聚合物的热谱分析—示差扫描量热法(DSC)

聚合物的热谱分析—示差扫描量热法(DSC)

1. 实验目的

(1)了解示差扫描量热法(DSC)的工作原理及其在聚合物研究中的应用。(2)初步学会使用DSC仪器测定高聚物的操作技术。

(3)用DSC测定环氧树脂的玻璃化转变温度。

2. 实验原理

示差扫描量热法(DSC,Differential Scanning Calorimentry)是在程序温度控制下,测量试样与参比物之间单位时间内能量差(或功率差)随温度变化的一种技术。它是在差热分析(DTA,Differential Thermal Analysis)的基础上发展而来的一种热分析技术,DSC在定量分析方面比DTA要好,能直接从DSC 曲线上峰形面积得到试样的放热量或吸热量。

DSC仪主要有功率补偿型和热流型两种类型。NETZSCH公司生产的系列示差扫描量热仪即为功率补偿型。仪器有两只相对独立的测量池,其加热炉中分别装有测试样品和参比物。这两个加热炉具有相同的热容及导热参数,并按相同的温度程序扫描。参比物在所选定的扫描温度范围内不具有任何热效应。因此,在测试的过程中记录下的热效应就是由样品的变化引起的。当样品发生放热或吸热变化时,系统将自动调整两个加热炉的加热功率,以补偿样品所发生的热量改变,使样品和参比物的温度始终保持相同,使系统始终处于“热零位”状态。这就是功率补偿DSC仪的工作原理,即“热零位平衡”原理。

假设试样放热速率为ΔP(功率),试样底下热电偶的温度将高于参比物底下热电偶的温度,产生温差电势VΔT(图中上负下正的温差电势),经差热放大器放大后送到功率补偿放大器,输出功率ΔPc使试样下的补偿加热丝电流Is减小,参比物下的补偿加热丝电流Ir增大,使参比物热电偶温度高于试样热电偶的温度,产生一个上正下负的温差电势,抵消了因试样放热时产生的VΔT,使VΔT→0,即使试样与参比物之间的温差ΔT→0。

功率补偿型DSC曲线与基线之间所围的面积代表试样放热量或吸热量。

典型的差示扫描量热(DSC)曲线以热流率(dH/dt)为纵坐标、以时间(t)或温度(T)为横坐标,即dH/dt-t(或T)曲线。曲线离开基线的位移即代表样品吸热或放热的速率(mJ·s-1),而曲线中峰或谷包围的面积即代表热量的变化。因而差示扫描量热法可以直接测量样品在发生物理或化学变化时的热效应。随着温度升高,试样达到玻璃化温度Tg时,试样的热容由于局部链节移动而发生变化,一般为增大,所以相对于参比物而言,试样要维持与参比物相同温度就需要加大对试样的加热电流,又由于玻璃化转变不是相变化,使曲线产生阶梯状的位移,温度再行升高,如试样发生结晶,则将释放大量结晶热而产生一个放热峰,进一步升温,结晶熔化要吸收大量热而出现吸热峰。以结晶放热峰和熔融吸热峰的顶点所对应的温度作为Tc和Tm,而对两峰积分所得的面积即为结晶热焓ΔHc和熔融热ΔHm。这些过程并不是每种试样完全出现的,对某些试样有时仅出现其中一个过程或几个过程,如已经结晶的聚合物就不存在结晶峰,而只出现结晶熔融峰,又如某些杂环化合物大分子主链刚性很强,局部链节运动引起的热容很小,DSC图中就很难找到阶梯状的基线位移,另外各过程的出现与测定的条件也密切相关。

随着高分子科学的迅速发展,高分子已成为DSC最主要的应用领域之一。当物质发生物理状态的变化(结晶、熔解等)或起化学反应(固化、聚合等),同时会有热学性能(热焓、比热等)的变化,采用DSC法测定热学性能的变化,就可以研究物质的物理或化学变化过程。在聚合物研究领域,DSC技术应用得非常广泛,主要有:(1)研究相转变过程,测定结晶温度Tc、熔点Tm、结晶度Xc、等温、非等温结晶动力学参数。(2)测定玻璃化温度Tg。(3)研究固化、交联、氧化、分解、聚合等过程,测定相对应的温度热效应、动力学参数。例如研究玻璃化转变过程、结晶过程(包括等温结晶和非等温结晶过程)、熔融过程、共混体系的相容性、固化反应过程等。对于高分子材料的熔融与玻璃化测试,在以相同的升降温速率进行了第一次升温与冷却实验后,再以相同的升温速率进行第二次测试,往往有助于消除历史效应(冷却历史、应力历史、形态历史等)对曲线的干扰,并有助于不同样品间的比较(使其拥有相同的热机械历史)。

3. 实验设备和材料

(1)环氧树脂。

(2)德国NETZSCH公司DSC 204型差示扫描量热仪。

(3)高纯氮气、坩埚、分析天平(准确至0.1mg)。

4. 实验步骤

(1)依次打开电源开关、显示器、电脑主机、仪器测量单元、控制器、机械冷却单元;

(2)确定实验用的气体(推荐使用惰性气体,如氮气),调节低压输出压力为0.05~0.1MPa(不能大于0.5MPa),在仪器测量单元上手动测试气路的通畅,并调节流量在20ml/min左右;

(3)确定样品在高、低温下无强氧化性、还原性,选择适用的坩埚,将样品用称重后平整放入(以不超过1/3容积约10mg为好,注意坩埚不能全密封);(4)打开测量单元炉盖,在左边传感器上放入空的参比坩埚,右边放上装好样的样品坩埚(坩埚类型要一致);

(5)打开DSC 204对应的测量软件,待自检通过后,先检查仪器的设置状况,即确认坩埚的类型、是否采用机械冷却来限制温度范围,之后新建一个样品测量文件,根据测试样品要求,选择合适的升温速率及升温程序控制方式(升温、循环、冷却),确认后执行程序开始测量;

(6)程序正常结束后会自动存储,可打开分析软件包(或在测试中运行实时分析)对结果进行数据处理,处理完后可保存为另一种类型的文件;

(7)待样品温度降至100℃以下时打开炉盖,拿出样品坩埚,参比坩埚仍可继续使用(注意:程序结束时若选用了机械冷却,要记得达到预定值后,手动将其关掉,因为它不能长期满载运行,而且当选择了机械冷却时,气体一定要开通);(8)不使用仪器时正常关机顺序依次为:关闭软件、退出操作系统、关电脑主机、显示器、仪器控制器、测量单元、机械冷却单元;

(9)关闭使用气瓶的高压总阀,低压阀可不必关;

(10)若发现传感器表面或炉内侧脏时,可先在室温下用洗耳球吹扫,然后用棉花蘸酒精清洗,不可用硬物触及,若清洗不掉时,请及时通知管理人员。

5. 实验处理

打开分析软件“thermal analysis”,进入数据分析界面。打开需要处理的文件,应用界面上各功能键从所得曲线上获得相关的数据,比较两次升温曲线玻璃化转变温度Tg的差异。

6. 问题与讨论

功率补偿型DSC的基本工作原理是什么?在聚合物研究中主要有哪些应用?

功率补偿型DSC 的主要特点是试样和参比物分别具有独立的加热器和传感器,其结构如图3-1所示。整个仪器由两个控制系统进行监控,其中一个控制温度,使试样和参比物在预定的速率下升温或降温;另一个用于补偿试样和参比物之间所产生的温差。这个温差是由试样的放热或吸热效应产生的。通过功率补偿使试样和参比物的温度保持相同,这样就可从补偿的功率直接求算热流率。

DSC实验报告

DSC测试分析技术 一、实验目的 1、了解热分析的概念; 2、了解DSC的基本原理; 3、掌握DSC测试聚合物Tg的方法。 二、实验原理 差示扫描量热法(DSC, Differential Scanning Calorimetry)是在程序温度控制下,测量试样与参比物之间单位时间内能量差(或功率差)随温度变化的一种技术。它是在差热分析(DTA, Differential Thermal Analysis)的基础上发展而来的一种热分析技术,DSC在定量分析方面比DTA要好,能直接从DSC曲线上峰形面积得到试样的放热量和吸热量。 差示扫描量热仪可分为功率补偿型和热流型两种,两者的最大差别在于结构设计原理上的不同。一般试验条件下,都选用的是功率补偿型差示扫描量热仪。仪器有两只相对独立的测量池,其加热炉中分别装有测试样品和参比物,这两个加热炉具有相同的热容及导热参数,并按相同的温度程序扫描。参比物在所选定的扫描温度范围内不具有任何热效应。因此在测试的过程中记录下的热效应就是由样品的变化引起的。当样品发生放热或吸热变化时,系统将自动调整两个加热炉的加热功率,以补偿样品所发生的热量改变,使样品和参比物的温度始终保持相同,使系统始终处于“热零位”状态,这就是功率补偿DSC仪的工作原理,即“热零位平衡”原理。如图1为功率补偿式DSC示意图。 三、实验仪器 仪器名称:差示扫描量热仪仪器型号:DSC 4000 生产厂商:美国PerkinElmer公司 仪器技术参数: 温度范围: 室温 20℃至 180℃ 升降温速率: 20℃/min;控温精确度:±0.05oC;量热精确度:±0.1%; 制冷方式:液氮冷却、机械制冷;制样机,镊子,α-Al2O3,及环氧树脂。

聚合物的热谱分析—示差扫描量热法(DSC)

聚合物的热谱分析—示差扫描量热法(DSC) 1. 实验目的 (1)了解示差扫描量热法(DSC)的工作原理及其在聚合物研究中的应用。(2)初步学会使用DSC仪器测定高聚物的操作技术。 (3)用DSC测定环氧树脂的玻璃化转变温度。 2. 实验原理 示差扫描量热法(DSC,Differential Scanning Calorimentry)是在程序温度控制下,测量试样与参比物之间单位时间内能量差(或功率差)随温度变化的一种技术。它是在差热分析(DTA,Differential Thermal Analysis)的基础上发展而来的一种热分析技术,DSC在定量分析方面比DTA要好,能直接从DSC 曲线上峰形面积得到试样的放热量或吸热量。 DSC仪主要有功率补偿型和热流型两种类型。NETZSCH公司生产的系列示差扫描量热仪即为功率补偿型。仪器有两只相对独立的测量池,其加热炉中分别装有测试样品和参比物。这两个加热炉具有相同的热容及导热参数,并按相同的温度程序扫描。参比物在所选定的扫描温度范围内不具有任何热效应。因此,在测试的过程中记录下的热效应就是由样品的变化引起的。当样品发生放热或吸热变化时,系统将自动调整两个加热炉的加热功率,以补偿样品所发生的热量改变,使样品和参比物的温度始终保持相同,使系统始终处于“热零位”状态。这就是功率补偿DSC仪的工作原理,即“热零位平衡”原理。 假设试样放热速率为ΔP(功率),试样底下热电偶的温度将高于参比物底下热电偶的温度,产生温差电势VΔT(图中上负下正的温差电势),经差热放大器放大后送到功率补偿放大器,输出功率ΔPc使试样下的补偿加热丝电流Is减小,参比物下的补偿加热丝电流Ir增大,使参比物热电偶温度高于试样热电偶的温度,产生一个上正下负的温差电势,抵消了因试样放热时产生的VΔT,使VΔT→0,即使试样与参比物之间的温差ΔT→0。 功率补偿型DSC曲线与基线之间所围的面积代表试样放热量或吸热量。 典型的差示扫描量热(DSC)曲线以热流率(dH/dt)为纵坐标、以时间(t)或温度(T)为横坐标,即dH/dt-t(或T)曲线。曲线离开基线的位移即代表样品吸热或放热的速率(mJ·s-1),而曲线中峰或谷包围的面积即代表热量的变化。因而差示扫描量热法可以直接测量样品在发生物理或化学变化时的热效应。随着温度升高,试样达到玻璃化温度Tg时,试样的热容由于局部链节移动而发生变化,一般为增大,所以相对于参比物而言,试样要维持与参比物相同温度就需要加大对试样的加热电流,又由于玻璃化转变不是相变化,使曲线产生阶梯状的位移,温度再行升高,如试样发生结晶,则将释放大量结晶热而产生一个放热峰,进一步升温,结晶熔化要吸收大量热而出现吸热峰。以结晶放热峰和熔融吸热峰的顶点所对应的温度作为Tc和Tm,而对两峰积分所得的面积即为结晶热焓ΔHc和熔融热ΔHm。这些过程并不是每种试样完全出现的,对某些试样有时仅出现其中一个过程或几个过程,如已经结晶的聚合物就不存在结晶峰,而只出现结晶熔融峰,又如某些杂环化合物大分子主链刚性很强,局部链节运动引起的热容很小,DSC图中就很难找到阶梯状的基线位移,另外各过程的出现与测定的条件也密切相关。

2. 差示扫描量热法测定聚合物Tg、Tm、结晶度

差示扫描量热法测定聚合物Tg、Tm、结晶度 一、实验目的 2、了解DSC法测定T g、T m、结晶度的基本原理。 3、熟悉DSC Q20型差示扫描量热仪的操作。 4、掌握DSC法测定聚合物T g、T m、结晶度的实验技术。 二、实验原理 示差扫描量热法(DSC)指在相同的程控温度变化下,用补偿器测量样品与参比物之间的温差保持为零所需热量对温度T的依赖关系。DSC谱图的的纵坐标为单位质量的功率(mW/g)。 示差热分析利用了装置在试样和参比物下面的两组补偿加热丝,当试样在加热过程中由于热反应而出现温度差△T时,通过差热放大和差动热量补偿使流入补偿丝的电流发生变化。 当试样吸热时,补偿使试样一边的电流(Is)立即增大;反之,在试样放热时则是参比物一边的电流增大,直至两边热量平衡,温度△T差消失为止。 试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,补偿的功率则反应了对应转变发生的程度,能定量表达。 升温曲线(heating): 当温度达到玻璃化转变温度时,样品的热容增大,需要吸收更多的热量,基线发生位移,玻璃化转变一般都表现为基线的转折(向吸热方向);如果样品能够结晶,并且处于过冷的非晶状态,那么在T g以上可以进行结晶,结晶是放热过程,会出现一个放热锋(T c);进一步升温,晶体熔融(吸热过程),出现吸热峰,对应熔点(T m);再进一步升温,样品可能发生氧化、交联反应而出现热效应,最后样品也会发生分解,DSC一般不进行熔融以后的测试。 结晶度: 样品测得的熔融热; 样品100%结晶的熔融热(PET为140J/g or 26.9KJ/mol,PP为207J/g or 8.7KJ/mol) 三、实验试剂和仪器 1、主要实验试剂 聚对苯二甲酸乙二醇酯(PET)粒料 等规聚丙烯(PP)粒料 2、主要实验仪器 DSC Q20型差示扫描量热仪

差示扫描量热法 实验报告

差示扫描量热法实验报告 差示扫描量热法实验报告 一、引言 差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种常用的热分 析技术,可以用于研究物质的热性质和热反应。本实验旨在通过差示扫描量热 仪对某种聚合物的热性质进行分析,探究其热分解反应的特征和动力学参数。二、实验原理 DSC实验基于样品与参比物之间的温度差异来测量样品的热量变化。在实验中,样品和参比物同时加热,通过测量两者之间的温度差和热流变化,可以得到样 品的热容变化曲线。当样品发生热反应时,其热容发生变化,从而产生峰状的 热流曲线。通过分析这些峰的形状、面积和位置,可以获得样品的热性质和热 反应特征。 三、实验步骤 1. 将待测样品和参比物分别放置在DSC仪器的样品盒和参比盒中。 2. 设置实验参数,如加热速率、扫描范围和环境气氛。 3. 开始实验,启动DSC仪器,开始加热过程。 4. 记录样品和参比物的温度和热流数据。 5. 分析实验数据,绘制热流曲线和热容变化曲线。 6. 根据峰的形状、面积和位置,分析样品的热性质和热反应特征。 四、实验结果与讨论 通过实验测量和数据分析,我们得到了样品的热流曲线和热容变化曲线。根据 热流曲线,我们可以观察到样品在一定温度范围内的热反应峰。通过分析这些

峰的形状和面积,可以确定样品的热分解温度和热分解反应的性质。同时,热容变化曲线可以反映样品的热容变化规律,进一步了解样品的热性质。 根据实验结果,我们可以得出以下结论: 1. 样品在温度范围X至Y之间发生了热分解反应,热分解峰的最高温度为T。 2. 样品的热分解反应是一个放热反应,释放的热量为Q。 3. 样品的热分解反应速率较快,表明反应动力学较高。 五、结论 本实验通过差示扫描量热法对某种聚合物的热性质进行了分析。通过分析实验数据,我们得到了样品的热流曲线和热容变化曲线,并根据峰的形状、面积和位置,确定了样品的热分解温度和热分解反应的性质。实验结果表明,该聚合物在一定温度范围内发生了放热的热分解反应,并且反应速率较快。这些结果对于进一步研究该聚合物的热性质和应用具有重要意义。 六、实验总结 差示扫描量热法是一种常用的热分析技术,可以用于研究物质的热性质和热反应。通过本实验,我们了解了DSC实验的基本原理和操作步骤,并成功地对某种聚合物的热性质进行了分析。实验结果对于进一步研究该聚合物的热性质和应用具有重要意义。在今后的实验中,我们还可以通过调整实验参数和改变样品类型,进一步探究其他物质的热性质和热反应特征。

实验1.聚合物的热分析 实验报告

实验五 聚合物差热热重同时热分析法 差热分析是在温度程序控制下测量试样与参比物之间的温度差随温度变化的一种技术。简称DTA(Differential Thermal Analysis)。在DTA 基础上发展起来的另一种技术是差示扫描量热法。差示扫描量热法是在温度程序控制下测量试样相对于参比物的热流速度随温度变化的一种技术。简称DSC (Differential Scanning Calorimetry )。试样在受热或冷却过程中,由于发生物理变化或化学变化而产生热效应,这些热效应均可用DTA 、DSC 进行检测。DTA 、DSC 在高分子方面的应用特别广泛。它们的主要用途是:①研究聚合物的相转变,测定结晶温度T c 、熔点T m 、结晶度X D 、等温结晶动力学参数。②测定玻璃化转变温度T g 。③研究聚合、固化、交联、氧化、分 解等反应,测定反应温度或反应温区、反应热、 反应动力学参数。 图1 是聚合物DTA 曲线或DSC 曲线的模 式图。 当温度达到玻璃化转变温度T g 时,试样的 热容增大就需要吸收更多的热量,使基线发生位 移。假如试样是能结晶的,并且处于过冷的非晶 状态,那么在T g 以上可以进行结晶,同时放出 大量的结晶热而产生一个放热峰。进一步升温,结晶熔融吸热,出现吸热峰。再进一步升温,试样可能发生氧化、交联反应而放热,出现放热峰,最后试样则发生分解,吸热,出现吸热峰。当然并不是所有的聚合物试样都存在上述全部物理变化和化学变化。 通常按图2 a 的方法确定T g :由玻璃化 转变前后的直线部分取切线,再在实验曲线 上取一点,使其平分两切线间的距离?,这 一点所对应温度即为T g 。T m 的确定对低分子 纯物质来说,象苯甲酸,如图2 b 所示,由 峰的前部斜率最大处作切线与基线延长线相 交,此点所对应的温度取作为T m 。对聚合物 来说,如图2 c 所示,由峰的两边斜率最大 处引切线,相交点所对应的温度取作为T m 。 或取峰顶温度作为T m 。T c 通常也是取峰顶温 度。峰面积的取法如图2d e 所示。可用求积 仪或剪纸称重法量出面积。由标准物质测出单位面积所对应的热量(毫卡/厘米2),再由测试试样的峰面积可求得试样的熔融热f H ?(毫卡/毫克),若百分之百结晶的试样的熔融热*f H ?是已知的, 则可按下式计算试样的结晶度: 热重分析法简称TGA (Thermogravimetric Analysis ), 它是测定试样在温度等速上升时%100*???=f f D H H X 结晶度

高分子物理实验 DSC

实验5 示差扫描量热法表征聚合物玻璃化转变和熔融行为 聚合物的玻璃化转变,是玻璃态和高弹态之间的转变。在发生转变的时候,聚合物的许多物理性质发生急剧的变化,玻璃化转变不是热力学平衡过程,而是一个松弛过程,因此T g值的大小和测试条件、测试方法有关。 一、实验目的与要求 (1) 掌握DSC法测定聚合物玻璃化温度和熔点的方法; (2) 了解升温速度对玻璃化温度的影响; (3) 测出聚合物的玻璃化温度。 二、实验原理: 国际热分析协会(ICTA)和国际热分析和量热学协会(ICTAC)对热分析定义为:在程序控制温度下,测量物质的物理性质与温度关系的一种技术[1]。ICTA将热分析技术分为9类共17种:(1)测量温度与质量的关系,包括热重法(TG)、等压质量变化测定、逸出气检测(EGD)、逸出气分析(EGA)、放射热分析、热微粒分析;(2)测量温度与温度差之间的关系,包括升温曲线测定、差热分析(DTA);(3)测量温度和热量之间的关系,即差示扫描量热法(DSC);(4)测量温度与尺寸之间的关系,即热膨胀法;(5)测量温度与力学特性的关系,包括热机械分析法(TMA)和动态热机械法(DMA);(6)测量温度和声学特性之间的关系,包括热发声法和热传声法;(7)测量温度和光学特性的关系,即热光学法;(8)测量温度和电学特性的关系,称为热电学法;(9)测量温度和磁学特性的关系,称为热磁学法。热分析的定义明确指出,只有在程序温度下测量的温度与物理量之间的关系才被归为热分析技术。因此,热分析仪最基本的要求是能实现程序升降温。 差示扫描量热法(Differential Scanning Calorimetry)是指在程序温度下,测量输入到被测样品和参比物的功率差与温度(或时间)关系的技术。对于不同类型的DSC,“差示”一词有不同的含义,对于功率补偿型,指的是功率差,对于热流型,指的是温度差;扫描是指程序温度的升降。热差示扫描量热仪(Differential Scanning Calorimeter,DSC)可以分为功率补偿型和热流型两种基本类型,如下图所示:

DSC

一种热分析法。在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物分析。 差示扫描量热法(differential scanning calorimetry)这项技术被广泛应用于一系列应用,它既是一种例行的质量测试和作为一个研究工具。该设备易于校准,使用熔点低,是一种快速和可靠的热分析方法。差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。物质在温度变化过程中,往往伴随着微观结构和宏观物理,化学等性质的变化。宏观上的物理,化学性质的变化通常与物质的组成和微观结构相关联。通过测量和分析物质在加热或冷却过程中的物理、化学性质的变化,可以对物质进行定性,定量分析,以帮助我们进行物质的鉴定,为新材料的研究和开发提供热性能数据和结构信息。在差热分析中当试样发生热效应时,试样本身的升温速度是非线性的。以吸热反应为例,试样开始反应后的升温速度会大幅度落后于程序控制的升温速度,甚至发生不升温或降温的现象;待反应结束时,试样升温速度又会高于程序控制的升温速度,逐渐跟上程序控制温度,升温速度始终处于变化中。而且在发生热效应时,试样与参比物及试样周围的环境有较大的温差,它们之间会进行热传递,降低了热效应测量的灵敏度和精确度。因此,到目前为止的大部分差热分析技术还不能进行定量分析工作,只能进行定性或半定量的分析工作,难以获得变化过程中的试样温度和反应动力学的数据。DSC分析与差热分析相比,可以对热量作出更为准确的定量测量测试,具有比较敏感和需要样品量少等特点。DSC分析主要用于研究金属玻璃的显微结构中亚稳相的转变温度以及转变动力学的特征分析。差示扫描量热仪在程序温度控制下测量加载样品和参比物之间的单位时间的能量差(功率差)随温度的变化,记录所得的曲线为DSC曲线。非晶合金是由熔融液态合金急冷得到的,处于热力学亚稳状态,随着温度的升高,必然发生从非晶态向晶态的转变。在转变过程中伴随着放热或者吸热现象:合金在Tg时发生玻璃转变,合金吸热;在Tx时发生晶化转变,合金放热。用差示扫描量热仪对非晶合金进行分析得到DSC曲线,可以测量非晶态样的热稳定性,确定样品的玻璃转变温度Tg、初始晶化温度Txl,和晶化峰值温度Tp;还可以根据曲线分析晶化过程以及结晶焓变△Hx 等。非晶合金中原子是混乱排列的,样品处在亚稳态。当温度升高时,在热激活的作用下,非晶样品结构将发生变化,并伴随着放热和吸热现象。差示扫描量热曲线(DSC曲线)是在差示扫描量热测量中记录的以热流率dH/dt为纵坐标、以温度或时间为横坐标的关系曲线。由非晶合金的DSC曲线可以得到下列的一些信息:(l)玻璃转变温度Tg;(2)晶化温度Tx;(3)结构弛豫峰,并由结构弛豫峰可获得低温结构弛豫和高温结构弛豫,以及它们的弛豫激活能的值;(4)晶化过程以及结晶焓变△Hx;(5)晶化过程中各种亚稳相的信息。DSC曲线主要受实验条件和试样性质的影响:(1) 实验条件的影响 DSC测定中,程序升温速率主要对DSC曲线的峰温和峰形产生影响。一般来说,当升温速

15. 实验二 差示扫描量热法(DSC)

实验二差示扫描量热法(DSC) 在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。试样对热敏感的变化能反映在差热曲线上。发生的热效大致可归纳为: (1)发生吸热反应。结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。 (2)发生放热反应。气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。(3)发生放热或吸热反应。结晶形态转变、化学分解、氧化还原反应、固态反应等。 用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。 由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。简称DSC(Differential Scanning Calorimetry)。因此DSC直接反映试样在转变时的热量变化,便于定量测定。 DTA、DSC广泛应用于: (1)研究聚合物相转变,测定结晶温度T c 、熔点T m 、结晶度X D 。结晶动力学参数。 (2)测定玻璃化转变温度T g 。 (3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。 一、目的要求: 1.了解DTA、DSC的原理。 2.掌握用DSC测定聚合物的T g 、T c 、T m 、X D 。 二、基本原理: 1.DTA 图(11-1)是DTA的示意图。通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。比较先进的仪器还有数据处理部分。温度程序控制是使试样在要求的温度范围内进行温度控制,如升温、降温、恒温等,它包括炉子(加热器、制冷器等)、

常用热分析技术:差示扫描量热法(DSC)、差热分析(DTA)、热重分析(TAG)

常用热分析技术:差示扫描量热法(DSC)、差热分析(DTA)、热重分析(TAG) 物质的物理状态和化学状态发生变化(如升华、氧化、聚合、固化、硫化、脱水、结晶、熔融、晶格改变或发生化学反应)时,往往伴随着热力学性质(如热焓、比热、导热系数等)的变化,故可通过测定其热力学性能的变化,来了解物质物理或化学变化的过程。 主要方法有: ?差热分析-DTA; ?差示扫描量热法-DSC; ?热重分析-TGA。 ?

1. TG的基本原理 TG:可调速的加热或冷却环境中,以被测物重量作为时间或温度的函数进行记录的方法。 DTG:微商热重曲线,热重曲线对时间或温度的一阶微商的方法获得的曲线。 2. 分析方法:升温法和恒温法 升温法:样品在真空或其他任何气体中进行等速加温,样品将温度的升高发生物理变化和化学变化使原样品失重—动态法。 原理:在某特定的温度下,会发生重量的突变,以确定样品的特性。 恒温法:在恒温下,记录样品的重量变化作为时间的函数的方法。 3. 影响TGA数据的因素 (1)气体的浮力和对流 浮力的影响:样品周围的气体因温度的升高而膨胀,比重减小,则样品的TGA值增加。 对流的影响:对流的产生使得测量出现起伏。 (2)挥发物的再凝聚 凝聚物的影响:物质分解产生的挥发物质可能凝聚在与称重皿相连而又较冷的部位上,影响失重的测定结果。 (3)样品与称量皿的反应

反应的影响:某些物质在高温下会与称量皿发生化学反应而影响测定结果。 (4)升温速率的影响 升温速率的影响:升温速率太快,TGA曲线会向高温移动;速度太慢,实验效率降低。 (5)样品用量和粒度 用量和粒度影响:样品用量大,挥发物不易逸出,影响曲线比那话的清晰度;样品细,反应会提前影响曲线低温移动。 (6)环境气氛 环境气氛对热失重曲线的影响 4. 热重分析的应用 热重分析主要研究在空气或惰性气氛材料的热稳定性、热分解作用和氧化分解等物理化学变化;也广泛用于涉及质量变化的所有物理过程。 根据热失重曲线可获得材料热分解过程的活化能和反应级数: k = dm/dt= A·mn·e-E/RT; ln(dm/dt) = lnA + nlnm- E/RT; 获得n和E的方法: a. 示差法; b. 不同升温速率法; ln(d m/d t) = lnA + n ln m- E/RT;

聚合物的热分析------差示扫描量热法(DSC)

化学化工学院材料化学专业实验报告实验实验名称:聚合物的热分析------差示扫描量热法(DSC) 年级:2011级材料化学日期:2013-10-17 姓名:学号:同组人: 一、预习部分 1、差热分析 差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、有机、特别是高分子聚合物、玻璃钢等领域。差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。峰的最高温度、形状、面积和峰值大小都会发生一定变化。其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。虽然过去许多人在利用DTA进行量热定量研究方面做过许多努力,但均需借助复杂的热传导模型进行繁杂的计算,而且由于引入的假设条件往往与实际存在差别而使得精度不高,差示扫描热法(简称DSC)就是为克服DTA在定量测量方面的不足而发展起来的一种新技术。20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。 差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。差示扫描量热法有补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。由于具有以上优点,DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便更适于测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。 2、DSC的工作原理 DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个 控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。 在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平

聚合物的热谱分析—差示扫描量热法

《—高分子物理—》实验指导书 ×××编写 适用专业: 厦门理工学院_____院(系) 年月

实验指导书前言内容要求 前言 本课程的基本内容介绍,通过学习学生需要掌握的基本知识。 为了使学生更好地理解和深刻地把握这些知识,并在此基础上,训练和培养哪些方面的技能,设置的具体实验项目,其中哪几项实验为综合性、设计性实验。 各项实验主要了解、掌握的具体知识,训练及培养的技能。 本指导书的特点。 对不同专业选修情况说明。

具体项目指导书格式与基本内容要求 实验__:聚合物的热谱分析—差示扫描量热法 实验学时: 实验类型:(演示、验证、综合、设计研究) 实验要求:(必修、选修) 一、实验目的 1.了解差示扫描量热法的原理,通过差示扫描量仪测定聚合物的加热及冷却谱图。 2.掌握应用DSC 测定聚合物的T g、T c、T m、?H及结晶度的方法。 二、实验内容 差示扫描量热法(differential scanning calorimetry,DSC),一种热分析法。在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。本实验通过DSC对材料进行热分析,得到先关的热性能参数,进而分析材料的热行为如结晶与熔融等。 三、实验原理、方法和手段 聚合物在发生力学状态变化时,伴随比热容及热焓的变化,这些变化都可以在DSC热谱曲线得到反映,因而DSC 用于研究聚合物的玻璃化转变、相转变、结晶温度、可以研究聚合、固化、交联、氧化、分解等反应以及测定反应温度和反应热。通过对高聚物分子热运动规律的理解,了解高聚物的力学状态及其转变温度以及影响因素,有助于掌提高聚物结构与性能的内在联系,对合理选用材料、确定加工工艺条件和设计材料等都十分重要。

示差扫描量热法

示差扫描量热法 示差扫描量热法(Differential Scanning Calorimetry,DSC)是一种 常用于研究材料热性质的实验技术。本文将介绍DSC的原理、应用以 及分析实验步骤。 一、原理 DSC是通过测量样品与参比样品之间的热交换来研究样品的热性质。DSC实验中,样品和参比样品同时加热,测量它们之间的温度差异, 从而得到样品在不同温度下的热容变化。通过对实验结果的分析,可 以获得材料的相变温度、熔融峰、热容等信息。 二、应用 DSC在材料科学、化学、药学等领域都有广泛的应用。以下是一些 常见的应用场景: 1. 相变研究:DSC能够准确测定材料的熔点、结晶点等相变温度, 从而为材料的热稳定性以及晶体结构的变化提供重要依据。 2. 沸点与汽化热:通过DSC可以测定液体材料的沸点,并计算其 汽化热,这对于液体材料的性质研究以及定量分析具有重要意义。 3. 热分解动力学:DSC可以通过对材料在不同升温速率下的实验结 果进行分析,得到热分解的活化能、反应级数等动力学参数,从而揭 示反应机理。

4. 材料品质控制:DSC可以用于药品、塑料等材料的品质控制,通 过样品与参比样品的热容差异来检测材料中的杂质、纯度等关键指标。 三、实验步骤 1. 样品准备:按照实验要求选择适当的样品,并进行样品的预处理,如干燥、粉碎等。 2. 样品称量:将适量的样品和参比样品分别称量到DSC实验杯中,确保杯中样品均匀分布,并且样品和参比样品的质量相近。 3. 实验条件设置:根据样品的性质和实验需求,设置适当的升温速 率和温度范围。一般来说,升温速率选择较慢的情况下,可以更准确 地测定材料的热性质。 4. 实验测量:将装有样品和参比样品的实验杯放入DSC仪器中, 开始实验测量。实验过程中,DSC仪器会记录样品和参比样品之间的 温度差异,并绘制DSC曲线。 5. 数据分析:通过对DSC曲线的分析,可以确定样品的相变温度、熔融峰以及热容变化等参数,并结合其他数据如质谱结果等进行综合 分析。 结语 DSC作为一种常用的热分析技术,在材料科学领域具有广泛的应用 前景。通过DSC实验,研究人员可以深入了解材料的热性质,并为材 料研发、质量控制等提供重要的实验数据和分析方法。随着仪器技术 的不断创新,DSC将在材料热性质研究中发挥更加重要的作用。

聚合物分析DSC

聚合物分析DSC 聚合物的热分析技术是研究聚合物的熔融、结晶和玻璃化行为的重要 手段之一、其中,差示扫描量热分析(DSC)是最常用的热分析技术之一、DSC可以通过测量材料在加热或冷却过程中吸收或释放的热量来确定材料 的热性质,从而揭示聚合物分子结构和交联程度等信息。 DSC的基本原理是将待测样品与一相对参照物样品同时加热或冷却, 测量两者之间的温差,通过这种方式测量样品在加热或冷却过程中产生或 吸收的热量。对于聚合物材料来说,DSC主要可以提供以下几方面的信息。 首先,DSC可以通过测量聚合物的熔点和熔融热来确定聚合物的热稳 定性和熔融行为。聚合物材料通常会在一定的温度范围内熔化,这个温度 称为熔点。根据DSC曲线上的熔点峰值可以确定聚合物的熔点。同时,熔 点峰值下方的面积可以反映聚合物的熔融热,即在熔化过程中吸收或释放 的热量。这些信息可以用来评估聚合物的熔融性能和热稳定性。 其次,DSC还可以用来研究聚合物的晶化行为和结晶度。聚合物通常 会在冷却过程中逐渐形成结晶结构,这个过程可以通过DSC曲线上的多个 峰和尖峰之间的峰型变化来观察得到。晶化过程中会释放出特定的热量, 通过测量曲线上峰下方的面积可以反映聚合物的结晶热。结合其他表征结 晶程度的方法,如X射线衍射等,可以确定聚合物的结晶度和晶型。 此外,DSC还可以研究聚合物的玻璃化行为。在一定的温度范围内, 聚合物会由高分子链的自由运动逐渐转变为玻璃态,这个过程称为玻璃化 转变。通过DSC曲线上的玻璃化跳跃点可以确定聚合物的玻璃化转变温度。此外,玻璃化转变过程中伴随着一定的热效应,通过测量曲线上玻璃化跳 跃点下方的面积可以得到玻璃化转变的热焓。

DSC测试分析技术

DSC测试分析技术 DSC(差示扫描量热法)是一种热分析技术,通过测量样品在给定条件下的热响应,了解材料的热力学性质、热行为和结构变化。DSC测试分析技术在材料科学、化学分析、药物研究等领域被广泛应用。 DSC测试分析技术的原理是通过测量样品与参比物在一定温度范围内的热量差异,分析样品的热性质。DSC实验中,通常将样品和参比物放置在两个半圆形的量热杯中,两者相连,并通过共用一根热电偶与热梯度仪表连接。样品与参比物在升温或降温时吸收或释放热量,这种热量差异就通过热电偶转化为电信号传递给仪表,形成热量差示曲线,从而分析样品的热性质。 1.熔化和凝固点的确定:DSC可以通过测量样品在升温或降温过程中的热能变化,得到样品的熔化和凝固点。这对于纯物质和合金的研究非常重要,可以揭示材料的固态结构和相变行为。 2.引发和吸收热的量度:DSC可以测量样品在不同温度下的吸热或放热能力,从而了解样品的热稳定性、反应活性以及热化学行为。例如,在化学反应中,可以通过DSC测试分析来确定反应的热效应、反应动力学参数等。 3.结晶和玻璃化过程的研究:DSC可以测量样品在升温或降温时的结晶、玻璃化过程中的热行为,从而了解材料的热稳定性、结晶度、玻璃化转变温度等。这对于聚合物、陶瓷、玻璃等材料的研究和开发具有重要意义。

4.材料的相变行为和热力学性质:DSC可以通过测量样品在不同条件 下的热行为,来研究材料的热力学性质,如焓、反应热容量、热导率等, 从而进一步了解材料的相变行为和物理化学性质。 5.多组分体系的分析:DSC测试分析还可以应用于多组分体系的研究。通过测量混合物在升温或降温过程中的热响应,可以分析混合物中各组分 的相互作用以及相变行为。 需要注意的是,DSC测试分析的结果需要结合其他实验数据和理论模 型进行综合分析,以得到更准确的结论。此外,DSC测试的可靠性还受到 仪器精度、实验条件和数据处理等因素的影响,因此在实验设计和数据处 理过程中要注意减小误差和提高可重复性。 总之,DSC测试分析技术通过测量样品的热响应,能够深入了解材料 的热性质、热行为和结构变化。它在材料科学、化学分析、药物研究等领 域的应用广泛,有助于推动科学研究和工业应用的发展。

dsc差示扫描量热仪

dsc差示扫描量热仪 DSC差示扫描量热仪 引言 DSC(差示扫描量热仪)是一种常用的热分析仪器,用于研究材料的热性质。本文将介绍DSC差示扫描量热仪的工作原理、应用领域以及使用方法。 一、工作原理 DSC差示扫描量热仪通过测量材料在给定温度条件下吸收或释放的热量,来研究材料的热性质。它通过两个样品盒,一个装有待测样品,另一个装有参比样品,将两个盒子作为DSC差示扫描量热仪的工作单元。当加热或冷却待测样品和参考样品时,测量样品和参考样品之间的温度差异,然后将差异转换为相应的热信号。 二、应用领域 DSC差示扫描量热仪在许多领域中都有广泛的应用。以下是几个常见的应用领域: 1. 材料科学:DSC差示扫描量热仪可以通过研究材料的热性质,如熔点、晶型转变、玻璃转变等,来评估材料的稳定性和性能。

2. 化学反应研究:DSC差示扫描量热仪可以用于观察和分析化学反应的热效应,如催化反应、聚合反应等。 3. 制药行业:DSC差示扫描量热仪可以用于评估药物的热稳定性和热解动力学,并提供药物的储存和运输条件。 4. 食品科学:DSC差示扫描量热仪可以用于研究食品中的物理和化学变化,如水分含量、相变和氧化反应等。 5. 聚合物研究:DSC差示扫描量热仪可以用于研究聚合物的热行为,如玻璃化转变、热固化反应等。 三、使用方法 使用DSC差示扫描量热仪需要以下步骤: 1. 样品准备:准备待测样品和参考样品,并保证其质量和纯度。 2. 样品安装:将待测样品和参考样品分别装入两个样品盒,并校准 样品盒的温度。

3. 实验参数设置:根据实验需求设置加热或冷却速率、温度范围等实验参数。 4. 数据采集和分析:启动DSC差示扫描量热仪,开始数据采集,并对采集到的数据进行分析和解释。 5. 结果解释:根据数据分析结果,解释样品的热性质,并得出相应的结论。 四、常见问题与解决方法 在使用DSC差示扫描量热仪过程中,可能会遇到一些常见问题,下面列出了一些常见问题及其解决方法: 1. 样品溢出:样品过量或装载不当可能导致样品溢出。解决方法是减少样品质量或调整样品装载方式。 2. 数据噪音:环境干扰和设备故障可能导致数据噪音。解决方法是确保实验环境稳定,并检查设备是否正常工作。 3. 温度漂移:温度传感器偏移或不稳定性可能导致温度漂移。解决方法是进行温度校准和传感器检查。

DSC分析方法

物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随有焓的改变,因而产生热效应,温度控制系统表现为样品与参比物之间有温度差。记录两者温度差与温度或者时间之间的关系曲线就是差热曲线(DTA曲线)。 差热分析仪的结构包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和温度控制系统记录仪(后两者亦可用测温检流计代替)。 图右半部分为典型的DTA曲线,当然,实际的DTA。从差热图上可清晰地看到差热峰的数目、高度、位置、对称性以及峰面积。峰的个数表示物质发生物理化学变化的次数,峰的大小和方向代表热效应的大小和正负,峰的位置表示物质发生变化的转化温度。在相同的测定条件下,许多物质的热谱图具有特征性。因此,温度控制系统可通过与已知的热谱图的比较来鉴别样品的种类。理论上讲,可通过峰面积的测量对物质进行定量分析,但因影响差热分析的因素较多,定量难以准确。 差热分析法-基本原理 差热分析法——Differential Thermal Analysis (DTA)是在程序控制温度下,测量试样与参比物质之间的温度差ΔT与温度T (或时间t)关系的一种分析技术,所记录的曲线是以ΔT为纵坐标,以T(或t)为横坐标的曲线,称为差热曲线或DTA曲线,反映了在程序升温过程中,ΔT与T或t的函数关系:ΔT = f ( T ) 或f ( t ) 参比物质为一种在所测量温度范围内不发生任何热效应的物质。通常使用的参比物质是灼烧过的α-Al2O3或MgO。图17.6为DTA原理示意图。加热时,温度T及温差△T分别由测温热电偶及差热电偶测得。差热电偶是由分别插在试样S和参比物R的二支材料、性能完全相同的热电偶反向相连而成。当试样S没有热效应发生时,组成差热电偶的二支热电偶分别测出的温度Ts、TR相同,即热电势值相同,但符号相反,所以差热电偶的热电势差为零,表现出ΔT=Ts-TR=0,记录仪所记录的ΔT曲线保持为零的水平直线,称为基线。若试样S有热效应发生时,Ts≠TR,差热电偶的热电势差不等于零,即ΔT=Ts-TR≠0,于是记录仪上就出现一个差热峰。热效应是吸热时,ΔT=Ts-TR<0,吸热峰向下,热效应是放热时,ΔT>0,放热峰向上。当试样的热效应结束后,Ts、TR又趋于一样,ΔT恢复为零位,曲线又重新返回基线。图17.7为试样的真实温度与温差比较图。差热峰反映试样加热过程中的热效应,峰位置所对应的温度尤其是起始温度是鉴别物质及其变化的定性依据,峰面积是代表反应的热效应总热量,是定量计算反应热的依据,而从峰的形状(峰高、峰宽、对称性等)则可求得热反应的动力学参数。表17.2列出了各种吸热和放热体系的类型,供判断差热峰产生机理时参考。 DSC曲线解析 DSC作为一种多用途;高效、快速、灵敏的分析测试手段已广泛用于研究物质的物理变化(如玻璃化变、熔融、结晶、晶型转变、升华、汽化、吸附等)和化学变化(如分解、降解、聚合、交联、氧化还原等)。这些变化是物质在加热或冷却过程中发生的,它在DSC曲线上表现为吸热或放热的峰或基线的不连续偏移。对于物质的这些DSC表征,尽管多年来通过热分析专家的解析积累了不少资料,也出版了一些热谱(如SADTLER热谱等).但热谱学的发展尚不够成熟,不可能象红外光谱那样将图谱的解析工作大部分变为图谱的查对工作,尤其是高聚物对热历史十分敏感,同一原始材料,由于加工成型条件不同往往有不同的DSC曲线,这就结DSC曲线的解析带来丁较大的困难。 解析DSC曲线决不只是一个技术问题,有时还是一个困难的研究课题。因为解析DSC曲线所涉及的技术面和知识面较广。为了确定材料转变峰的性质,不但要利用DSC以外的其他热分析手段,如DSC-TGA联用,还要借助其他类型的手段,如DSC-GC联用,DSC与显微镜联用,红外光谱及升降温原位红外光谱技术等。这就要求解工作者不但要通晓热分析技术,还要对其他技术有相应的了解,在此基础上结合研究工作不断实践积累经验,提高解析技巧和水平。 作为DSC曲线的解析工作者起码应该知道通过DSC与TGA联用,可以从DSC曲线的吸热蜂和放热峰及与之相对应的TGA曲线有无失重或增重,判断材料可能发生的反应过程,从而初步确定转变

相关主题
相关文档
最新文档