经济数学基础积分学部分综合练习及参考答案.doc
经济数学基础及参考答案

作业(一)(一)填空题3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 21. 函数212-+-=x x x y 的连续区间是( )答案:D ,可能是cA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1l i m=+→xxxC.11sinlim 0=→xx x D.1si n l i m=∞→xx x3. 设y x =lg 2,则d y =( ).答案:B A .12d xx B .1d x x ln 10C .ln 10xx d D .1d xx4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x 2 B .xx sinC .)1ln(x +D .x cos(三)解答题问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;1lim ()lim (sin)x x f x x b b x--→→=+=,0sin lim ()lim 1x x x f x x++→→==,有极限存在,lim ()lim ()1x x f x f x b +-→→===(2)当1==b a 时,)(x f 在0=x 处连续。
(完整word版)经济数学基础试题及答案

经济数学基础(05)春模拟试题及参考答案一、单项选择题(每小题3分,共30分)1.下列各函数对中,( )中的两个函数是相等的.A .11)(2--=x x x f ,1)(+=x x g B .2)(x x f =,x x g =)( C .2ln )(x x f =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g2.设函数⎪⎩⎪⎨⎧=≠+=0,10,2sin )(x x k x x x f 在x = 0处连续,则k = ( ). A .—2 B .—1 C .1 D .23. 函数x x f ln )(=在1=x 处的切线方程是( ).A.1=-y x B 。
1-=-y xC 。
1=+y x D. 1-=+y x4.下列函数在区间(,)-∞+∞上单调减少的是( ).A .x sinB .2 xC .x 2D .3 - x5。
若c x F x x f +=⎰)(d )(,则x x xf d )1(2⎰-=( ).A 。
c x F +-)1(212B 。
c x F +--)1(212 C 。
c x F +-)1(22 D. c x F +--)1(226.下列等式中正确的是( ).A . )cos d(d sin x x x =B 。
)1d(d ln xx x = C. )d(ln 1d x x a a x a =D 。
)d(d 1x x x =二、填空题(每小题2分,共10分)7.若函数54)2(2++=+x x x f ,则=)(x f.8.设需求量q 对价格p 的函数为2e100)(p p q -=,则需求弹性为E p = .9.=⎰x x c d os d .三、极限与微分计算题(每小题6分,共12分)10.)3sin(32lim 23+-+-→x x x x 11.设函数)(x y y =由方程222e e =++xy y x 确定,求)(x y '.四、积分计算题(每小题6分,共12分)12.x x x d 2cos 20⎰π13.求微分方程12+=+'x xy y 的通解. 七、应用题(8分) 14.设生产某商品每天的固定成本是20元,边际成本函数为24.0)(+='q q C (元/单位),求总成本函数)(q C 。
作业五经济数学基础积分学综合练习

综合练习一、单项选择题1.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( A ). A .y = x 2 + 3 B .y = x 2 + 4 C .y = 2x + 2 D .y = 4x 正确答案:A2.下列等式不成立的是( ).A .)d(e d e x x x =B .)d(cos d sin x x x =-C .x x xd d 21= D .)1d(d ln x x x = 正确答案:A3.若c x x f x +-=-⎰2ed )(,则)(x f '=( ).A . 2e x -- B . 2e 21x- C . 2e 41x- D . 2e 41x--正确答案:D4.下列不定积分中,常用分部积分法计算的是( ).A .⎰+x x c 1)d os(2B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xxd 12正确答案:C5. 若c x x f xx+-=⎰11e d e )(,则f (x ) =( ).A .x 1 B .-x 1 C .21x D .-21x正确答案:C6. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .)(d )(x F x x f x a=⎰ B .)()(d )(a F x F x x f xa-=⎰C .)()(d )(a f b f x x F b a-=⎰ D .)()(d )(a F b F x x f ba-='⎰正确答案:B7.下列定积分中积分值为0的是( ).A .x x x d 2e e 11⎰---B .x x x d 2ee 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ正确答案:A8.下列定积分计算正确的是( ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0d sin 22=⎰-x x ππ D .0d sin =⎰-x x ππ正确答案:D9.下列无穷积分中收敛的是( ).A .⎰∞+1d ln x x B .⎰∞+0d e x xC .⎰∞+12d 1x x D .⎰∞+13d 1x x正确答案:C10.无穷限积分 ⎰∞+13d 1x x =( ). A .0 B .21- C .21D. ∞正确答案:C二、填空题1.=⎰-x x d e d 2.应该填写:x x d e 2-2.函数x x f 2sin )(=的原函数是 .应该填写:-21cos2x + c (c 是任意常数)3.若)(x f '存在且连续,则='⎰])(d [x f . 应该填写:)(x f '4.若c x x x f ++=⎰2)1(d )(,则=)(x f . 应该填写:)1(2+x5.若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰= .应该填写:c F x +--)e (6.=+⎰e12dx )1ln(d d x x .应该填写:07.积分=+⎰-1122d )1(x x x. 应该填写:08.无穷积分⎰∞++02d )1(1x x 是 .(判别其敛散性) 应该填写:收敛的9.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为 .应该填写:2 + q 23三、计算题1.⎰+-x x x d 242 解 ⎰+-x x x d 242=(2)d x x -⎰=2122x x c -+2.计算⎰x x x d 1sin2解 c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin23.计算⎰xxx d 2解 c x xx x x x +==⎰⎰22ln 2)(d 22d 24.计算⎰x x x d sin解 c x x x x x x x x x x ++-=+-=⎰⎰sin cos d cos cos d sin 5.计算⎰+x x x d 1)ln (解 ⎰+x x x d 1)ln (=⎰+-+x x x x x d 1)(21ln 1)(2122=c x x x x x +--+4)ln 2(2122 6.计算 x x xd e 2121⎰ 解 x xxd e 2121⎰=21211211e e e )1(d e -=-=-⎰x xx7.2e1x ⎰解 x x x d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x +=)13(2- 8.x x x d 2cos 2π0⎰解:x x x d 2cos 20⎰π=202sin 21πx x -x x d 2sin 2120⎰π=22cos 41πx =21-9.x x d )1ln(1e 0⎰-+解法一 x x x x x x x d 1)1ln(d )1ln(1e 01e 01e 0⎰⎰---+-+=+ =x x d )111(1e 1e 0⎰-+---=1e 0)]1ln([1e -+---x x =e ln =1解法二 令1+=x u ,则u uu u u u u x x d 1ln d ln d )1ln(e1e1e11e 0⎰⎰⎰-==+-=11e e e e1=+-=-u四、应用题1.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台). 试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.解 当产量由4百台增至6百台时,总成本的增量为⎰+=∆64d )402(x x C =642)40(x x += 100(万元)又 xc x x C x C x⎰+'=00d )()(=x x x 36402++ =xx 3640++令 0361)(2=-='xx C , 解得6=x .x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值. 所以产量为6百台时可使平均成本达到最小.2.已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化? 解 因为边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x令)(x L '= 0,得x = 500x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大.当产量由500件增加至550件时,利润改变量为5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)即利润将减少25元.3.生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x 令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大.又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x即从利润最大时的产量再生产2百台,利润将减少20万元.4.已知某产品的边际成本为34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求最低平均成本. 解:因为总成本函数为⎰-=q q q C d )34()(=c q q +-322 当q = 0时,C (0) = 18,得 c =18 即 C (q )=18322+-q q 又平均成本函数为qq q q C q A 1832)()(+-==令 0182)(2=-='q q A , 解得q = 3 (百台) 该题确实存在使平均成本最低的产量. 所以当q = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台)5.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求: (1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化? 解:(1) 因为边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为87287)14(d )214(x x x x L -=-=∆⎰ =112 – 64 – 98 + 49 = - 1 (万元)即利润将减少1万元.。
经济数学基础综合练习(二)及参考答案

山东广播电视大学开放教育《经济数基础(1)》课程综合练习(1)一、单项选择题 1.函数)1lg(+=x xy 的定义域是( ).(A) 0≠x (B) 1->x (C) 1->x 且0≠x (D) 0>x2.设x x f 1)(=,则=))((x f f ( ). A .x 1 B .21x C .x D .2x3.下列各函数对中,( )中的两个函数相等.A. x x g x x f ==)(,)()(2B. 1)(,11)(2+=--=x x g x x x fC. x x g x x f ln 2)(,ln )(2==D. 1)(,cos sin )(22=+=x g x x x f4.下列函数中为偶函数的是( ).(A) x x y sin = (B) x x y +=2(C) xx y --=22 (D) x x y cos =5.下列极限存在的是( ).A .1lim 22-∞→x x xB .121lim 0-→x xC .x x sin lim ∞→D .x x 10e lim →6.当+∞→x 时,下列变量中为无穷小量的是( ).(A) 12+x x (B) )1ln(+x(C) x x sin (D) 21e x-7.已知1tan )(-=x xx f ,当( )时,)(x f 为无穷小量.A. x →0B. 1→xC. -∞→xD. +∞→x 8.函数⎪⎩⎪⎨⎧=≠-=0,0,sin )(x k x xxx f 在0=x 处连续,则=k ( ).(A) 1- (B) 1 (C) 0 (D) 29.曲线11+=x y 在点(0, 1)处的切线斜率为( ).A .21B .21-C .3)1(21+x D .3)1(21+-x10. 若x x f 2cos )(=,则='')2(πf ( ).A .0B .1C . 4D .-4 11.下列函数在区间(,)-∞+∞上单调减少的是( ). (A) x cos (B) x -2 (C) x2 (D) 2x12.设某商品的需求函数为2e10)(pp q -=,则当p =6时,需求弹性为( ).A .--53e B .-3 C .3 D .-1213.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( ).A .y = x2 + 3B .y = x2 + 4C .y = 2x + 2D .y = 4x 14.下列等式不成立的是( ).A .)d(e d e xx x = B .)d(cos d sin x x x =- C .x x x d d 21= D .)1d(d ln x x x = 15.下列函数中,( )是xsinx2的原函数.A .21cosx2B .2cosx2C .-2cosx2D .-21cosx216.下列不定积分中,常用分部积分法计算的是( ).A .⎰+x x c 1)d os(2B .⎰-xx x d 12C .⎰x x x d 2sinD .⎰+x x xd 1217. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .)(d )(x F x x f x a =⎰ B .)()(d )(a F x F x x f xa-=⎰ C .)()(d )(a f b f x x F ba-=⎰ D .)()(d )(a F b F x x f ba-='⎰18. 若cx x f xx+-=⎰11e d e)(,则f (x) =( ).A .x 1B .-x 1C .21xD .-21x19.下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x xx d 2e e 11⎰--+C .xx x d )cos (3⎰-+ππ D .xx x d )sin (2⎰-+ππ20.下列无穷积分中收敛的是( ).A .⎰∞+1d ln xx B .⎰∞+0d e xxC .⎰∞+12d 1x x D .⎰∞+13d 1x x 二、填空题1.函数xx x f --+=21)5ln()(的定义域是 . 2.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是.3.若函数62)1(2+-=-x x x f ,则=)(x f .4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f .5.设21010)(xx x f -+=,则函数的图形关于 对称.6.=+∞→xxx x sin lim .7.已知xxx f sin 1)(-=,当 时,)(x f 为无穷小量.8.已知⎪⎩⎪⎨⎧=≠--=0011)(2x a x x x x f ,若)(x f 在),(∞+-∞内连续,则=a .9.曲线1)(2+=x x f 在)2,1(处的切线斜率是 . 10.函数2)1(-=x y 的单调增加区间是 . 11.函数y x =-312()的驻点是 . 12.需求量q 对价格p 的函数为2e 80)(p p q -⨯=,则需求弹性为E p = .13.函数x x f 2sin )(=的原函数是 .14.若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰= .15.若c x x x f ++=⎰2)1(d )(,则=)(x f . 16.若c x x x f x++=⎰510d )(,则___________________)(=x f .17.=+⎰e 12dx )1ln(d d x x . 18.积分=+⎰-1122d )1(x x x.19.=+⎰x x x -d )1cos (11.20.无穷积分⎰∞++02d )1(1x x 是 .(判别其敛散性) 三、计算题1.121lim 221---→x x x x2.计算极限32)3sin(lim 23---→x x x x .3.2211limx x x +-→4.已知xy cos 25=,求)2π(y '; 5.设xx y 32e ln -+=,求y '.6.设2e cos xx y --=,求y d .7.nx x y nsin sin +=,求y d 8.计算⎰x xxd 29.计算⎰x x x d 1sin 210.⎰-x x x d )1sin( 11.计算⎰xx x d ln12.2e 1x⎰13.xx x d 2cos 2π0⎰14.xx x d )e 1(e 3ln 02⎰+四、应用题1.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求: (1)成本函数,收入函数; (2)产量为多少吨时利润最大?2.设生产某产品的总成本函数为 x x C +=5)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 211)(-='(万元/百吨),求:⑴利润最大时的产量;⑵在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?3.设生产某种产品x 个单位时的成本函数为:x x x C 6100)(2++=(万元),求:⑴当10=x 时的总成本和平均成本; ⑵当产量x 为多少时,平均成本最小?4.生产某产品的边际成本为x x C 5)(=' (万元/百台),边际收入为x x R -='120)((万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化? 5.已知某产品的边际成本34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求⑴该产品的平均成本.⑵最低平均成本.6.生产某产品的边际成本为'=C x x ()8(万元/百台),边际收入为'=-R x x ()1002(万元/百台),其中x 为产量,问(1) 产量为多少时,利润最大?(2) 从利润最大时的产量再生产2百台,利润有什么变化? (较难)(熟练掌握)参考答案一、单项选择题1. C 2. C 3. D 4. A 5. A 6. C 7. A 8. A 9. B 10. C 11.B 12.B 13.A 14.D 15.D 16.C 17. B 18. C 19.A 20. C二、填空题1. (-5, 2 )2. [-5,2] 3. 52+x 4. 43-5. y 轴 6. 1 7. 0→x8. 2 9. 21 10.),1(∞+ 11. x =1 12.2p -13. -21cos2x + c (c 是任意常数)14.c F x+--)e ( 15. )1(2+x 16. 510ln 10+x 17. 0 18. 0 19. 2 20.收敛的 三、计算题1.121lim 221---→x x x x121lim 221---→x x x x =)1)(12()1)(1(lim 1-+-+→x x x x x =32121lim 1=++→x x x 2.计算极限32)3sin(lim 23---→x x x x .解:)1)(3()3sin(lim 32)3sin(lim 323+--=---→→x x x x x x x x 41)1(1)3()3sin(lim 3=+--=→x x x x 3.2211lim xx x +-→解:2211limxx x +-→=)11)(11()11(lim22220x x x x x +++-++→=2220)11(lim xx x x -++→= -2 4.已知xy cos 25=,求)2π(y ';解 因为 5ln 5sin 2)cos 2(5ln 5)5(cos 2cos 2cos 2x x xx x y -='='='所以 5ln 25ln 52πsin 2)2π(2πcos2-=⋅-='y5.设xx y 32e ln -+=,求y '.解:由导数运算法则和复合函数求导法则得)e ()(ln 32'+'='-x x y x xx33e ln 2--=6.设2e cos x x y --=,求y d .解:因为22e x y x -'=所以2d (e )d x y x x = 7.nx x y nsin sin +=,求y d解:因为 nx n x x n y n cos cos sin 1+='-所以 =y d (x nx n x x n n d )cos cos sin1+-8.计算⎰xx xd 2解c x xx xx x +==⎰⎰22ln 2)(d 22d 29.计算⎰x x x d 1sin2解 c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin210.⎰-x x x d )1sin(解:⎰-x x x d )1sin(= x cos(1-x ) -⎰-x x d )1cos(= x cos(1-x ) + sin(1-x ) + c 11.计算⎰x x x d ln解 ⎰x x x d ln =⎰-x x x x d 21ln 212=c x x x +-4ln 2122 12.2e 1x ⎰解 x x x d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x +=)13(2-13.x x x d 2cos 2π0⎰解:x x x d 2cos 20⎰π=202sin 21πx x -x x d 2sin 2120⎰π=22cos 41πx =21-14.x x x d )e 1(e 3ln 02⎰+ 解x x xd )e 1(e 3ln 02⎰+=⎰++3ln 02)e d(1)e 1(xx = 3ln 03)e 1(31x +=356四、应用题1.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大? 解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110,所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -.(2)因为利润函数L q ()=R q ()-C q ()=1001102q q --(60q +2000) = 40q -1102q -2000且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.2.设生产某产品的总成本函数为 x x C +=5)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 211)(-='(万元/百吨),求:⑴利润最大时的产量;⑵在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化? 解:⑴因为边际成本为 1)(='x C ,边际利润x x C x R x L 210)()()(-='-'='令0)(='x L ,得5=x 可以验证5=x 为利润函数)(x L 的最大值点. 因此,当产量为5百吨时利润最大.⑵当产量由5百吨增加至6百吨时,利润改变量为65265)10(d )210(x x x x L -=-=∆⎰ 1-=(万元)即利润将减少1万元.3.设生产某种产品x 个单位时的成本函数为:x x x C 6100)(2++=(万元),求: ⑴当10=x 时的总成本和平均成本; ⑵当产量x 为多少时,平均成本最小? 解:⑴因为总成本、平均成本和边际成本分别为:x x x C 6100)(2++=6100)(++=x xx C ,所以,260106101100)10(2=⨯+⨯+=C26610110100)10(=+⨯+=C ,⑵1100)(2+-='xx C令 0)(='x C ,得10=x (10-=x 舍去),可以验证10=x 是)(x C 的最小值点,所以当10=x 时,平均成本最小.4.生产某产品的边际成本为x x C 5)(=' (万元/百台),边际收入为x x R -='120)((万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化? 解:'='-'L x R x C x ()()()x x x 61205)120(-=--=令'=L x ()0 得 20=x (百台),可以验证20=x 是是L x ()的最大值点,即当产量为2000台时,利润最大.x x x x L L d )6120(d )(22202220⎰⎰-='= 12)3120(22202-=-=x x即从利润最大时的产量再生产2百台,利润将减少12万元5.已知某产品的边际成本34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求⑴该产品的平均成本.⑵最低平均成本.解:(1)1832d )34(d )(2+-=-='=⎰⎰q q q q q q C C 平均成本函数 qq q q C C 1832)(+-==2182q C -=',令01822=-='qC ,解得唯一驻点6=x (百台) 因为平均成本存在最小值,且驻点唯一,所以,当产量为600台时,可使平均成本达到最低。
国家开放大学《经济数学基础》期末考试复习题及参考答案

国家开放⼤学《经济数学基础》期末考试复习题及参考答案题⽬1:函数的定义域为().答案:题⽬1:函数的定义域为().答案:题⽬1:函数的定义域为().答案:题⽬2:下列函数在指定区间上单调增加的是().答案:题⽬2:下列函数在指定区间上单调增加的是().答案:题⽬2:下列函数在指定区间上单调减少的是().答案:题⽬3:设,则().答案:题⽬3:设,则().答案:题⽬3:设,则=().答案:题⽬4:当时,下列变量为⽆穷⼩量的是().答案:题⽬4:当时,下列变量为⽆穷⼩量的是().答案:题⽬4:当时,下列变量为⽆穷⼩量的是().答案:题⽬5:下列极限计算正确的是().答案:题⽬5:下列极限计算正确的是().答案:题⽬5:下列极限计算正确的是().答案:题⽬6:().答案:0题⽬6:().答案:-1题⽬6:().答案:1题⽬7:().答案:题⽬7:().答案:().题⽬7:().答案:-1题⽬8:().答案:题⽬8:().答案:题⽬8:().答案:().题⽬9:().答案:4题⽬9:().答案:-4题⽬9:().答案:2题⽬10:设在处连续,则().答案:1 题⽬10:设在处连续,则().答案:1 题⽬10:设在处连续,则().答案:2题⽬11:当(),()时,函数在处连续.答案:题⽬11:当(),()时,函数在处连续.答案:题⽬11:当(),()时,函数在处连续.答案:题⽬12:曲线在点的切线⽅程是().答案:题⽬12:曲线在点的切线⽅程是().答案:题⽬12:曲线在点的切线⽅程是().答案:题⽬13:若函数在点处可导,则()是错误的.答案:,但题⽬13:若函数在点处可微,则()是错误的.答案:,但题⽬13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题⽬14:若,则().答案:题⽬14:若,则().答案:1题⽬14:若,则().答案:题⽬15:设,则().答案:题⽬15:设,则().答案:题⽬15:设,则().答案:题⽬16:设函数,则().答案:题⽬16:设函数,则().答案:题⽬16:设函数,则().答案:题⽬17:设,则().答案:题⽬17:设,则().答案:题⽬17:设,则().答案:题⽬18:设,则().答案:题⽬18:设,则().答案:题⽬18:设,则().答案:题⽬19:设,则().答案:题⽬19:设,则().答案:题⽬19:设,则().答案:题⽬20:设,则().答案:题⽬20:设,则().答案:题⽬20:设,则().答案:题⽬21:设,则().答案:题⽬21:设,则().答案:题⽬21:设,则().答案:题⽬22:设,⽅程两边对求导,可得().答案:题⽬22:设,⽅程两边对求导,可得().答案:题⽬22:设,⽅程两边对求导,可得().答案:题⽬23:设,则().答案:题⽬23:设,则().答案:题⽬23:设,则().答案:-2题⽬24:函数的驻点是().答案:题⽬24:函数的驻点是().答案:题⽬24:函数的驻点是().答案:题⽬25:设某商品的需求函数为,则需求弹性().答案:题⽬25:设某商品的需求函数为,则需求弹性().答案:题⽬25:设某商品的需求函数为,则需求弹性().答案:题⽬1:下列函数中,()是的⼀个原函数.答案:题⽬1:下列函数中,()是的⼀个原函数.答案:题⽬1:下列函数中,()是的⼀个原函数.答案:题⽬2:若,则(). 答案:题⽬2:若,则().答案:题⽬2:若,则(). 答案:题⽬3:(). 答案:题⽬3:().答案:题⽬3:(). 答案:题⽬4:().答案:题⽬4:().答案:题⽬4:().答案:题⽬5:下列等式成⽴的是().答案:题⽬5:下列等式成⽴的是().答案:题⽬5:下列等式成⽴的是().答案:题⽬6:若,则(). 答案:题⽬6:若,则().答案:题⽬6:若,则(). 答案:题⽬7:⽤第⼀换元法求不定积分,则下列步骤中正确的是().答案:题⽬7:⽤第⼀换元法求不定积分,则下列步骤中正确的是().答案:题⽬7:⽤第⼀换元法求不定积分,则下列步骤中正确的是().答案:题⽬8:下列不定积分中,常⽤分部积分法计算的是().答案:题⽬8:下列不定积分中,常⽤分部积分法计算的是().答案:题⽬8:下列不定积分中,常⽤分部积分法计算的是().答案:题⽬9:⽤分部积分法求不定积分,则下列步骤中正确的是().答案:题⽬9:⽤分部积分法求不定积分,则下列步骤中正确的是().答案:题⽬9:⽤分部积分法求不定积分,则下列步骤中正确的是().答案:题⽬10:(). 答案:0题⽬10:().答案:0题⽬10:(). 答案:题⽬11:设,则(). 答案:题⽬11:设,则().答案:题⽬11:设,则(). 答案:题⽬12:下列定积分计算正确的是().答案:题⽬12:下列定积分计算正确的是().答案:题⽬12:下列定积分计算正确的是().答案:题⽬13:下列定积分计算正确的是().答案:题⽬13:下列定积分计算正确的是().答案:题⽬13:下列定积分计算正确的是().答案:题⽬14:计算定积分,则下列步骤中正确的是().答案:题⽬14:().答案:题⽬14:().答案:题⽬15:⽤第⼀换元法求定积分,则下列步骤中正确的是().答案:题⽬15:⽤第⼀换元法求定积分,则下列步骤中正确的是().答案:题⽬15:⽤第⼀换元法求定积分,则下列步骤中正确的是().答案:题⽬16:⽤分部积分法求定积分,则下列步骤正确的是().答案:题⽬16:⽤分部积分法求定积分,则下列步骤正确的是().答案:题⽬16:⽤分部积分法求定积分,则下列步骤正确的是().答案:题⽬17:下列⽆穷积分中收敛的是().答案:题⽬17:下列⽆穷积分中收敛的是().答案:题⽬17:下列⽆穷积分中收敛的是().答案:题⽬18:求解可分离变量的微分⽅程,分离变量后可得().答案:题⽬18:求解可分离变量的微分⽅程,分离变量后可得().答案:题⽬18:求解可分离变量的微分⽅程,分离变量后可得().答案:题⽬19:根据⼀阶线性微分⽅程的通解公式求解,则下列选项正确的是().答案:题⽬19:根据⼀阶线性微分⽅程的通解公式求解,则下列选项正确的是答案:题⽬19:根据⼀阶线性微分⽅程的通解公式求解,则下列选项正确的是().答案:题⽬20:微分⽅程满⾜的特解为().答案:题⽬20:微分⽅程满⾜的特解为().答案:题⽬20:微分⽅程满⾜的特解为().答案:题⽬1:设矩阵,则的元素().答案:3题⽬1:设矩阵,则的元素a32=().答案:1题⽬1:设矩阵,则的元素a24=().答案:2题⽬2:设,,则().答案:题⽬2:设,,则()答案:题⽬2:设,,则BA =().答案:题⽬3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题⽬3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题⽬3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题⽬4:设,为单位矩阵,则()答案:题⽬4:设,为单位矩阵,则(A - I )T =().答案:题⽬4:,为单位矩阵,则A T–I =().答案:题⽬5:设均为阶矩阵,则等式成⽴的充分必要条件是().答案:题⽬5:设均为阶矩阵,则等式成⽴的充分必要条件是().答案:题⽬5:设均为阶矩阵,则等式成⽴的充分必要条件是().答案:题⽬6:下列关于矩阵的结论正确的是().答案:对⾓矩阵是对称矩阵题⽬6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题⽬6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题⽬7:设,,则().答案:0题⽬7:设,,则().答案:0题⽬7:设,,则().答案:-2, 4题⽬8:设均为阶可逆矩阵,则下列等式成⽴的是().答案:题⽬8:设均为阶可逆矩阵,则下列等式成⽴的是().答案:题⽬8:设均为阶可逆矩阵,则下列等式成⽴的是().答案:题⽬9:下列矩阵可逆的是().答案:题⽬9:下列矩阵可逆的是().答案:题⽬9:下列矩阵可逆的是().答案:题⽬10:设矩阵,则().答案:题⽬10:设矩阵,则().答案:题⽬10:设矩阵,则().答案:题⽬11:设均为阶矩阵,可逆,则矩阵⽅程的解().答案:题⽬11:设均为阶矩阵,可逆,则矩阵⽅程的解().答案:题⽬11:设均为阶矩阵,可逆,则矩阵⽅程的解().答案:题⽬12:矩阵的秩是().答案:2题⽬12:矩阵的秩是().答案:3题⽬12:矩阵的秩是().答案:3题⽬13:设矩阵,则当()时,最⼩.答案:2题⽬13:设矩阵,则当()时,最⼩.答案:-2题⽬13:设矩阵,则当()时,最⼩.答案:-12题⽬14:对线性⽅程组的增⼴矩阵做初等⾏变换可得则该⽅程组的⼀般解为(),其中是⾃由未知量答案:题⽬14:对线性⽅程组的增⼴矩阵做初等⾏变换可得则该⽅程组的⼀般解为(),其中是⾃由未知量.答案:题⽬14:对线性⽅程组的增⼴矩阵做初等⾏变换可得则该⽅程组的⼀般解为(),其中是⾃由未知量.选择⼀项:A.B.C.D.答案:题⽬15:设线性⽅程组有⾮0解,则().答案:-1 题⽬15:设线性⽅程组有⾮0解,则().答案:1题⽬15:设线性⽅程组有⾮0解,则().答案:-1题⽬16:设线性⽅程组,且,则当且仅当()时,⽅程组有唯⼀解.答案:题⽬16:设线性⽅程组,且,则当()时,⽅程组没有唯⼀解.答案:题⽬16:设线性⽅程组,且,则当()时,⽅程组有⽆穷多解.答案:题⽬17:线性⽅程组有⽆穷多解的充分必要条件是().答案:题⽬17线性⽅程组有唯⼀解的充分必要条件是().:答案:题⽬17:线性⽅程组⽆解,则().答案:题⽬18:设线性⽅程组,则⽅程组有解的充分必要条件是().答案:题⽬18:设线性⽅程组,则⽅程组有解的充分必要条件是().答案:题⽬18:设线性⽅程组,则⽅程组有解的充分必要条件是()答案:题⽬19:对线性⽅程组的增⼴矩阵做初等⾏变换可得则当()时,该⽅程组⽆解.答案:且题⽬19:对线性⽅程组的增⼴矩阵做初等⾏变换可得则当()时,该⽅程组有⽆穷多解.答案:且题⽬19:对线性⽅程组的增⼴矩阵做初等⾏变换可得则当()时,该⽅程组有唯⼀解.答案:题⽬20:若线性⽅程组只有零解,则线性⽅程组()答案:解不能确定题⽬20:若线性⽅程组有唯⼀解,则线性⽅程组().答案:只有零解题⽬20:若线性⽅程组有⽆穷多解,则线性⽅程组().答案:有⽆穷多解。
经济数学基础积分学部分复习要求与综合练习

经济数学基础积分学部分复习要求与综合练习第一部分:复习要求 第1章 不定积分1.理解原函数与不定积分概念。
这里要解决下面几个问题: (1)什么是原函数?若函数)(x F 的导数等于)(x f ,即)()(x f x F =',则称函数)(x F 是)(x f 的原函数。
(2)原函数不是唯一的。
由于常数的导数是0,故c x F +)(都是)(x f 的原函数(其中c 是任意常数)。
(3)什么是不定积分?原函数的全体c x F +)((其中c 是任意常数)称为)(x f 的不定积分,记为⎰x x f d )(=c x F +)(。
(4)知道不定积分与导数(微分)之间的关系。
不定积分与导数(微分)之间互为逆运算,即先积分,再求导,等于它本身;先求导,再积分,等于函数加上一个任意常数,即⎰')d )((x x f =)(x f ,⎰)d )(d(x x f =x x f d )(,c x f x x f +='⎰)(d )(,c x f x f +=⎰)()(d2.熟练掌握不定积分的计算方法。
常用的积分方法有 (1)运用积分基本公式直接进行积分; (2)第一换元积分法(凑微分法);(3)分部积分法,主要掌握被积函数是以下类型的不定积分:①幂函数与指数函数相乘; ②幂函数与对数函数相乘;③幂函数与正(余)弦函数相乘;第2章 定积分1.了解定积分的概念,知道奇偶函数在对称区间上的积分结果.要区别不定积分与定积分之间的关系。
定积分的结果是一个数,而不定积分的结果是一个表达式。
奇偶函数在对称区间上的积分有以下结果: 若f x ()是奇函数,则有f x x a a()d -⎰=0若f x ()是偶函数,则有f x x f x x f x x aa a a()()()d d d --⎰⎰⎰==2202.熟练掌握定积分的计算方法。
常用的积分方法有(1)运用积分基本公式直接进行积分; (2)第一换元积分法(凑微分法);注意:定积分换元,一定要换上、下限,然后直接计算其值(不要还原成原变量的函数).(3)分部积分法,主要掌握被积函数是以下类型的定积分: ①幂函数与指数函数相乘; ②幂函数与对数函数相乘;③幂函数与正(余)弦函数相乘;3.知道无穷限积分的收敛概念,会求简单的无穷限积分。
电大经济数学基础微积分试题及答案(最新)

经济数学基础微积分试题(07.1-14.1)一、单项选择题:1、设xx f 1)(=,则=))((x f f ( C ). (10.1)A.x 1B.21x C.x D.2x2、下列各函数对中,( C )中的两个函数相等. (08.7) A. x x g x x f ==)(,)(2 B. x x g x x f ==)(,)()(2C. x x g x y ln 3)(,ln 3==D. x x g x y ln 2)(,ln 2==3、下列各函数对中,( D )中的两个函数相等. (07.7,13.1,14.1)A.x x g x x f ==)(,)()(2B.1)(,11)(2+=--=x x g x x x fC.x x g x y ln 2)(,ln 2==D.1)(,cos sin )(22=+=x g x x x f4、下列函数在指定区间(-∞,+∞﹚上单调增加的是( B ). (10.7,11.7) A.x sin B.x e C.2x D.x -35、下列函数在指定区间(-∞,+∞﹚上单调下降的是( B ).(09.1) A.x sin B. x 3 C.2x D. 5-x6、下列函数在指定区间(-∞,+∞﹚上单调增加的是( C ).(08.7)A.x sinB.x 21C.x 3D.21x -7、函数242--=x x y 的定义域是( B ). (07.1) A. [-2,+ ∞) B. [-2,2)),2(+∞⋃C. (-∞,-2)),2(+∞-⋃D. (-∞,2)),2(+∞⋃ 8、函数xx y -++=41)2ln(的定义域是( A ). (09.7)A.(-2,4)B. (-2,4)),4(+∞⋃C.)4,(-∞D.),2(+∞-9、函数)1lg(+=x xy 的定义域是( D ). (11.7)A.1->xB.0>xC.0≠xD. 1->x 且0≠x 10、下列函数中为奇函数的是( C ). (11.1,13.7) A.x x y -=2 B.x x e e y -+=C.11ln +-=x x y D.x x y sin =11、下列函数中为偶函数的是( A ). (08.1)A.x x y sin =B.x x y +=2C.x x y --=22D.x x y cos = 12、下列函数中为偶函数的是( C ). (12.1)A. x x y -=2B. 11ln +-=x x yC.2xx e e y -+= D.x x y sin 2=13、已知xxx f sin 1)(-=,当x ( A )时,)(x f 为无穷小量. (09.1) A.0→ B.∞→ C.1→ D.+∞→14、已知1sin )(-=xxx f ,当( A )时,)(x f 为无穷小量. (07.7,10.1) A.0→x B.1→x C.-∞→x D.+∞→x 15、当0→x 时,变量( D )是无穷小量. (09.7)A.x 31 B.x x sin C.)2ln(+x D.x x 1sin16、函数⎪⎩⎪⎨⎧=≠=0,0sin )(x k x xxx f ,在)(x f 在x=0处连续,则k =( C ).(13.1)A.-2B.-1C.1D.217、若4cos )(π=x f ,则=∆-∆+∞→xx f x x f x )()(lim( A ). (07.1)A.0B.22C.4sin π-D. 4sin π18、曲线x y sin =在点(π,0)处的切线斜率为( D ). (08.1)A.1B.2C.21D.-1 19、曲线11+=x y 在点(0,1)处的切线斜率为( A ). (10.7)A.21-B.21C.2)1(21+xD.- 2)1(21+x20、曲线1sin +=x y 在点(0,1)处的切线方程为( A ).A.1+=x yB. 12+=x yC. 1-=x yD. 12-=x y 21、在切线斜率为2x 的积分曲线中,通过点(1,4)的曲线为( A ).(13.7) A.32+=x y B. 42+=x y C. 22+=x y D. x y 4= 22、设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为=P E ( D )。
2021年国家开放大学《经济数学基础12》综合练习题及参考答案

2021年国家开放大学《经济数学基础12》课程综合练习题参考答案一、单项选择题(每小题3分,共15分)1.C 2. A 3. B 4. D 5. B二、填空题(每小题3分,共15分)6.32+x 7.218.4 9.3 10.-1三、微积分计算题(每小题10分,共20分)11.解 )(cos e 1sin x x y x +=' x x x y y y xd )cose 1(d d sin +='=12.解: x x x d 2cos 20⎰π=202sin 21πx x -x x d 2sin 2120⎰π=202cos 41πx =21-.四、线性代数计算题(每小题15分,共30分)13.解:因为⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121⎥⎦⎤⎢⎣⎡--→13102501 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221= ⎥⎦⎤⎢⎣⎡-110114.解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---2710222012511103121114796371231211λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+----→3000012511109490130000125111031211λλ 由此可知当3-≠λ时,方程组无解;当3-=λ时,方程组有解方程组的一般解为:⎩⎨⎧-+=+--=12511949432431x x x x x x , 其中3x ,4x 是自由未知量. 五、应用题(本题20分)15.解:因为总成本函数为⎰-=q q q C d )34()(=c q q +-322当q = 0时,C (0) = 18,得 c =18即 C (q )=18322+-q q又平均成本函数为 qq q q C q A 1832)()(+-== 令 0182)(2=-='q q A , 解得q = 3 (百台) 该题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为: 9318332)3(=+-⨯=A (万元/百台)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济数学基础综合练习及参考答案第二部分 积分学一、单项选择题1.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( ). A .y = x 2 + 3 B .y = x 2 + 4 C .y = 2x + 2 D .y = 4x 2. 若⎰+1d )2(x k x = 2,则k =( ).A .1B .-1C .0D .21 3.下列等式不成立的是( ).A .)d(e d e xxx = B .)d(cos d sin x x x =- C .x x x d d 21= D .)1d(d ln x x x =4.若c x x f x +-=-⎰2ed )(,则)(x f '=( ).A . 2e x-- B . 2e 21x- C . 2e 41x- D . 2e 41x--5. =-⎰)d(e x x ( ).A .c x x+-e B .c x x x ++--e eC .c x x+--eD .c x x x +---e e6. 若c x x f xx+-=⎰11e d e)(,则f (x ) =( ).A .x 1 B .-x 1 C .21x D .-21x7. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .)(d )(x F x x f xa =⎰ B .)()(d )(a F x F x x f xa -=⎰C .)()(d )(a f b f x x F ba-=⎰D .)()(d )(a F b F x x f b a-='⎰8.下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x x x d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ9.下列无穷积分中收敛的是( ).A .⎰∞+1d ln x x B .⎰∞+0d e x xC .⎰∞+12d 1x x D .⎰∞+13d 1x x10.设R '(q )=100-4q ,若销售量由10单位减少到5单位,则收入R 的改变量是( ).A .-550B .-350C .350D .以上都不对 11.下列微分方程中,( )是线性微分方程. A .y y yx '=+ln 2B .xxy y y e 2=+'C .yy x y e ='+'' D .x y y x y xln e sin ='-''12.微分方程0)()(432=+'''+'xy y y y 的阶是( ).A . 4B . 3C . 2D . 1 二、填空题 1.=⎰-x x d e d 2. 2.函数x x f 2sin )(=的原函数是.3.若c x x x f ++=⎰2)1(d )(,则=)(x f .4.若c x F x x f +=⎰)(d )(,则x f xx)d e(e --⎰= .5.=+⎰e12dx )1ln(d dx x. 6.=+⎰-1122d )1(x x x. 7.无穷积分⎰∞++02d )1(1x x 是.(判别其敛散性)8.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为.9. 0e)(23='+''-y y x是 阶微分方程.10.微分方程2x y ='的通解是.三、计算题⒈⎰x x x d 1sin22.⎰x x xd 23.⎰x x x d sin 4.⎰+x x x d 1)ln ( 5.x x x d )e 1(e 3ln 02⎰+ 6.x xx d ln e 1⎰7.2e 1x ⎰8.x x x d 2cos 2π0⎰9.x x d )1ln(1e 0⎰-+10.求微分方程12+=+'x x y y 满足初始条件47)1(=y 的特解. 11.求微分方程0e 32=+'+y y xy 满足初始条件3)1(=-y 的特解.12.求微分方程x xyy ln =-'满足 11==x y 的特解.13.求微分方程y y x y ln tan ='的通解.14.求微分方程xxy y x ln =-'的通解.15.求微分方程y x y -='2的通解.16.求微分方程x x y y x sin =+'的通解.四、应用题1.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台). 试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低. 2.已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?3.生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?4.已知某产品的边际成本为34)(-='x x C (万元/百台),x 为产量(百台),固定成本为18(万元),求最低平均成本.5.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?试题答案一、 单项选择题1. A 2.A 3. D 4. D 5. B 6. C 7. B 8. A 9. C 10. B 11. D 12. C 二、填空题1. x x d e2- 2. -21cos2x + c (c 是任意常数) 3. )1(2+x 4. c F x+--)e ( 5. 0 6. 0 7. 收敛的 8. 2 + q 239. 2 10. c x y +=33 三、计算题⒈ 解 c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin22.解 c x xx x x x +==⎰⎰22ln 2)(d 22d 23.解c x x x x x x x x x x ++-=+-=⎰⎰s i n c o sd c o s c o sd s i n 4.解 ⎰+x xx d 1)l n (=⎰+-+x x x x x d 1)(21ln 1)(2122=c x x x x x +--+4)ln 2(21225.解x x x d )e 1(e 3ln 02⎰+=⎰++3ln 02)e d(1)e 1(x x = 3ln 03)e 1(31x +=356 6.解)(ln d 2ln 2)2(d ln d ln e 1e1e 1e 1x x x x x x x xx ⎰⎰⎰-==e1e 14e 2d 2e 2x x x -=-=⎰e 24d 2e 2e 1-=-=⎰x x7.解x xx d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x+=)13(2-8.解x x x d 2c o s 2⎰π=202sin 21πx x -x x d 2sin 2120⎰π=22cos 41πx =21- 9.解法一 x x x x x x x d 1)1l n (d )1l n (1e 01e 01e 0⎰⎰---+-+=+ =x x d )111(1e 1e 0⎰-+--- =1e 0)]1ln([1e -+---x x =e ln =1解法二 令1+=x u ,则u uu u u u u x x d 1ln d ln d )1ln(e 1e 1e 11e 0⎰⎰⎰-==+-=11e e e e1=+-=-u10.解 因为 xx P 1)(=,1)(2+=x x Q 用公式 ]d 1)e ([ed 12d 1c x x y x x xx +⎰+⎰=⎰-]d 1)e([e ln 2ln c x x xx ++=⎰- x cx x c x x x ++=++=24]24[1324 由 4712141)1(3=++=c y , 得 1=c 所以,特解为 xx x y 1243++=11.解 将方程分离变量:x y y x y d e d e 32-=-等式两端积分得 c x y +-=--3e 31e 212 将初始条件3)1(=-y 代入,得 c +-=---33e 31e 21,c =3e 61--所以,特解为:33e e 2e32--+=x y12.解:方程两端乘以x1,得xxx y x y ln 2=-' 即x xxy ln )(=' 两边求积分,得 c x x x x x x x y +===⎰⎰2ln )(ln d ln d ln 2 通解为: cx xx y +=2ln 2 由11==x y ,得1=c所以,满足初始条件的特解为:x xx y +=2ln 2 13.解 将原方程分离变量x x yy yd c o t ln d =两端积分得 lnln y = ln C sin x 通解为 y = e C sin x14. 解 将原方程化为:xy x y ln 11=-',它是一阶线性微分方程, x x P 1)(-=,xx Q ln 1)(=用公式 ()d ()d e[()e d ]P x x P x x y Q x x c -⎰⎰=+⎰]d e ln 1[e d 1d 1c x xx x x x +⎰⎰=⎰- ]d e ln 1[e ln ln c x x x x+=⎰- ]d ln 1[c x xx x +=⎰)ln (ln c x x +=15.解 在微分方程y x y -='2中,x x Q x P 2)(,1)(==由通解公式)d e 2(e )d e 2(e d d c x x c x x y x x xx+=+⎰⎰=⎰⎰--)e 2e 2(e )d e 2e 2(e c x c x x x x x x x x +-=+-=--⎰)e 22(x c x -+-=16.解:因为xx P 1)(=,x x Q sin )(=,由通解公式得)d e sin(e d 1d 1c x x y xx x x +⎰⎰=⎰-=)d e sin (eln ln c x x x x+⎰- =)d sin (1c x x x x+⎰=)sin cos (1c x x x x++-四、应用题1.解 当产量由4百台增至6百台时,总成本的增量为⎰+=∆64d )402(x x C =642)40(x x+= 100(万元)又 xc x x C x C x ⎰+'=d )()(=x x x 36402++ =xx 3640++令 0361)(2=-='xx C , 解得6=x .x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值. 所以产量为6百台时可使平均成本达到最小. 2.解 因为边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x 令)(x L '= 0,得x = 500x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大. 当产量由500件增加至550件时,利润改变量为5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)即利润将减少25元.3. 解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大. 又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x即从利润最大时的产量再生产2百台,利润将减少20万元.4.解:因为总成本函数为⎰-=x x x C d )34()(=c x x +-322当x = 0时,C (0) = 18,得 c =18 即 C (x )=18322+-x x 又平均成本函数为 xx x x C x A 1832)()(+-== 令 0182)(2=-='x x A , 解得x = 3 (百台) 该题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台) 5.解:(1) 因为边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为 87287)14(d )214(xx x x L -=-=∆⎰ =112 – 64 – 98 + 49 = - 1 (万元)即利润将减少1万元.。