差示扫描量热法
12差示扫描量热法(DSC)

2.热流型DSC
与DTA仪器十分相似, 是一种定量的DTA仪器。
不同之处在于试样与参 比物托架下,置一电热片, 加热器在程序控制下对加 热块加热,其热量通过电 热片同时对试样和参比物 加热,使之受热均匀。要 求 试 样 和 参 比 物 温 差 ΔT 与试样和参比物间热流量 差成正比例关系。
DSC曲线
100%
ΔHf*:100%结晶度的熔融热焓(对于每一种高聚物来说, ΔHf* 是定值,其值可从表中查得,也可通过外推法求的。
13.4 热分析中的联用技术
单一的热分析技术,如TG、DTA或 DSC等,难以明确表征和解释物质 的受热行为。
如:TG只能反映物质受热过程中质 量的变化,而其它性质,如热学等 性质就无法得知有无变化和变化的 情况。
DSC常与DTA组装在一起,用 更换样品杆和增加功率补偿单元 达到既可作DSC,又可作DTA。
13.3.2 影响DSC的因素
DSC的影响因素与DTA基本上相类 似 , 由 于 DSC 用 于 定 量 测 试 , 因 此 实验因素的影响显得更重要,其主 要的影响因素大致有以下几方面:
1.实验条件:程序升温速率Φ,气氛 2.试样特性:试样用量、粒度、装填
温度和熔融热焓偏低。
但是当结晶的试样研磨成细颗粒时,往 往由于晶体结构的歪曲和结晶度的下降 也可导致相类似的结果。
对于带静电的粉状试样,由于粉末颗粒 间的静电引力使粉状形成聚集体,也会 引起熔融热焓变大。
3)试样的几何形状
在高聚物的研究中,发现试样几何 形状的影响十分明显。对于高聚物, 为了获得比较精确的峰温值,应该 增大试样与试样盘的接触面积,减 少试样的厚度并采用慢的升温速率。
2.无论试样产生任何热效应,试样和参 比物都处于动态零位平衡状态,即二者 之间的温度差T等于0。
DSC 差示扫描量热法

DSC 差示扫描量热法差示扫描量热法(differential scanning calorimetry)这项技术被广泛应用于一系列应用,它既是一种例行的质量测试和作为一个研究工具。
该设备易于校准,使用熔点低,是一种快速和可靠的热分析方法。
差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。
DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。
换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t 的变化关系。
如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。
物质在温度变化过程中,往往伴随着微观结构和宏观物理,化学等性质的变化。
宏观上的物理,化学性质的变化通常与物质的组成和微观结构相关联。
通过测量和分析物质在加热或冷却过程中的物理、化学性质的变化,可以对物质进行定性,定量分析,以帮助我们进行物质的鉴定,为新材料的研究和开发提供热性能数据和结构信息。
在差热分析中当试样发生热效应时,试样本身的升温速度是非线性的。
以吸热反应为例,试样开始反应后的升温速度会大幅度落后于程序控制的升温速度,甚至发生不升温或降温的现象;待反应结束时,试样升温速度又会高于程序控制的升温速度,逐渐跟上程序控制温度,升温速度始终处于变化中。
而且在发生热效应时,试样与参比物及试样周围的环境有较大的温差,它们之间会进行热传递,降低了热效应测量的灵敏度和精确度。
因此,到目前为止的大部分差热分析技术还不能进行定量分析工作,只能进行定性或半定量的分析工作,难以获得变化过程中的试样温度和反应动力学的数据。
药物分析中的差示扫描量热法研究

药物分析中的差示扫描量热法研究差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种广泛应用于药物分析领域的热分析技术。
它通过测量物质在加热或冷却过程中吸收或放出的热量来研究其热力学性质和相变过程。
在药物分析中,差示扫描量热法被广泛用于药物研发、质量控制以及稳定性评价等方面。
本文将重点介绍差示扫描量热法在药物分析中的应用及其研究方法。
一、差示扫描量热法原理差示扫描量热法基于样品与参比品之间的热交换原理进行测量。
在实验中,将待测样品与已知热特性的参比品同时放入量热仪中,通过对两个样品进行同时加热或冷却,测量样品与参比品之间的温差和热量差,从而获得样品的热特性信息。
差示扫描量热法主要包括两种工作模式:差示扫描热量仪(DSC)和差示红外热量仪(DSC-IR)。
DSC主要用来测量样品的热量变化,可以得到样品的熔融点、结晶度、玻璃化转变、相分离等信息。
DSC-IR则结合了差示扫描热量仪和红外光谱仪的功能,可以通过红外光谱分析样品中的吸收峰来获取更加详细的化学信息。
二、差示扫描量热法在药物研发中的应用1. 药物配方研究差示扫描量热法可以用于研究药物的配方中所使用的各种成分对药物性质的影响。
通过对不同配方药物的扫描分析,可以对比不同药物的热力学特性差异,从而确定最佳的配方组合。
2. 药物溶解性研究差示扫描量热法可通过测量药物在不同温度下的溶解热来判断药物的溶解性。
通过分析药物的热解曲线,可以了解药物在不同溶剂中的溶解度,为药物的制剂开发提供重要依据。
3. 药物相变研究差示扫描量热法可用于研究药物的相变过程。
通过测量药物在不同温度下吸热或放热的情况,可以确定药物的熔点、晶型转变、溶解度等热力学参数,帮助药物科研人员了解药物的稳定性和相容性。
4. 药物质量控制差示扫描量热法可用于药物制剂的质量控制。
通过对药物样品的热分析,可以鉴定药物的成分、含量和纯度等质量指标,确保药物的质量符合规定标准。
差示量热扫描法

差示量热扫描法
差示扫描量热法(DSC)是一种热分析技术,用于测量在程序控制温度下输入到试样和参比物的功率差(如以热的形式)与温度的关系。
差示扫描量热仪记录到的曲线称为DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测量多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。
差示扫描量热法有补偿式和热流式两种。
在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。
差示扫描量热法具有试样用量少、基本不需要前处理、耗时短等优势,并被广泛应用于测定物质的纯度。
通过该方法测定的纯度准确度和精确度均优于其他方法,能准确地测定物质的绝对纯度,并且在精确度和准确度上优于其他方法。
差示扫描量热法的使用范围很广,可在无机物、有机化合物及药物分析中进行应用。
此外,它还可在食品和制药行业中用于表征和微调某些性质,例如大分子的稳定性、折叠或展开信息,以及测定玻璃化转变温度等。
差示扫描量热法(DSC)

包括升温、降温速率和温度范围等,根据反应条件进行调整。
3 记录数据
自动化记录实验数据,并生成相应的曲线图像和热力学参数。
应用领域
差示扫描量热法广泛应用于化学、药品、食品、材料等领域,用于研究反应动力学、相变、热稳定 性、材料性能等问题。
1
化学领域
研究化学反应热力学、动力学、催化作用、聚合反应等。
吸热反应
反应过程中吸收热量,导致温 度下降,被量热计测量为正信 号。
基线
参比物和样品在无反应条件下 的基线,用于校正信号。
仪器和操作流程
差示扫描量热仪由样品盒、参比盒、控温系统、传感器和计算机组成。操作流程包括样品制备、 调试仪器、设定实验条件、记录数据、数据分析。
1 样品制备
样品必须纯净、均匀、充分干燥,以确保实验结果准确可靠。
2
材料领域
研究材料的热稳定性、热膨胀系数、晶体相变等。
3
药品领域
研究药品的热稳定性、储存条件、配方优化、反应动力学等。
优点和局限性
差示扫描量热法相比其他热学技术具有高灵敏度、快速、高精度、不需样品分离等优点,但也存在信号 干扰、噪声较大、基线不稳定等局限性。
优点
高灵敏度、高精度、
局限性
信号干扰、噪声较大、基线不稳定、不能确 定速率控制步骤。
案例研究
差示扫描量热仪可以用来研究化合物溶解和结晶过程、聚合反应、材料热稳定性等问题。
化合物溶解
结晶反应
研究葡萄糖在水中的溶解过程, 获得了其热力学参数。
观察钠乙酰丙酸盐的晶体化过 程,得到了其热力学曲线。
聚合反应
探究丙烯酸甲酯聚合反应的热 效应及反应动力学参数。
差示扫描量热法(DSC)
差示扫描量热法(DSC)测试方法

DSC测试过程的步骤
样品准备
准备纯净、干燥的样品,并将其放置在DSC样品 舱中。
测量热响应
测量样品与参考样品之间的温差,得出样品的热 性质。
控制升温
以固定的升温速率升温样品,常见的升温速率为 10°C/min。
数据分析
根据热曲线,分析样品的热稳定性、物相转变、 反应动力学等信息。
DSC测试在材料研究中的应用
差示扫描量热法(DSC)测 试源自法差示扫描量热法(DSC)是一种常用的热分析技术,用于测量物质热性质。通过 分析样品在控制升温条件下的热响应,DSC可以提供有关材料的热稳定性、热 传导、物相变化等关键信息。
差示扫描量热法(DSC)测试方法 的原理
DSC通过比较被测样品与参考样品之间的热响应差异来测量热性质。当样品吸 收或释放热量时,DSC测量并绘制样品温度与参考温度之间的差异曲线,从而 提供有关样品热行为的信息。
热效应分析
研究反应的热放热或吸热性质, 评估反应的热稳定性。
聚合反应研究
研究聚合反应的起始温度、聚合 速率等关键参数。
DSC测试在药物研发中的应用
1
药物热性质表征
测量药物在不同温度下的热行为,为药
药物相变分析
2
物配方设计提供基础数据。
研究药物的晶型转变、熔化过程等,影
响药物的稳定性和溶解性。
3
配方优化
1 热稳定性评估
通过测量材料的热分解、熔融温度等参数, 评估材料的热稳定性。
2 相变分析
研究材料的物相变化过程,如晶化、熔化、 聚合等。
3 热导率测量
4 物性表征
通过分析样品的热响应,计算材料的热导率。
了解材料的热膨胀系数、比热容等物理性质。
DSC测试在化学反应中的应用
差示扫描量热法

T C CS CS dT C
KT
dt
(3-26),积分得:
dT C
KT dt
T T C
t CS CS
T
T
exp
CS
KT CS
t
根据Kirchoff热功当量定律,可得下列方程式:
T TS T TS TR TS is
(3-7)
R
Rg
Rb
T TR T TR TR TS iR
(3-8)
R
Rg
Rb
式中:T——炉温;TS——试样温度;TR——参 比物温度。 (3-7)和(3-8)式相减并设T=TR-TS,即得
KT
KT dt KT dt
(3-15)
(3-15)式给出了初始瞬时 的热流DSC曲线。 根据(3-15)式,可推断出 当 KT/KT=0 和 CS=CR 时 , T=0 。 这 说 明 在 热 流 型 DSC 的 构 造 中 KT/KT 是 很 重 要 的 , 为 了获得小的KT/KT值, 结构对称性必须很高, 温度滞后(Tf-T)应该很小, 炉 温 要 均 匀 且 KT 必 须 很 大。
T T
K 4SR T T T K 5SR T 4 T T 4
(3-11)
dT
CR dt
K1R Tf T
K 2R
T
4 f
T
4
K 3R Tf T K 4SR T T T K 5SR T T 4 T 4
(1)炉壁传导到试样和参比物的热流分别为i1S和i1R,传 热系数分别为K1S和K1R;
差示扫描量热分析(DSC)

K=ΔHWs/AR
量程校正 K值测定
在铟的记录纸上划出一块大 小适当的长方形面积,如取高度 为记录纸的横向全分度的3/10即 三大格,长度为半分钟走纸距离, 再根据热量量程和纸速将长方形
面积转化成铟的ΔH,
按K=ΔHWs/AR计算校正系
数K’。若量程标度已校正好,则K’ 与铟的文献值计算的K应相等。
差示扫描量热分析法
• DTA面临的问题
定性分析,灵敏度不高
• 差示扫描量热分析法(DSC)
Differential Scaning Calarmeutry
——通过对试样因热效应而发生的能量变化进行及时补 偿,保持试样与参比物之间温度始终保持相同,无温差、 无热传递,使热损失小,检测信号大。灵敏度和精度大 有提高,可进行定量分析。
若量程标度有误差,则K’与按 文献值计算的K不等,这时的实 际量程标度应等于K/K’R。
DSC的影响因素
样品因素: 试样量 试样粒度
试验条件: 升温速率,气氛
主要操作参数:试验量,升温速率和气氛
DSC曲线的数据处理方法
称量法: 误差 2%以内。 数格法: 误差 2%—4%。 用求积仪:误差 4%。 计算机: 误差 0.5%。
1、差示扫描量热分析原理 (1)功率补偿型差示扫描量热法
通过对试样因热效应而发生的能量变化进行及时补偿,保 持试样与参比物之间温度始终保持相同,无温差、无热传 递,使热损失小,检测信号大。零点平衡原理
(2) 热流式差示扫描量热仪
通过测量加热过程中试样热流量达到DSC分析的 目的,试样和参比物仍存在温度差。 采用差热分析的原理来进行量热分析。
比热测定
dH / dt mC p dT / dt 式中,为热流速率(J∙s-1);m为样品质量(g);CP为比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G H - TS
在恒温下
(2-6)
dG = dH – TdS
(2-7)
在恒温和恒压的平衡/非平衡条件下
dG 0
(2-8)
即在恒温恒压的自发过程中,体系将向降低Gibbs 自由能的方向进行。 (5) 热焓H
H U + pV
(2-9)
(6) 热力学基本关系式 组成恒定、不作非膨胀功的封闭体系的热力学基本方程 dU TdS PdV
C = Q/T
(2-10)
状态函数的第一定律表达式在有热膨胀做功的情况下, 内能的变化为
dU = dQ - PdV
而定容比热为
dQ / dT (U / T )V ,N CV
热分析通常是在常压下进行,而体系的体积相当小,因 此热焓H与内能U之差不大,则有
U V dQ H CP CV P dT T P , N T T T , N P,N
dH TdS VdP dF SdT PdV dG SdT VdP
麦克斯韦 ( Maxwell )关系 热容与T、S、P、V的关系
S P V T T V S V P T T P
在量热分析中,我们所研究的样品对象为体系,因 此,定义所有加入到体系中的量为正值,而从体系 中失去的量为负值。如体系在相变过程中吸收的热 量Q为正,而放出的热量Q为负。
2) 热力学函数
描述体系的状态函数: 可测量的状态函数: 总能量U 温度T 体积V 压力P 物质的量N 质量m
其中T、P为强度状态函数,不具加和性,即不 随物质的量增加或减少而变 U、V、N、m为量度状体函数,具有加和性,即 与物质的量成正比 当体系处于平衡态时,状态函数间的相互关系是 由平衡热力学确定的
4) 一些不能直接测量的热力学状态函数
(1) 熵或熵变(Entropy or entropy change) 恒温下定义的熵变dS:
dQ / T dS
对于一个孤立体系,第二定律要求: 对于平衡过程dS 必须为0; 对于非平衡过程dS 必须是正; 宏观过程不可能有负熵变化。
(2-2)
3) 热力学的四个定律 (1) 能量和熵 热力学的两个中心概念是能量和熵,其他用得 最多的概念是温度和压力。实际上温度和压力 可以用能量和熵来表达(定义)。能量和熵是 物理体系的性能,但各自具有不同特性。能量 是守恒的,既不能产生,也不能毁灭,只能从 一种形式变化到另一种形式。
(2) 可逆与不可逆过程 可逆过程:一个过程,如果每一步都可在相反的方向 进行而不引起外界的其它任何变化,则称此过程为可 逆过程 (reversible process) 。或者说,如果一个过 程发生后,系统和外界都可以重新恢复到它们的初始 状态,这种过程称为可逆过程。 不可逆过程:一个过程,如果用任何方法都不可能使 系统和外界完全复原,则称此过程为不可逆过程 (irreversible process)。或者说,如果一个过程一旦 发生,无论通过如何曲折复杂的途径,都不可能使系 统和外界都恢复到它们的初始状态,这种过程又称不 可逆过程。通常,不可逆过程是自发和快速发生的, 会产生“流”和“摩擦”效应。
2.3 量热分析 2.3.1 热力学基础 1) 体系与环境 热分析是对物质进行宏观描述的一种实验技术, 所给出的量具有统计性质。 任何一个体系都可以 分为下述三种之一: 开放体系 封闭体系 孤立体系 体系 体系边界
环境
例子:
热重法是观测敞开体系的一种仪器 量热法是属于封闭体系的一种测量方法 弹式量热计的整体可以看着为一个孤立体系
由定压实验测得的热容与温度的关系, 计算出任意温度的热焓:
H (T ) H (T0 ) CP dT
T0
T
CP S (T ) S (T0 ) dT T0 T
吉布斯自由能与温度的关系: Gibbs-Helmholtz公式
S CV T T V S CP T T P
G / T H 2 T T P
5) 热力学分析常用到的状态函数 热分析的基本状态函数(无化学变化或相变)是热容,一般假 定体系是封闭的,组成恒定,仅可交换热量和功。 热容的一般表达为:
(3) 热力学的四个定律 第零定律:如果两个热力 学系统中的每一个都与第三个热 力学系统处于热平衡,则它们彼此也必定处于 热平衡
这使得我们能够引进温度计的概念以可重复的方式测量 各种体系的温度
第一定律:能量是守恒的
dU=Q+W 第二定律:热自发地从高温流向低温 第三定律:不同态凝聚态体系在0 K时的熵差为零(The Difference in Entropy Between States Connected by a Reversible Process Goes to Zero in Limit T 0 K) (2-1)
S k ln
F U - TS
在恒温和恒容的平衡/非平衡条件下
(2-3)
(3) Helmholtz自由能(Helmholtz function或Helmholtz energy) (2-4)
dF 0
(2-5)
即在恒温恒容的自发过程中,体系将向降低 Helmholtz自由能的方向进行。
(4) Gibbs自由能(Gibbs function或Gibbs energy)
(2)式还表明,温度越高则熵变数值越小。从较低温度 T1到较高温度T2,熵变不可能为负值,即下式不成立:
Q Q S 0 T2 T1
(热不可能自发从 低温传到高温)
仅就孤立体系而言,熵变应遵从dS 0。对于开放体系 和封闭体系,在dS 玻兹曼(Boltzman)熵定理