任务一 间歇操作釜式反应器设计

合集下载

2.4.3间歇操作釜式反应器直径和高度的计算-CZIE

2.4.3间歇操作釜式反应器直径和高度的计算-CZIE
间歇釜式反应器 间歇釜的直径和高度的计算 间歇釜设备之间的平衡 间歇釜的放热规律
间歇操作釜式反应器直径和高度的计算
一般搅拌反应釜的高度与直径之比H/D=1.2左右,釜盖与釜 底采用椭圆形封头,如图所示。
V D2H " 0.131D3
4
由工艺计算决定了反应器的体积后,即可按下式求得其直径与高度:
所求得的圆筒高度及直径需要圆整,并检验装料系数是否合适。确 定了的反应釜的主要尺寸后,其壁厚、法兰尺寸以及手孔、视镜、 工艺接管口等均可按工艺条件由标准中选择。
间歇操作釜式反应器设备之间的平衡
什么情况下要求设备平衡? 当产品由多道工序经间歇釜反应而制得时,当前后工序设备之间不
平衡时,就会出现前工序操作完了要出料,后工序却不能接受来料; 或者,后工序待接受来料,而前工序尚未反应完毕的情况。这时将大 大延长辅助操作的时间。
例题讲解
间歇操作釜式反应器的放热规律
由例3-4可知:开始反应快,单位时间内放热量大,随着反应时间的 增长,单位时间内放出的热量逐渐降低。
因此:计算反应釜传热面积时应以开始阶段的放热速率为依据;
温度操作应根据反应特性和放热规律进行不断调整与控制,开始 时冷却水量要大,随反应进行,冷却水的消耗量逐渐减少。
反应釜之间平衡的条件: 为了便于生产的组织管理和产品的质量检验,通常要求不同批号的
物料不相混。
各道工序每天操作的批次相同,即 24v0 为一常数。 V
如何根据平衡条件确定各工序反应器的大小和数量? 计算时一般首先确定主要反应工序的设备体积、数量及每天操作批数, 然后使其它工序的α值都与其相同,再确定各工序的设备体积与数量。

间歇式反应釜设计说明书

间歇式反应釜设计说明书

反应工程课程设计反应釜设计任务书一、设计题目:5×103T/Y乙酸乙酯反应釜设计1、用间歇反应器进行乙酸和乙醇的酯化反应,年生产量为5000吨,2、反应式为()()()()3253252CH COOH A C H OH B CH COOC H R H O S +=+3、原料中反应组分的质量比为:::1:2:1.35A B S =4、反应液的密度为31020/kg m ,并假设在反应过程中不变 5、每批装料、卸料及清洗等辅助操作时间为1小时678二、摘要摘要:本选题为年产量为5×103T 的间歇釜式反应器的设计。

通过物料衡算、热量衡算,反应器体积为319.77m 、换热量为62.8710KJ 。

设备设计结果表明,反应器的特征尺寸为高2973.3mm ,直径3000mm ,还对塔体等进行了辅助设备设计,换热则是通过夹套与内冷管共同作用完成。

搅拌器的形式为圆盘桨式搅拌器,搅拌轴直径80mm ,搅拌轴长度3601mm 。

在此基础上绘制了设备条件图。

本设计为间歇釜式反应器的工业设计提供较为详尽的数据与图纸。

关键字:间歇釜式反应器; 物料衡算; 热量衡算; 壁厚设计;Abstract: The batch reactor for five million T a year is to be designed. Through the material, heat balance reactor volume, heat transfer. Equipment design results show that the characteristic dimensions for high reactor is 2973.3 mm, diameter is 3000mm, height is 3180mm , the auxiliary equipment also is to be designed , heat is finished through the clip with the common cold tube inside. The mixer for disk paddle type mixer, stirring shaft diameter and length of stirring shaft is 3601mm , diameter is 80mm. Based on the condition of equipment drawing. This design for batch reactor industrial design provides a detailed data and drawings. Key words : batch reactor, Material, Heat balance, Thick wall design,目录第一章反应釜物料衡算 (1)1.1 反应釜反应时间、反应体积的确定 (1)第二章反应釜公称直径、公称压力的确定 (2)2.1 反应釜公称直径的确定 (2)2.2 反应釜PN的确定 (2)第三章反应釜体设计 (3)3.1 反应釜筒体壁厚的确定 (3)3.1.1 设计参数的确定 (3)3.2 筒体壁厚设计 (4)3.3 釜体封头设计 (4)3.3.1 封头的选型 (4)3.3.2 封头壁厚设计 (4)3.3 筒体长度H设计 (5)3.4 反应釜的压力校核 (6)3.4.1 釜体的水压试验 (6)3.4.2 液压试验的强度校核 (6)3.5 釜体的气压试验 (7)3.5.1 气压试验压力的确定 (7)第四章反应釜夹套的设计 (8)4.1 夹套公称直径、公称压力的确定 (8)4.1.1 夹套DN的确定 (8)4.1.2 夹套PN的确定 (8)4.2 夹套筒体的设计 (8)4.2.1 夹套筒体壁厚的设计 (8)4.2.2 夹套筒体长度H的确定 (8)4.3 夹套封头的设计 (9)4.3.1 封头的选型 (9)4.3.2 椭圆型封头结构尺寸的确定 (9)4.4 夹套的液压试验 (9)4.4.1 液压试验压力的确定 (9)4.4.2 液压试验的强度校核 (10)第五章外压壁厚的设计 (10)5.1 圆筒的临界压力计算 (10)5.2 外压封头壁厚设计 (11)第六章热量衡算 (11)6.1 热量衡算基本数据 (11)6.2 原料带入的热量Q1的计算 (12)6.3 反应热的计算 (13)6.4 夹套给热量的计算 (14)6.5 内冷管移热量的计算 (14)第七章反应釜附件的选型及尺寸设计 (15)7.1 釜体法兰连接结构的设计 (15)7.2 密封面形式的选型 (15)7.3 工艺接管的设计 (15)7.3.1 原料液进口管 (15)7.3.2 物料出口管 (16)7.3.3 催化剂进口设计 (16)7.3.4 温度计接口 (16)7.3.5 视镜 (17)第八章搅拌装置设计 (17)8.1 凸缘法兰选择 (17)8.2 临界转速的计算 (17)8.3 搅拌装置的选型与尺寸设计 (19)8.3.1 搅拌轴直径的初步计算 (19)8.3.2 搅拌轴临界转速校核计算 (20)8.4 搅拌轴的结构及尺寸设计 (20)8.4.1 搅拌轴长度的设计 (20)8.4.2 搅拌桨的尺寸设计 (21)第九章支座 (21)结论 (21)设计结果一览表 (22)参考文献 (23)第一章 反应釜物料衡算1.1 反应釜反应时间、反应体积的确定原料处理量0Q ,根据乙酸乙酯的产量,每小时的一算用量为:500020.77/Kmol h=原料1BO SO AO AO c c b c c K ⎛⎫=-++ ⎪⎝⎭11c K =-得反应时间[1]212 1Af Af XAAO A Ab X adXtk c a bX cX++ ==++⎰10.23.908a=()10.217.591 5.153.908 3.908 2.92b⎛⎫=-++=-⎪⨯⎝⎭110.65752.92c=-=查到反应釜的2800DN mm=2.2 反应釜PN的确定[2]由lg s Bp A t C =-+得一下数据在100℃下,各物质的饱和蒸汽压为下列图表()()()()3253252CH COOH A C H OH B CH COOC H R H O S +=+3.1.1 设计参数的确定设计压力p :()1.05~1.1W p P =,取1.1 1.10.350.385W p P Mpa ==⨯= 液体静压忽略不计 计算压力c p :0.385c L p p p P Mpa=+==设计温度t :110t =℃焊缝系数Φ:1φ=(双面对接焊,100%无损探伤)[3]许用应力[]t σ:根据材料001910Cr Ni ,设计温度为110℃,该材料的[]118tMpaσ=[4]钢板负偏差1C :10.6C mm=腐蚀裕量2C :22C mm=(双面腐蚀)3.2 筒体壁厚设计C n S 制造较难,中、低压小设备不宜采用;蝶形封头的深度可通过过渡半径加以调节,但由于蝶形封头母线曲率不连续,存在局部应力,故受力不如椭圆形封头;保准椭圆形封头制造比较简单,受力状况比蝶形封头好,故该反应釜采用椭圆形封头。

间歇操作釜式反应器

间歇操作釜式反应器

06
安全与维护
安全操作规程
01
02
03
04
操作前检查
确保釜式反应器及其附件完好 无损,检查电源、气源等是否
正常。
严格控制工艺参数
如温度、压力、液位等,防止 超温、超压、溢锅等事故发生

操作中监护
操作人员应时刻关注釜式反应 器的运行状态,发现异常及时
处理。
操作后清理
对釜式反应器进行彻底清洗, 确保无残留物,保持设备清洁

定期维护保养
日常保养
每天对釜式反应器进行外观检查,确 保设备无异常;定期清理设备表面污 垢和残留物。
定期检查
根据设备使用情况,定期对釜式反应 器的关键部件进行检查,如传感器、 密封件、轴承等。
润滑保养
定期对釜式反应器的轴承、链条等运 动部件进行润滑保养,确保设备正常 运行。
维修保养
根据设备磨损情况,对釜式反应器进 行维修保养,更换磨损严重的部件, 确保设备性能稳定。
取样与分析
定期从反应器中取出样品 进行分析,以了解反应进 程和产物性质。
后处理阶段
冷却与出料
清洗与整理
待反应结束后,将反应器冷却至适宜 温度,然后打开反应器将产物取出。
对反应器进行彻底清洗,整理设备并 做好记录,为下一次操作做好准备。
分离与提纯
根据产物的性质和后续应用需求,进 行分离、提纯和精制操作,得到目标 产物。
间歇操作釜式反应器
• 简介 • 类型与结构 • 操作流程 • 影响因素 • 应用领域 • 安全与维护
01
简介
定义与特点
定义
间歇操作釜式反应器是一种在一定条 件下进行化学反应的设备,通常用于 小规模或中等规模的实验室或工业生 产。

间歇釜式反应器

间歇釜式反应器

计算方法
1、已知V0与 ,根据已有的设备容积V,求算需用设备个数n 按设计任务每天需要操作的总次数为: α =
24V0 24V0 = VR V
β= 每个设备每天能操作的批数为:
n' =
24 24 = t τ +τ '
则需用设备个数为:
α V0 (τ + τ ') = β V
VR = V = V0 (τ + τ ' ) / n '
物料衡算式 依 据:质量守衡定律。 基 准: 取温度、浓度等参数保持不变的单元体积和 单元时间作为空间基准和时间基准。 衡算式:对任一组分A在单元时间Δτ、单元体积ΔV内: [A的积累量]=[A的进入量] [A的离开量] [A的反应量] [A的积累量]=[A的进入量]-[A的离开量]-[A的反应量] 的积累量]=[A的进入量 的离开量 的反应量 目的:给出反应物浓度或转化率随反应器内位置或时 间变化的函数关系。
热量衡算式 (1)依 据: 能量守衡定律。 (2)基 准: 取温度、浓度等参数保持不变的单元体积和单元时间作为 空间基准和时间基准。 (3)衡算式 在单元时间Δτ、单元体积ΔV内(以放热反应为例): [积累的热量]=[原料带入的热量]+[反应产生的热量]-[出料带走的热量]积累的热量]=[原料带入的热量]+[反应产生的热量] 出料带走的热量] ]=[原料带入的热量]+[反应产生的热量 [传给环境或热载体的热量] 传给环境或热载体的热量] (4)目的:给出温度随反应器内位置或时间变化的函数关系。
BR体积和数量求算 体积和数量求算
已知条件 每天处理物料总体积VD(或反应物料每小时体积流量V0)

操作周期——指生产第一线一批料的全部操作时间,由反应时 间(生产时间)τ和非生产时间τ‘ 组成。 反应时间理论上可以用动力学方程式计算,也可根据实际情 况定。 设备装料系数——设备中物料所占体积与设备实际容积之比, 其具体数值根据实际情况而变化,参见表3-1。

常压间歇釜式反应器的操作与控制

常压间歇釜式反应器的操作与控制
态; 5、压力大于10atm,反应器联锁起动; 6、压力大于15atm,反应器安全阀起动。(以上压力
为表压)
任务2 连续操作釜式反应器的操作与控 制
工作任务 对高密度低压聚乙烯生产用连续操作釜式
反应器进行操作与控制。
4、其它 主反应的活化能大于副反应的活化能
二、常压间歇釜式反应器的操作与控制
1、开车
(1)备料 (2)进料 (3)开车 ①开启反应釜搅拌电机。 ②适当打开夹套蒸汽加热阀,观察反应釜内温度和
压力上升情况,控制适当的升温速度,逐渐使反 应温度、压力等工艺指标达到正常值。
12.2.5 组装前的注意事项
4
但釜内液位下降很

温度显示置零
测温电阻连线断
5
1、开大冷却水,打开高压冷却水阀。 2、关闭搅拌器,使反应速度下降。 3、如果气压超过12atm,打开反应釜放空阀。
停止操作,出料维修
开冷却水旁路阀调节
开出料预热蒸汽阀吹扫,拆下出料管用火烧化硫磺, 或更换管段及阀门。
改用压力显示对反应进行调节(调节冷却水用量)。 1、升温至压力为0.3~0.75atm停止加热; 2、压力为1.0~1.6atm开始通冷却水; 3、压力3.5~4atm以上为反应剧烈阶段; 4、压力大于7atm,相当于温度大于128℃处于故障状
12.2.5 组装前的注意事项
5.使用正确的安装方法,不可粗暴安装:在安装的过 程中一定要注意正确的安装方法,对于不懂不会的地方要 仔细查阅说明书,不要强行安装,稍微用力不当就可能使 引脚折断或变形。
6.把所有零件从盒子里拿出来(不要从防静电袋子中 拿出来),按照安装顺序排好,看看说明书,有没有特殊 的安装需求。
7.以主板为中心,把所有东西排好。在主板装进机箱 前,先装上处理器与内存;要不然过后会很难装,搞不好 还会伤到主板。此外在装AGP与PCI卡时,要确定其安装 牢不牢固,因为很多时候,上螺丝时,卡会跟着翘起来。 如果撞到机箱,松脱的卡会造成运作不正常,甚至损坏。

化工单元操作反应器设计与优化项目二-任务一

化工单元操作反应器设计与优化项目二-任务一

r i f (c, T )
恒温条件下, r i kf (cA, c , ) B ...............
恒温条件下, r i f'(T ) f (cA, c , ) B ...............
(二)反应分数与反应级数
r kc , c , α1
α2
i
A
B ..........
2A P
ABP
(cA0=cB0)
二级
rA
dcA d
k
k cA0 yA0 A
ln(1 yA0 AxA )
rA
dcA d
kcA
k ln(1 xA)
rA
dcA d
kcA2
cA0k

(1 A yA0 )xA
1 xA

yA0 A
恒温恒容间歇反应
X Af
dxA cA0
r X A0
A

cAf

dcA
r cA0
A
入口物料中不 含产物的情况
图解积分
X Af
dxA cA0
r X A0
A

cAf

dcA
r cA0
A
1/(rA)V 1/(rA)V
t/c A0
xA0
1/rA -xA
xAf x
k kA ln cBcA0 kA ln 1 xB cB0 cA0 cAcB0 cB0 cA0 1 xA
n级 n≠1
rA


dcA d

kcAn
kt

n
1
1
(c1An

化学反应过程与设备(反应器设计和优化)

化学反应过程与设备(反应器设计和优化)
10
因为
nA0 nA nB 0 nB nR nR 0 nS nS 0 a b r s
rA rB rR rS r a b r S
故更为一般的速率表达式:
1 dni r viV dt
由反应进度可得:
1 d r V dt
2.2均相反应速率其他形式的表达: A、流动系统:
0
c
cA
A0
c A c A0
dcA kcA
22
恒温条件下,k为常数,积分得: 用转化率表示得:
ln
cA0 k cA
cA cA0ek
ln
1 k 1 xA
一级不可逆反应的几个重要特征: (1).速率常数的单位:时间单位的倒数;(2).浓度的对数与反应时间成线 性关系;(3).反应时间长短仅与转化率高低有关,与初始浓度大小无关。 6.2恒温恒容不可逆二级反应: 两种情况:只有一种反应物且为二级反应;或者是其它反应物大量存在,因而在 反应过程中可视为常量;另一种是对某一反应物为一级,对另一反应物也是一级 ,二反应物初始浓度相等且为等分子反应时,可归结为第一种情况。
30
解题思路:
根据题意恒温恒容一级不可逆均相反应,求反应一定时间后物料的残余浓度 ,故选择公式 cA cA0ek 解题较简便。 对于多组分单一反应,反应物的反应量与产物的生成量之间有化学计量关系 的约束,可以根据它们的化学计量关系推导出它们反应过程中的浓度关系。 引申知识点: 对二级反应,要求残余浓度很低时,尽管初始浓度相差很大,但所需的反应 时间却相差很少。 6.4恒温变容不可逆反应:
26
例题介绍:
解:由
cA cA0ek
,将反应物的初始浓度,速率常数k和反应时间带入上式

釜式反应器—理想间歇操作釜式反应器的计算

釜式反应器—理想间歇操作釜式反应器的计算

tr=3.18(h) tr=8.5(h) tr=19.0(h)
热量衡算:单位时间、整个体积、基准0℃ 进入反应器的物料带入的热量:0
非 离开反应器的物料带出的热量:0
恒 温
发生反应的热效应热量: (Hr )(rA )VRdt
过 程
反应器内的物料和外界交换的热量: KA(Tw T )
反应器内累积的热量: mt c pt dT
绝热操作:
(T
T0 )
(H r )nA0 mt c pt
(xA
xA0 )
简化: (T T0 ) (xA xA0 )
反应体积的计算
1.反应器的有效体积VR
VR V0 (t t)
V0 —— 每小时处理的物料体积,m3/h; t —— 达到要求的转化率所需要的反应时间,h; t′—— 辅助时间,h。
2. 反应器的体积V
V VR
m 若用多釜并联操作时,反应釜数: V
V
3. 反应釜结构尺寸:
V 0.785D 2 H
D —— 筒体的直径; H —— 筒体的高度。
理想间歇操作釜式反应器的计算
理想间歇操作釜式反应器简称为BR,是指一次 性加料、一次性出料、在反应进行过程中既不加 料也不出料的釜式反应器


B

1/(-RA)
面积 t
A
cA0
0
XA1
XA2
XA
• 已知:在间歇釜中己二酸和己二醇以等摩尔比反应生产醇酸
树脂。(-rA)=kcA2kmol(A)/L.min) k=1.97L/(kmol.min)
• CA0=0.004kmol/L t´=1h =0.75若每天处理2400kg己二酸
• 求xA=0.5,0.6,0.8,0.9时,所需反应时间.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西应用技术职业学院教案首页本学期授课次序授课班级15化工01班课题名称任务一间歇操作釜式反应器设计教学目的要求1、掌握理想流动模型及返混对反应的影响2、掌握化学反应速率及反应动力学方程3、掌握均相反应速率表示方式4、掌握均相反应动力学教学重点及难点均相反应速率的表示方式、均相反应动力学次序内容计划时间(min)教学程序设计123456点名、回顾上节课内容反应器流动模型化学反应速率及反应动力学方程均相反应速率均相反应动力学小结5252015205作业:小结:任务一间歇操作釜式反应器设计工作任务:根据化工产品的生产条件和工艺要求进行间歇操作釜式反应器的工艺设计预备知识:一、反应器流动模型(一)理想流动模型1、理想置换流动模型也称为平推流模型或活塞流模型。

指在任一截面的物料如同活塞一样在反应器中移动,垂直于流动方向的任一横截面上所有的物料质点的年龄相同,是一种返混量为零的极限流动模型。

其特点是在定态情况下,沿着物料流动方向物料的参数会发生变化,而垂直于流动方向上的任一截面的所有参数都相同,如浓度、压力、流速等。

2、理想混合流动模型称为全混流模型。

由于强烈搅拌,反应器内物料质点返混无穷大,所有空间位置物料的各种参数完全一致3、返混及其对反应的影响指不同时刻进入反应器的物料之间的混合,是逆向的混合,或者说是不同年龄质点之间的混合。

间歇操作反应器不存在返混。

其带来的最大影响是反应器进口处反应物高浓度去的消失或减低。

a 返混改变了反应器内的浓度分布,是反应器内反应物的浓度下降,反应产物的浓度上升b 返混的结果将产生停留时间分布,并改变反应器内浓度分布。

c 不但对反应过程产生不同程度的影响,更重要的是对反应器的工程放大所产生的问题d 降低返混程度的主要措施是分割,通常有横向分割和纵向分割两种(二)非理想流动实际反应器中流动状况偏离理想流动状况的原因课归纳为下列几个方面a 滞留去的存在也称死区、死角,是指反应器中流体流动极慢导致几乎不流动的区域。

b 存在沟流与短路c 循环流d 流体流速分布不均匀e 扩散二、均相反应动力学基础工业反应器中,化学反应过程与质量、热量和动量传递过程同时进行,这种化学反应与物理变化过程的综合称为宏观反应过程。

研究宏观反应过程的动力学称为宏观反应动力学。

排除了一切物理传递过程的影响得到的反应动力学称为化学动力学或本征动力学。

(一)化学反应速率及反应动力学方程1、化学反应速率其定义为:在反应系统中,某一物质在单位时间、单位反应区域内的反应量 反应速度=反应量/(反应区域)(反应时间)其实针对某一种反应物而言,以符号+r i 表示。

可以是反应物,也可以是产物。

2、化学反应动力学方程定量描写反应速率与影响反应速率之间的关系式陈伟化学反应动力学方程,有反应温度、组成、压力、溶剂性质等。

但大多数为浓度和温度,所以其动力学方程一般可写为+r i =f (c ,T ) 恒温条件下,可写为 +r i =kf (C A,,C B ..........) 非恒温,(二)均相反应速率及反应动力学 1、均相反应速率均相反应是指在均一的液相或气相中进行的化学反应。

均相反应速率的定义指在均相反应系统中某一物质在单位时间、单位反应混合物总体积的反应量,反应速率单位以Kmol/(m3•h)(1) 用组分传化率表示-rA=n A0dx A /Vd τ (2) 用浓度表示(3) 对于多组分单一反应体系,各个组分的反应速率受化学计量关系的约束,存在一定比列关系。

对于单一不可逆反应 各组分的变化量符合下列关系2、均相反应动力学(1)均相反应应满足的两个必要条件 a 反应系统可以成为均相b 预混和速率>>反应速率预混和指物料在反应前能否达到分子尺度的均匀混和。

实现装置:机械搅拌和高速流体造成的射流混和(2)均相反应的特点:反应过程不存在相界面,过程总速度由化学反应本身决定。

(3)速率方程在均相反应系统中只进行如下不可逆化学反应: 其动力学方程一般都可表示成: aA bB rR sS +−−→+sn n r n n b n n a n n S S R R B B A A 0000-=-=-=-aA bB rR sS+−−→+12i i A Br k c c αα±=于气相反应,由于分压与浓度成正比,也常常使用分压来表示:其中一般说来,可以用任一与浓度相当的参数来表达反应的速率,但动力学方程式中各参数的因次单位必须一致。

(4)反应分子数与反应级数 A 、基本概念I 单一反应与复杂反应单一反应:指只用一个化学反应式和一个动力学方程式便能代表的反应 复杂反应:有几个反应同时进行,要用几个动力学方程式才能加以描述。

常见的复杂反应有:连串反应、平行反应、平行-连串反应等 II 基元反应与非基元反应基元反应:如果反应物分子在碰撞中一步直接转化为产物分子,则称该反应为基元反应。

非基元反应:若反应物分子要经过若干步,即经由几个基元反应才能转化成为产物分子的反应,则称为非基元反应 III 单分子、双分子、三分子反应单分子、双分子、三分子反应,是针对基元反应而言的。

参加反应的分子数是一个,称之为单分子反应;反应是由两个分子碰撞接触的,称为双分子反应。

IV 反应级数是指动力学方程式中浓度项的指数。

它是由实验确定的常数。

可以是分数,也可以是负数B 、理解反应级数时应特别注意:I 反应级数不同于反应的分子数,前者是在动力学意义上讲的,后者是在计量化学意义上讲的。

对基元反应,反应级数 …即等于化学反应式的计量系数值,而对非基元反应,应通过实验来确定。

II 反应级数高低并不单独决定反应速率的快慢,反应级数只反映反应速率对浓度的敏感()111AA A AB dn r kC C V d αβτ-=-=121()A A p A Bdn r k p p V d αατ-=-=12()()A Ap nk k k RT RT αα+==12,αα程度。

级数愈高,浓度对反应速率的影响愈大。

(5)反应速率常数k和活化能EA、反应速率常数kk就是当反应物浓度为1时的反应速率,又称反应的比速率。

k值大小直接决定了反应速率的高低和反应进行的难易程度。

不同的反应有不同的反应速率常数,对于同一个反应,速率常数随温度、溶剂、催化剂的变化而变化。

k随温度的变化规律符合阿累尼乌斯关系式:B、活化能E反应活化能是为使反应物分子“激发”所需给予的能量。

活化能的大小是表征化学反应进行难易程度的标志。

活化能高,反应难于进行;活化能低,则容易进行。

但是活化能E不是决定反应难易程度的唯一因素,它与频率因子A0共同决定反应速率。

C、在理解活化能E时,应当注意:I 活化能E不同于反应的热效应,它不表示反应过程中吸收或放出的热量,而只表示使反应分子达到活化态所需的能量,故与反应热效应并无直接的关系。

II 活化能E不能独立预示反应速率的大小,它只表明反应速率对温度的敏感程度。

E愈大,温度对反应速率的影响愈大。

除了个别的反应外,一般反应速率均随温度的上升而加快。

E愈大,反应速率随温度的上升而增加得愈快。

III 对于同一反应,即当活化能E一定时,反应速率对温度的敏感程度随着温度的升高而降低。

江西应用技术职业学院教案首页本学期授课次序授课班级15化工01班课题名称任务二间歇操作釜式反应器设计教学目的要求1、掌握均相单一反应动力学方程的计算2、掌握复杂反应动力学方程的计算3、掌握反应器计算的基本方程4、掌握间歇操作釜式反应器体积和数量计算教学重点及难点均相单一反应恒温恒容计算、间歇操作釜式反应器体积和数量计算教学程序设计次序内容计划时间(min)1234567点名、回顾上节课内容均相单一反应恒温恒容过程计算例题讲解复杂反应动力学方程计算反应器计算的基本内容间歇操作釜式反应器体积和数量计算小结525204535505作业:小结:任务一 间歇操作釜式反应器设计工作任务:根据化工产品的生产条件和工艺要求进行间歇操作釜式反应器的工艺设计 预备知识:3、均相单一反应的动力学方程对于单一反应过程: 动力学方程表示为: (1)恒温恒容一级不可逆反应I 恒容过程:液相反应和反应前后无物质的量变化的气相反应。

① 一级不可逆反应工业上许多有机化合物的热分解和分子重排反应等都是常见的一级不可逆反应;或有二个反应物参与的反应,若其中某一反应物极大过量,则该反应物浓度在反应过程中无多大变化,可视为定值而并入反应速率常数中。

此时如果反应速率对另一反应物的浓度关系为一级,则该反应仍可按一级反应处理。

一级反应的动力学方程式为 :初始条件 时,上式分离变量积分,在恒温条件下,κ为常数,积分得到:若着眼于反应物料的利用率,或者着眼于减轻后分离的任务,应用转化率积分表达式较为方便;若要求达到规定的残余浓度,即为了适应后处理工序的要求,例如有害杂质的除去即属此类,应用浓度积分表达式较为方便。

② 恒温恒容二级不可逆反应aA bB rR sS ++−−→++L L12i A B r kc c αα±=L0τ=0A A c c =0k A A c c e τ-=1ln 1Ak x τ=-它有二种情况:一种是对某一反应物为二级且无其它反应物,或者是其它反应物大量存在,因而在反应过程中可视为常值;另一种是对某一反应物为一级,对另一反应物也是一级,而且二反应物初始浓度相等且为等分子反应时,亦就演变成第一种情况。

此时其动力学方程式为 :经变量分离并考虑初始条件 ,恒温时κ为常数,则积分结果为:若用转化率表示:只要知道其反应动力学方程,代入式 ,积分即可求得结果。

从速率方程积分表可得到一些定性的结论:(1)速率方程积分表达式中,左边是反应速率常数k 与反应时间τ的乘积,表示当反应初始条件和反应结果不变时,反应速率常数k 以任何倍数增加,将导致反应时间以同样倍数下降。

(2)一级反应所需时间τ仅与转化率XA 有关,而与初始浓度无关。

因此,可用改变初始浓度的办法来鉴别所考察的反应是否属于一级反应。

以或 对τ作图,若是直线,则为一级反应,其斜率为k 。

(3)二级反应达到一定转化率所需反应时间τ与初始浓度有关。

初始浓度提 高,达到同样转化率XA 所需反应时间减小 。

(4)对n 级反应:当n >1时,达到同样转化率,初始浓度提高,反应时间减少;当n <1时,初始浓度提高时要达到同样转化率,反应时间增加。

对 n <1的反应,反应时间达到某个值时,反应转化率可达100%。

而n ≥1的反应,反应转化率达 100%,所需反应时间为无限长。

这表明反应级数n ≥l 的反应,大部分反应时间是用于反应的末期。

高转化率或低残余浓度的要求会使反应所需时间大幅度地增加。

例1-1 解题思路根据题意是恒温恒容一级不可逆均相反应,又要求求反应一定时间后物料的残余浓度,故选择公式 解题较简便。

相关文档
最新文档