设计一些简单的图案.【过程与方法】通过实际操作获取作轴对称图形的方法,并应用于简单的图案设计.【情感态度】通过图案设计等活动,培养学生的动手操作能力\,审美及数学兴趣,发展学生的空间观念.【教学重点】作一个图形经轴对称变换后的图形.【教学难点】通过动手操作总结轴对称变换的特征.一、情境导入,初步认识利用多媒体向学生展示剪纸图片,供学生欣赏,并请学生交流:如此漂亮的剪纸是如何剪出的呢?问题1 请学生拿出画有一个简单风筝(如图形状)的半透明纸,把这张纸对折后描图,学生画好后打开对折的纸,观察并回答下列问题:(1)画出的图形与原来的图形有什么关系?(2)两个图形成轴对称有什么特征?问题 2 如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?【教学归纳】由学生画图、操作、观察后总结出:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点,连接任意一对对应点的线段被对称轴垂直平分.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】成轴对称的两个图形中的任何一个可以看作由另一个图形经轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.问题除上面所用的描图法;还可用什么方法画出轴对称变换后的图形?请学生间交流探讨.例1(1)如图1,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.(2)将△ABC的位置移至图2,图3,图4时,再作出关于直线l对称的图形.并验证画法.【归纳总结】一个平面图形都是由一些点组成,点动成线,故要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.【教学说明】利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案.例2 操作并思考:如图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的三角形沿黑线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺开.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再去掉含90°角的部分展开后的结果又会怎样?为什么?解:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际相当于折出了正方形的2条对称轴,因此图中得到的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.【教学说明】教师参与,与学生一起操作,力求使图案与花边完美.三、运用新知,深化理解1.把下列图形补成关于直线l对称的图形.2.如图,利用轴对称变换画出花瓶的另一半.3.如图,左边的旗子经过几次轴对称变换,可以变成右边的旗子?你能设计一种变换方案吗?4.如果我们把台球桌做成等边三角形形状,那么从AC中点D处出发的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线.【教学说明】指导学生解答上述习题时,要注意引导学生:(1)画轴对称图形时,要先画好关键的对应点;(2)在已知成轴对称的图形时,利用成轴对称的图形的性质,找出对称轴.【答案】4.能.运动路线如图的D→E→F→D四、师生互动,课堂小结教师请学生回忆本节内容,学生发言谈收获,最后引导总结.1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系(如例2)调动课堂气氛,培养学生学习兴趣.作者留言:非常感谢!您浏览到此文档。
最新《轴对称图形》教案优秀

最新《轴对称图形》教案优秀一、教学内容本节课我们将学习人教版初中数学八年级上册《轴对称图形》章节。
具体内容包括:轴对称图形的定义与性质;寻找对称轴;判断轴对称图形;应用轴对称解决实际问题。
二、教学目标1. 理解并掌握轴对称图形的定义,能够识别常见的轴对称图形。
2. 学会寻找轴对称图形的对称轴,了解轴对称图形的性质。
3. 能够运用轴对称知识解决实际问题,提高解决问题的能力。
三、教学难点与重点教学重点:轴对称图形的定义、性质及识别。
教学难点:寻找轴对称图形的对称轴,运用轴对称知识解决实际问题。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规等。
2. 学具:练习本、铅笔、橡皮、直尺、圆规等。
五、教学过程1. 实践情景引入:利用多媒体课件展示一组轴对称图形,引导学生观察并思考:这些图形有什么共同特征?2. 例题讲解:(1)讲解轴对称图形的定义,引导学生理解并掌握。
(2)通过示例,讲解如何寻找轴对称图形的对称轴。
(3)讲解轴对称图形的性质。
3. 随堂练习:(1)让学生在练习本上画出一个轴对称图形。
(2)判断给定图形是否为轴对称图形,并找出其对称轴。
4. 小组讨论:5. 课堂小结:六、板书设计1. 板书《轴对称图形》2. 主要内容:(1)轴对称图形的定义(2)轴对称图形的性质(3)寻找对称轴的方法(4)轴对称图形的识别七、作业设计1. 作业题目:(2)运用轴对称知识,设计一个图案。
2. 答案:(1)图形1、图形3为轴对称图形,对称轴分别为x轴、y 轴。
图形2、图形4不是轴对称图形。
(2)答案不唯一,合理即可。
八、课后反思及拓展延伸1. 课后反思:(1)学生对轴对称图形的定义和性质掌握程度。
(2)学生寻找对称轴的准确性。
(3)学生对轴对称图形在实际生活中的应用了解程度。
2. 拓展延伸:(1)研究其他类型的对称图形,如中心对称图形。
(2)探讨轴对称与中心对称的关系。
(3)了解轴对称在艺术、建筑等领域的应用。
最新人教版八年级数学上册《第1课时作轴对称图形》优质教案

13.2画轴对称图形第1课时作轴对称图形一、新课导入1.导入课题:你们会利用轴对称进行简单的图案设计吗?今天我们就一起来学习怎样作轴对称图形.2.学习目标:(1)知道轴对称变换前后的两个图形是全等的,并且任意一对对应点所连线段被对称轴垂直平分.(2)已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形.3.学习重、难点:重点:已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形 .难点:能进行简单的轴对称变换设计对称性图案.二、分层学习1.自学指导:(1)自学内容:教材第67页到本页思考上面部分.(2)自学时间:5分钟.(3)自学方法:通过观察、动手操作、总结出成轴对称的两个图形的有关性质.(4)自学参考提纲:①结合图13.2-1,阅读教材第67页第一段,把重点语句做上记号.②将下列图案沿直线l折叠,用针尖沿着玉米图案扎出,再打开看看,得到了什么?连接对应点(找三对),看所连线与l有何位置关系?测量对应点所连线段被l分成的两段有何关系?解:得到一个与玉米图案一样的图形,所连线段被l垂直平分、相等.图1 图2③将你实验得出的结论用几何方法论证一下.④结论:a.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;b.新图形上的每一点,都是原图形上的某一点关于直线l的对称点;c.连接任意一对对应点的线段都被对称轴垂直平分.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:八年级学生已经具备一定观察能力,了解学生能否将实验操作得出的结论完整地用语言表达出来.②差异指导:结合学生画出的图形,引导学生表述实验发现的结论.(2)生助生:互助交流关于直线对称的两个图形的对应点与对称轴存在的关系.4.强化:(1)填空:①由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;②新图形上的每一点,都是原图形上的某一点关于直线l的对称点;③连接任意一对对应点的线段都被对称轴垂直平分.④两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.(2)交流学习成果:①轴对称前后两个图形的关系;②对应点连线与对称轴的关系.(3)总结:①轴对称前后两个图形全等;②对应点连线被对称轴垂直平分.1.自学指导:(1)自学内容:探究如何作出一个图形关于某直线的对称图形.(2)自学时间:5分钟.(3)自学方法:作一个图形关于某条直线的对称图形,应根据轴对称的性质作对称点.(4)探究提纲:①作已知一点关于某条直线的对称点的方法是怎样的?过点P作直线l的垂线,垂足为O,在垂线上截取OP′=OP,P′即为所求作的点.②作已知一条线段关于某条直线的对称线段的方法是怎样的?分别作点A,B关于直线l的对称点A′,B′,连接A′B′,A′B′即为所求作的线段.③作已知一个三角形关于某条直线对称的三角形的方法是怎样的?分别作点A,B,C关于直线l的对称点A′,B′,C′,顺次连接A′B′、A′C′、B′C′,△A′B′C′即为所求作的三角形.④作已知图形关于某条直线对称的图形的方法是怎样的?分别作点A,B,C,D关于直线l的对称点A′,B′,C′,D′,顺次连接A′B′,B′C′,C′D′,D′A′,四边形A′B′C′D′即为所求作的四边形.⑤改变对称轴的位置,然后画一画.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否掌握画图的依据和方法.②差异指导:由点、线段、三角形再到复杂图形,一步一步引出关于直线对称的图形的画法,并让学生观察改变对称轴后图形的变与不变之处.(2)生助生:学生之间相互交流帮助.4.强化:(1)交流及总结:作一个图形关于某条直线的对称图形的方法.(2)结论:分别作出这些点关于对称轴的对应点再连接这些对应点,就可以得到原图形的轴对称图形(3)教材第68页“练习”.三、评价1.学生的自我评价(围绕三维目标):学生之间相互交流学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和学习成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(第1、2题每题10分,第3题20分,第4题30分,共70分)1.已知:直线AB与直线A′B′交于点P,并且这两条直线关于直线l成轴对称,下列说法正确的是(C )A.直线AB与直线A′B′的长度不相等B.直线AB、A′B′与直线l不一定能交于同一点C.直线AB、A′B′与直线l一定交于P点D.点P关于直线l的对称点不存在2.下列说法:①关于某直线对称的两个图形的面积相等;②平面内两个完全相同的图形一定关于某直线对称;③两个图形成轴对称,其对应点连线的垂直平分线就是它们的对称轴;④关于某直线对称的两个图形,对称点一定在该直线的两旁;其中正确的是(B)A.①②B.①③C.①②③D.①②③④3.如图,把下列图形补成关于直线l对称的图形.4.已知△ABC及点A的对称点A′,请作出对称轴直线l,并画出△ABC关于直线l的对称图形.(1)直线l 就是AA ′的垂直平分线;(2)作出B 、C 关于直线l 的对称点B ′、C ′.(3)连接A ′B ′、B ′C ′、C ′A ′,即得△ABC 关于直线l 的对称图形△A ′B ′C ′.二、综合应用(15分)5.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.解:一般三角形:沿中线折,没有重合的;沿高线折,底边重合,沿角平分线折,两邻边重合.等腰三角形:沿底边上的中线折,底边重合,两邻边也重合;沿底边上的高线折,底边重合,两邻边重合;沿顶角角平分线折,底边重合,两邻边也重合.三、拓展延伸(15分)6.如图所示,∠AOB 内一点P ,P1P2分别是P 关于OA 、OB 的对称点,P 1P 2=交OA 于M ,交OB 于N.若P 1P 2=8cm ,则△PMN 的周长是多少?解:∵P 1、P 关于OA 对称,P 2、P 关于OB 对称,∴OA 垂直平分P1P ,OB 垂直平分P 2P.∴MP 1=MP ,NP 2=NP.∴C △PMN=PM+MN+NP.=P 1M+MN+NP 2= P 1P 2==8cm.人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。
八年级数学上册 12.2.1 作轴对称图形教案 新人教版

12.2.1 作轴对称图形教案一、教学目标①能认识轴对称变换,并能作出简单图形经过一次或二次轴对称变换的图形;②能利用轴对称变换设计一些简单的图案.④培养学生的动手操作能力、审美及数学兴趣,发展学生的空间观念.二、重点、难点重点:作一个图形经轴对称变换后的图形.难点:通过动手操作总结轴对称变换的特征.三、教学准备剪刀、半透明的纸.四、教学过程:(一)板书标题,呈现教学目标:1.能作出简单图形经过一次或二次轴对称变换的图形;2.能利用轴对称变换设计一些简单的图案.(二)引导学生自学:阅读P39-41内容,并思考下列问题:1、你是怎样作点A关于直线L的对称点A‘的?2、作轴对称图形,实际是在确定什么?8分钟后,检查自学效果(三)学生自学,教师巡视:引导学生按课本动手实验,培养学生的动手操作能力、审美及数学兴趣,发展学生的空间观念.(四)检查自学效果:师生共同完成如下问题:(1)画出的图形与原来的图形有什么关系?(学生回答后,师生补充得出:画出的图形与原图形关于折痕轴对称,折痕所在直线是对称轴)(2)两个图形成轴对称有什么特征?(学生回答后,让学生找出几个对应点,并连结对应点进行验证.)学生交流后,总结归纳出:由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;连结任意一对对应点的线段被对称轴垂直平分.注:让学生感受改变对称轴的方向和位置,不改变轴对称变换的特征.同时通过交流,培养学生的语言表达能力,归纳能力.(3)出示例1:如图,已知ΔABC可以和直线l,作出与△ABC关于直线l对称的图形.(在有一定认识的基础上以及根据轴对称图形的特征能发现画图方法.培养学生的发散思维.)如果将△ABC的位置移至如图2、3、4时,你还能作出关于直线l对称的图形吗?画出后如何验证是否正确?图1 图2 图3 图4注:通过检测,使学生学会运用轴对称变换画图,培养学生思维的流畅性,体验变换思想.让学生归纳画图要点,总结:一个平面图形都是由一些线组成,而点动成线,所以,要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.注:通过归纳要点,找到规律,形成方法.(五)当堂训练感悟P25 课堂练习(一)1、2(二)1(六)课堂小结1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.注:通过小结归纳,巩固轴对称图形的性质和画图方法.(七)作业暗线:课本P45 习题12.2 1教学反思:。
(八年级数学教案)初二轴对称的教案

初二轴对称的教案
八年级数学教案
12.1 轴对称(一)
知识与技能
1、通过生活中的具体实例认识轴对称,让学生掌握轴对称图形和关于直线成轴对称这两个概念。
2、能识别简单的轴对称图形及其对称轴。
3、了解轴对称图形与两个图形关于某直线对称的区别和联系。
过程与方法
1、通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴。
2、经历观察、分析的过程,训练学生观察、分析的能力。
情感态度与价值观
通过对丰富的轴对称现象的认识,进一步培养学生主动参与数学活动的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.。
人教版数学八年级上册12.2.1《作轴对称图形》教案

人教版数学八年级上册12.2.1《作轴对称图形》教案一. 教材分析《作轴对称图形》是人教版数学八年级上册第12章“轴对称与坐标系”的第二节内容,主要目的是让学生掌握轴对称图形的概念,理解轴对称的性质,以及学会如何作轴对称图形。
本节课的内容是学生对几何图形变换的一次重要学习,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了相似图形、全等图形等基本几何概念,对图形的变换有了一定的了解。
但轴对称图形的概念和性质较为抽象,需要学生通过实际操作和思考来理解和掌握。
此外,学生对于轴对称在实际生活中的应用可能较为陌生,需要教师通过实例来引导学生理解和认识。
三. 教学目标1.知识与技能:让学生理解轴对称图形的概念,掌握轴对称的性质,学会如何作轴对称图形。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣和自信心。
四. 教学重难点1.重点:轴对称图形的概念和性质,如何作轴对称图形。
2.难点:轴对称图形的概念和性质的理解和运用。
五. 教学方法采用问题驱动法、合作交流法和实例引导法,引导学生通过自主探究和合作交流,理解和掌握轴对称图形的概念和性质,以及学会如何作轴对称图形。
六. 教学准备1.教具准备:多媒体教学设备、黑板、粉笔、对称图形卡片等。
2.学具准备:学生每人准备一张白纸、一支笔、一把剪刀。
七. 教学过程1.导入(5分钟)教师通过多媒体展示一些生活中的对称现象,如对联、剪纸、建筑等,引导学生关注对称现象,激发学生学习对称图形的兴趣。
教师提问:“这些图形有什么共同的特点?”学生回答后,教师总结:这些图形都是轴对称图形。
从而引出本节课的主题——轴对称图形。
2.呈现(10分钟)教师通过PPT展示轴对称图形的定义和性质,让学生初步理解轴对称图形的概念。
然后,教师通过一些实例来讲解如何判断一个图形是否是轴对称图形,以及如何作轴对称图形。
八年级数学上册 13.2.1 作轴对称图形教案 (新版)新人教版
13.2.1 做轴对称图形◆教学目标◆◆知识与技能:能够做出简单图形的轴对称图形,能够利用作轴对称图形进行简单的图形设计。
◆过程与方法:通过动手实践和观察去体会作轴对称后两图形的关系,培养抽象思维能力.◆情感态度和价值观:感受生活中的数学问题,体验实际生活中的物体与图形的关系,体验学习数学的乐趣.◆教学重点与难点◆◆重点:能够做出简单图形的轴对称图形,能够利用作轴对称图形进行简单的图形设计。
◆难点:作出简单平面图形关于直线的轴对称图形,利用轴对称进行一些图案设计.◆教学过程◆一、设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.这节课我们就是来作简单平面图形经过轴对称后的图形.二、导入新课由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案。
对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.三、课时小结本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.四、动手并思考(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.(1)你会得怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?答案:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)•中的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,•因此得到的图案一定有4条对称轴.(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,•剪出的图案至少有4条对称轴.五、课堂检测1.探究:要在燃气管道L上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?2.把下列图形补成关于L对称的图形。
人教版初中数学八年级上册 作轴对称图形 初中八年级上册数学教案教学设计课后反思 人教版
《12.2.1作轴对称图形》教案
时间:2012.9.14
执教者:白芳
班级:庆阳四中八(6)班
教学目标:
知识与技能
1、通过具体实例认识轴对称,探究基本性质。
2、能作出简单平面图形经过一次或两次轴对称后的图形。
3、能利用轴对称进行图案设计。
过程与方法
经历轴对称变换的画图、观察、交流等活动理解其基本性质。
情感、态度与价值观
通过利用轴对称作图和图案设计,发展知识潜能。
教学重点:轴对称的性质及轴对称作图。
教学难点:利用轴对称变换设计图案。
教学过程:
【活动一】回忆轴对称的概念、对称轴、对称点等知识。
【活动二】探究轴对称的性质。
1、欣赏图片,思考问题;
2、动手操作,用纸随意的撕出轴对称图案;
3、教师引导,学生观察,归纳总结轴对称的性质。
【活动三】学习轴对称图形的画法。
1、出示问题:已知对称轴l 和一个点A,如何画出点A 关于l的对称点A′?
2、教师帮助学生分析,并演示作图方法;
3、师生共同总结作图步骤;
4、练习作不同图形的轴对称图形;
5、总结作轴对称图形的方法;
6、练习。
【活动四】欣赏和设计
1、欣赏生活中轴对称变换实例;
2、利用轴对称为班级墙报设计一幅花边
【小结】
【作业布置】习题12.2第1题、第5题。
人教版数学八年级上册12.2.1《作轴对称图形》教学设计
人教版数学八年级上册12.2.1《作轴对称图形》教学设计一. 教材分析人教版数学八年级上册12.2.1《作轴对称图形》是学生在学习了平面几何基础知识后,进一步研究轴对称图形的性质和应用的一节内容。
本节课通过引导学生探究轴对称图形的定义、性质和判定,使学生掌握作轴对称图形的方法,培养学生的几何思维能力和空间想象能力。
二. 学情分析八年级的学生已经掌握了平面几何的基本知识,具备了一定的逻辑思维和空间想象能力。
但是,对于轴对称图形的概念和性质,学生可能还比较陌生,因此需要在教学中引导学生通过观察、操作、思考、交流等活动,逐步理解和掌握轴对称图形的性质和作图方法。
三. 教学目标1.理解轴对称图形的概念,掌握轴对称图形的性质和判定方法。
2.能够运用轴对称图形的性质解决一些简单的问题。
3.培养学生的几何思维能力和空间想象能力。
四. 教学重难点1.轴对称图形的概念和性质的理解。
2.作轴对称图形的方法的掌握。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等多种教学方法,引导学生通过观察、操作、思考、交流等活动,自主探索轴对称图形的性质和作图方法。
六. 教学准备1.准备一些轴对称图形的实物模型,如剪刀、纸张等。
2.准备一些关于轴对称图形的图片,如蝴蝶、飞机等。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过展示一些轴对称图形的实物模型和图片,引导学生观察和思考:这些图形有什么共同的特点?你能不能找到一些生活中的轴对称图形?2.呈现(10分钟)教师通过讲解和示范,向学生介绍轴对称图形的定义、性质和判定方法。
同时,引导学生通过观察和操作,发现和总结轴对称图形的性质。
3.操练(10分钟)教师提出一些有关轴对称图形的问题,让学生独立思考和解答。
同时,教师可以通过巡视课堂,给予学生个别化的指导和帮助。
4.巩固(5分钟)教师学生进行小组讨论,分享各自的解题思路和经验。
同时,教师可以通过提问和点评,引导学生进一步理解和掌握轴对称图形的性质和作图方法。
初中八年级初二数学《作轴对称图形》参考教案
作轴对称图形作轴对称图形(一)教学目标(一)教学知识点1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)能力训练要求经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.(三)情感与价值观要求1.鼓励学生积极参与数学活动,培养学生的数学兴趣.2.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.教学方法讲练结合法.教具准备多媒体课件.教学过程Ⅰ.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.[生甲]将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.[生乙]准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.[师]大家回答得太好了,•这节课我们就是来作简单平面图形经过轴对称后的图形.Ⅱ.导入新课[师]刚才同学们说出了几种得到轴对称图形的方法,•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(电脑演示下面图案的变化过程)大家看大屏幕.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.[师]下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.[师]我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.动手做一做.(课件演示)取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E 挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.投影仪演示学生的作品.[生甲]相邻两个图案成轴对称图形,相间的两个图案之间大小和方向完全一样.[生乙]都成轴对称关系.[生丙]得到与上面类似的两层花边,它仍然是轴对称图形.[师]下面我们做练习.Ⅲ.随堂练习(课件演示)(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.(二)回顾本节课内容,然后小结.Ⅳ.课时小结本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.Ⅴ.课后作业(课件演示)(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.(1)你会得怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?答案:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)•中的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,•因此得到的图案一定有4条对称轴.(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,•剪出的图案至少有4条对称轴.(二)自己设计并制作一个花边.(三)收集并欣赏1~2个对称的中国民间剪纸图案,你能找出它的对称轴吗?Ⅵ.活动与探究如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.“十字”可以折叠两次,剪出它的四分之一即可.板书设计备课资料艺术作品中的对称许多著名画家在作品中运用简单的图形创造出了奇妙的韵意.•法国著名画家V.瓦萨雷利于1969年创作了名画《委加.派尔》,画中仅仅用了“圆”形图案,就形成了一幅动态的轴对称图形!在从古至今的艺术创作中,不仅画家大量运用了对称,许多别的艺术家也经常运用对称的手法.如雕刻家威廉斯.多佛1971年在加蓬《非洲人的设计》中创作的“木制卫兵雕像”就是典型的雕刻艺术中的对称.带状装饰图案的做法油漆工只需要不断移动镂花模板(可以直接移动,也可以将翻转与移动相结合),就可以完全一条美丽的镶边图案.感兴趣的话自己试一试.§12.2.1作轴对称图形(二)教学目标(一)教学知识点1.能够按要求作出简单平面图形经过轴对称后的图形.2.轴对称的简单应用.(二)能力训练要求1.能够按要求作出简单平面图形经过轴对称后的图形.2.培养学生运用轴对称解决实际问题的基本能力.3.使学生掌握数学知识的衔接与各部分知识间的相互联系.(三)情感与价值观要求1.积极参与数学学习活动,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点能够按要求作出简单平面图形经过轴对称后的图形.教学难点应用轴对称解决实际问题.教学方法讲练结合法.教具准备多媒体课件,方格纸数张.教学过程Ⅰ.提出问题,创设情境[师]上节课我们学习了轴对称变换的概念,•知道了一个图形经过轴对称变换可以得到它的轴对称图形,那么具体过程如何操作呢?这就是我们这节课要学习的.•下面同学们来仔细观察一个图案.(课件演示)以虚线为对称轴画出图的另一半:[生甲]这个图案(1)左右两边应该完全相同,画出的整个图案的形状应该是个脸.[生乙]图案(2)画出另一半后应该是一座小房子.[师]大家能把这两个图案的另一半画出来吗?[师]我们利用方格纸来试着画一画(教师发给每人一张方格纸,且纸上画有图).……[师]画好了吧?我们今天就来学习作出简单平面图形经过轴对称后的图形.Ⅱ.导入新课[师]如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点.由已经学过的知识知道:•对应点的连线被对称轴垂直平分.所以,已知对称轴L和一个点A,要画出点A关于L•的对应点A′,可采取如下方法:(1)过点A作对称轴L的垂线,垂足为B;(2)在垂线上截取BA′,使BA′=AB.点A′就是点A关于直线L的对应点.好,大家来动手画一点A关于直线L对称的对应点,教师口述,大家来画图,要注意作图的准确性.……[师]画好了没有?[生]画好了.[师]好,现在我们会画一点关于已知直线的对称点,那么一个图形呢?•大家请看大屏幕.(演示课件)[例1]如图(1),已知△ABC和直线L,作出与△ABC关于直线L对称的图形.[师]同学们讨论一下.……[生甲]可以在已知图形上找一些点,然后作出这些点关于这条直线的对应点,再按图形上点的顺序连结这些点.这样就可以作出这个图形关于直线L的对称图形了.[师]说说看,找几个什么样的点就行呢?[生乙]△ABC可以由三个顶点的位置确定,只要找A、B、C三点就可以了. [师]好,下面大家一起动手做.作法:如图(2).(1)过点A作直线L的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A关于直线L的对称点;(2)类似地,作出点B、C关于直线L的对称点B′、C′;(3)连结A′B′、B′C′、C′A′,得到△A′B′C′即为所求.[师]大家做完后,•我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形.归纳:几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、•线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形.[师]看来在作一个平面图形关于直线轴对称的图形,找一些特殊点是关键.下图中,要作出图形的另一半,哪些点可以作为特殊点?并画出图形的另一半.[师]大家作个简单讨论,共同来完成这个题.[生]在图形(1)上找三个点,在图形(2)中找一个点就可以,如下图:[师]现在我们来做练习.Ⅲ.随堂练习课本P41练习 1、2.1.如图,把下列图形补成关于直线L对称的图形.提示:找特殊点.答案:图(略)2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,•看看哪些部分能够重合,哪些部分不能重合.答案:本题答案不唯一,要求学生尽可能用准确的数学语言将自己剪出的三角形的情况进行表述.Ⅳ.课时小结本节课我们主要研究了如何作出简单平面图形经过轴对称后的图形.在按要求作图时要注意作图的准确性.求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的点关于这条直线的对称点.对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点)的对称点,连结这些对称点,就可以得到原图形的轴对称图形.Ⅴ.课后作业(一)课本P45习题─1、5、8、9题.(二)预习内容P43~P46.Ⅵ.活动与探究[探究1]如图(1).要在燃气管道L上修建一个泵站,分别向A、B两镇供气.•泵站修在管道的什么地方,可使所用的输气管线最短?你可以在L上找几个点试一试,能发现什么规律吗?过程:把管道L近似地看成一条直线如图(2),设B′是B的对称点,•将问题转化为在L上找一点C使AC与CB′的和最小,由于在连结AB′的线中,线段AB′最短.因此,线结AB′与直线L的交点C的位置即为所求.结果:作B关于直线L的对称点B′,连结AB′,交直线L于点C,C为所求.[探究2]为什么在点C的位置修建泵站,就能使所用的输管道最短?过程:将实际问题转化为数学问题,该问题就是证明AC+CB最小.结果:如上图,在直线L上取不同于点C的任意一点C′.由于B′点是B点关于L的对称点,所以BC′=B′C′,故AC′+BC′=AC′+B′C′,在△A′B′C′中AC′+BC′>AB′,•而AB′=AC+CB′=AC+CB,则有AC+CB<AC′+C′B.由于C′点的任意性,所以C点的位置修建泵站,可以使所用输气管线最短.板书设计§12.2.1作轴对称图形(二)一、已知对称轴L和一个点A,要画出点A关于L的对称点A′,方法如下:(1)过点A作对称轴L的垂线,垂足为B.(2)在垂线上截取BA′=AB.则点A′就是点A关于直线L的对应点,二、例1三、随堂练习四、课时小结五、课后作业备课资料参考练习1.已知△ABC,过点A作直线L.求作:△A′B′C′使它与△ABC关于L对称.作法:(1)作点C关于直线L的对称点C′;(2)作点B关于直线L的对称点B′;(3)点A在L上,故点A的对称点A′与A重合;(4)连结A′B′、B′C′、C′A′.则△A′B′C′就是所求作的三角形.2.已知a⊥b,a、b相交于点O,点P为a、b外一点.求作:点P关于a、b的对称点M、N,并证明OM=ON(不许用全等).作法:(1)过点P作PC⊥a,并延长PC到M,使CM=PC.(2)过点P作PD⊥b,并延长PD到N,使得DN=PD.则点M、N就是点P关于a、b的对称点.证明:∵点P与点M关于直线a对称,∴直线a是线段PM的中垂线.∴OP=OM.同理可证:OP=ON.∴OM=ON.3.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,•要求设计的图案由圆、三角形、矩形组成(三种几何图案的个数不限),并且使整个圆形场地成轴对称图形,请你画出你的设计方案.答案:略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习内容:教材P39-42
学习目标:1、能够作轴对称图形
2、能够用轴对称的知识解决相应的数学问题
学习重点:作轴对称图形
学习难点:用轴对称知识解决相应的数学问题
学习方法:操作、归纳、交流、练习
学习过程:
一、创设情境
1、阅读教材P39的四辐图
2、操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?
3、归纳:
(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形
的、完全相同
(2)新图形上一个点,都是原图形上的某一点关于直线l的点
(3)连接任意一对对应点的线段被对称轴
二、作轴对称图形
1、如图,已知△ABC和直线l,你能作出△ABC关于直线l对称的图形。
2、归纳:教材P41
3、练习:教材P41练习第1题
三、用轴对称知识解决相应的数学问题
1、探究:要在燃气管道L上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?
四、总结
五、作业
1、把下列图形补成关于L对称的图形。
2、如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。