错位全排公式
全错位排列公式

全错位排列先看下面例子:例1. 5个人站成一排,其中甲不站第一位,乙不站第二位,共有多少种不同的站法。
这个问题在高中很多参考书上都有,有几种解法,其中一种解法是用排除法:先考虑5个全排列,有55A 种不同的排法,然后除去甲排在第一(有44A 种)与乙排第二(也有44A 种),但两种又有重复部分,因此多减,必须加上多减部分,这样得到共有:543543278A A A -+=种。
现在考虑:例2.5个人站成一排,其中甲不站第一位,乙不站第二位,丙不站第三位,共有多少种不同的站法。
仿上分析可得:543254323364A A A A -+-=种这与全错位排列很相似。
全错位排列——即n 个元素全部都不在相应位置的排列。
看下面的问题例3.5个人站成一排,其中A 不站第一位,B 不站第二位,C 不站第三位,D 不站第四位,E 不站第五位,共有多少种不同的站法。
解析:上面例1,例2实际上可以看成n 个不同元素中有()m m n ≤不排在相应位置。
公式一:n 个不同元素排成一排,有m 个元素()m n ≤不排在相应位置的排列种数共有:()1122121mn n n m n m n m n m n m n m A C A C A C A -------+++-种 这个公式在n m =时亦成立,从而这个问题可能用上面的公式得出:514233241505545352515044A C A C A C A C A C A -+-+-=种(注意0000!1n C A ===)(1993年高考)同室四人各写一张贺年卡,先集中起来。
然后每人从中拿一张别人送出的贺年卡。
则四张贺年卡不同的分配方式有(A)6种 (B)9种 (C)11种 (D)23种解析:由上面公式得: 4132231404434241409A C A C A C A C A -+-+=种,∴选择B 答案因此可得到全错位排列的公式:n 个不同元素排成一排,第一个元素不在第一位,第二个元素不在第二位,……,第n 个元素不在第n 位的排列数为: ()1122121nn n n n n n n n n n n n n n A C A C A C A -------+++- 这实际上是公式一的特殊情况。
全错位排列

全错位排列先看下面例子:例1 5个人站成一排,其中甲不站第一位,乙不站第二位,共有多少种不同的站法。
这个问题在高中很多参考书上都有,有几种解法,其中一解法是用排除法:先考虑5个有的全排列,有A55种不同的排法,然后除去甲排第一(有A44种)与乙排第二(也有A44种),但两种又有重复部分,因此多减,必须加上多减部分,这样得到共有:A55-2A44+A33=78种。
现在考虑:例2 5个人站成一排,其中甲不站第一位,乙不站第二位,丙不站第三位,共有多少种不同的站法。
仿上分析可得:A55-3A44+3A33-A22=64种这与全错位排列很相似。
全错位排列——即n 个元素全部都不在相应位置的排列。
看下面的问题例3 5个人站成一排,其中A 不站第一位,B 不站第二位,C 不站第三位,D 不站第四位,E 不站第五位,共有多少种不同的站法。
解析:上面例1,例2实际上可以看成n 个不同元素中有m (m≤n )不排在相应位置。
公式一:n 个不同元素排成一排,有m 个元素(m≤n )不排在相应位置的排列种数共有:从而这个问题可能用上面的公式得出:()A C A C A C A m n m n m m m n n m n n m nn ------∙∙-++∙+∙-1 (222111)这个公式在n =m 时亦成立A55-C(5,1)?A44+C(5,2)?A33-C(5,3)?A22+C(5,4)?A11-C(5,5)?A00=44种(注意A00=0!=1)再看1993年高考题:同室四人各写一张贺年卡,先集中起来。
然后每人从中拿一张别人送出的贺年卡。
则四张贺年卡不同的分配方式有(A)6种 (B)9种 (C)11种 (D)23种解析:由上面公式得:A44-C(4,1)?A33+C(4,2)?A22-C(4,3)?A11+C(4,4)?A00=9种,∴选择B 答案因此可得到全错位排列的公式:n 个不同元素排成一排,第一个元素不在第一位,第二个元素不在第二位,……,第n 个元素不在第n 位的排列数为:()A C A C A C A n n n n n n n n n n n n n nn ------∙∙-++∙+∙-1 (222111)这实际上是公式一的特殊情况。
全错排列组合公式

全错排列组合公式
错排列组合是组合中比较特殊的一种形式,他指的是在一组数据中,相比较其他的组合,某些元素必须排列在一起,而且不允许有重复。
错排列组合的数量不像普通的组合那么容易求出来,需要用到全错排
列组合公式。
全错排列组合公式如下:
D(n)= n![1/0!-1/1!+1/2!-1/3!+....+(-1)n/n!]
其中D(n)表示n个元素的错排列组合的数量,n!表示n的阶乘,(-1)n表示-1的n次方。
在上述公式中,有一个重要的概念——错排,它是指n个元素的错排
是指n个元素中,有m个不能处于第m个位置上,而其他n-m个元素
则可以随意排列。
错排数量的计算,需要整除和阶乘,所以错误排列
考虑的是组合数学。
下面是我为大家整理的全错排列组合公式的列表,希望对你有所帮助:
1. D(1)= 0
2. D(2)= 1
3. D(3)= 2
4. D(4)= 9
5. D(5)= 44
6. D(6)= 265
7. D(7)= 1854
8. D(8)= 14833
9. D(9)= 133496
10. D(10)= 1334961
我们可以发现,全错排列组合公式的计算量随着元素数量的增加而增加,因此,在实际应用中,需要根据具体情况灵活使用。
总之,全错排列组合公式是组合数学中的重要内容,可以用于计算错排数量,也可以用于统计样本空间的大小。
相信通过阅读本文,大家已经对全错排列组合公式有了更加深入的了解,希望有助于您的学习和应用。
2.2 排列与组合的概念与计算公式

排列与组合的概念与计算公式1.排列 (在乎顺序)全排列:n 个人全部来排队,队长为n 。
第一个位置可以选n 个,第二位置可以选n-1个,以此类推得: P(n,n)=n(n-1)(n-2)……3*2*1= n! (规定0!=1).部分排列:n 个人选m 个来排队(m<=n)。
第一个位置可以选n 个,第二位置可以选n-1个,以此类推,第m 个(最后一个)可以选(n-m+1)个,得:P(n,m)=n(n-1)(n-2)……(n-m+1)= n! / (n-m)! (规定0!=1).2.组合( 不在乎顺序)n 个人m(m<=n)个出来,不排队,不在乎顺序C(n,m)。
如果在乎排列那么就是P(n,m),如果不在乎那么就要除掉重复,那么重复了多少?同样选出的来的m 个人,他们还要“全排”得到P(n,m),所以得: C(n,m) * m! = P(n,m)C(n,m)= P(n,m) / m!=n! / ( (n-m)! * m! )组合数的性质1:)(,n m C C m n n m n ≤=-组合数的性质2:)(,111n m C C C m n m n m n ≤+=--- 如果编程实现,以上两个公式有没有帮助?练习:311P 、811P 、311C 、811C 、9991001C3.其他排列与组合(1)圆排列:n 个人全部来围成一圈为Q(n,n),其中已经排好的一圈,从不同位置断开,又变成不同的队列。
所以:Q(n,n)*n=P(n,n) >>> Q(n)=P(n,n)/n=(n-1)!由此可知,部分圆排Q(n,r)=P(n,r)/r=n!/(r*(n-r)!).(2)重复排列 (有限):k 种不一样的球,每种球的个数分别是a1,a2,...ak,设n=a1+a2+…+ak ,这n 个球的全排列数,为 n!/(a1!*a2!*...*ak!).(3)重复组合 (无限):n 种不一样的球,每种球的个数是无限的,从中选k 个出来,不用排列,是组合,为C(n+k-1,k).证明:假设选出来的数(排好序)1<=b1<=b2<=b3…….<=bk<=n这题的难点就是=号,现在去掉=号,所以有:1<= b1 < b2+1 < b3+2 < b4+3 …….< bk+k-1 <=n+k-1 中间还是k 个数!不过已经不是b 系列,而是c 系列 假设c[i]:=b[i]+i-1,所以1<= c1 < c2 < c3 < c4 …….< ck <=n+k-1所以问题就开始转换为无重复组合问题,即在n+k-1个元素中选中k个的组合数C(n+k-1,k)。
全错位排列数公式的推导与化简

全错位排列数公式的推导与化简一、提出问题装错信封问题:一个人写了n封不同的信及相应的n个不同的信封,若他把这n封信都装错了信封,那么装错信封的装法共有多少种?这是被著名数学家欧拉称为“组合数论的一个妙题”.把n个编号元素放在n个编号位置,元素编号与位置编号各不对应的排列方法称为错位排列法.将编号分别为1,2,3,…,n的n个不同元素a1,a2,a3,…,an,安排在这n个位置作全排列,若某个排列中每个元素都错位,则把这个全排列称为这n个不同元素的一个全错位排列.n个不同元素所有的全错位排列的个数称为全错位排列数,记为Dn,易得D1=0,D2=1,D3=2.二、递推关系式对于n=4,D4推导如下:按分步乘法计数原理考虑,第一步,先安排好第一个位置,有C13=3种排法.1234a3a1第二步,当安排好第一个位置后,假设安排的是a3,此时应考虑a1的位置,包括两种情况.若a1安排在第三个位置,则a2和a4排法是D2=1;若a1不安排在第三个位置,而a2不排在第二个位置,a4不排在第4个位置,对应的排法是D3=2.因此,当第一个位置安排的是a3时,对应的排法共有D2+D3=3,而第一个位置安排的各种情况地位相当,所以D4=C13(D2+D3)=9.对于Dn,推导如下:按分步乘法计数原理考虑,第一步,先安排好第一个位置,有C1n-1=n-1种排法.12…m…nama1第二步,当安排好第一个位置后,假设安排的是am,此时应考虑a1所放的位置,包括两种情况.若a1安排在第m个位置,则对应的排法是Dn-2;若a1不安排在第m个位置,由于a2不排在第二个位置,…,an不排在第n个位置,对应的排法是Dn-1.因此,当第一个位置安排的是an时,对应的排法共有Dn-1+Dn-2.而第一个位置安排的各种情况地位相当,所以Dn=C1n-1(Dn-1+Dn-2). (1)整理Dn-nDn-1=-[Dn-1-(n-1)Dn-2].这表明,{Dn-nDn-1}是以D2-2D1=1为首项,公比为-1的等比数列,于是Dn-nDn-1=(-1)n-2,故Dn=nDn-1+(-1)n,其中n≥2,n ∈N+. (2)对于(1)式还有一种方法:设满足题意的放法有Dn种,当加入第n+1个元素和编号时,对于Dn的每一种放法,都可以把第i(i=1,2,3,…,n)个元素与第n+1个元素互换,把第i个元素放入第n+1个位置,有nDn种放法;也可先把第n+1个元素放入第i个位置,还余下n个位置,而把第i 个元素不放入第n+1个位置,其它元素也不放在对应的位置,则此时有nDn-1种放法,所以Dn+1=nDn+nDn-1,n≥2.三、全错位排列数公式利用递推关系式Dn-nDn-1=(-1)n,各项同除以n!,得Dnn!-Dn-1(n-1)!=(-1)nn!,构造数列bn=Dnn!,并利用数列恒等式bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)有Dnn!=01!+(-1)22!+(-1)33!+…+(-1)nn!,所以Dn=n![12!-13!+…+(-1)n1n!].下面根据Dn=nDn-1+(-1)n利用分步迭代法推导Dn.D2=2D1+(-1)2,D3=3D2+(-1)3=3×2D1+3(-1)2+(-1)3.由于D1=0,则D4=4D3+(-1)4=4×3(-1)2+4(-1)3+(-1)4,D5=5D4+(-1)5=5×4×3(-1)2+5×4(-1)3+5(-1)4+(-1)5=5!2!(-1)2+5!3!(-1)3+5!4!(-1)4+5!5!(-1)5,…,所以Dn=n![12!-13!+…+(-1)n1n!].还有一种方法:利用递推关系式Dn=C1n-1(Dn-1+Dn-2),设Dk=k!pk,k=1、2、3、…、n,则p1=0,p2=12.当n≥3时,由Dn=(n-1)(Dn-1+Dn-2)得n!pn=(n-1)(n-1)!pn-1+(n-1)(n-2)!pn-2,即n(n-1)!pn=(n-1)(n-1)!pn-1+(n-1)!pn-2,可知npn=(n-1)pn-1+pn-2,即npn=npn-1-pn-1+pn-2,则pn-pn-1=-pn-1-pn-2n,pn-1-pn-2=-pn-2-pn-3n-1,……,因此有pn-pn-1=(-1n)(-1n-1)(-1n-2)…(p2-p1)=(-1)n1n!,pn-1-pn-2=(-)n-11(n-1)!,…,p2-p1=(-1)212!.各式两边相加得pn=12!-13!+…+(-1)n1n!.所以Dn=n!pn=n![1-11!+12!-13!+…+(-1)n1n!].四、化简公式由于e-1=1-11!+12!-13!+…+(-1)n1n!+…,e=2.71828.即e-1=pn+(-1)n+11(n+1)!+(-1)n+21(n+2)!+…余项为Rn=(-1)n+11(n+1)!+(-1)n+21(n+2)!+…=(-1)n+11(n+1)!(1-1n+2)+…那么该余项取值范围如何呢?由泰勒中值定理可知,在含有x0的某个开区间(a,b)内,函数f(x)可表示为(x-x0)的一个n次多项式pn(x)与一个余项Rn(x)之和,此和是关于(x-x0)的幂级数即泰勒级数,其中pn(x)=f(x0)+f ′(x0)(x-x0)+f ″(x0)2!(x-x0)2+…+f (n)(x0)n!(x-x0)n,余项为Rn(x)=f (n+1)(ξ)(n+1)!(x-x0)n+1.ξ在x与x0之间.若将函数f(x)=ex展开成x的幂级数即麦克劳林级数,由于x0=0,f (n+1)(x)=ex,则ex=1+x+x22!+x33!+…+xnn!+….对于任何有限的x、ξ(ξ在0与x之间),余项为Rn (x)=eξ(n+1)!xn+1.而函数f(x)=ex展开成x的幂级数中含有xn+1的项为f (n+1)(ξ)(n+1)!xn+1=ex(n+1)!xn+1,可见二者形式相似.由于x=-1,因此e-1的幂级数的余项为Rn(-1)=(-1)n+1eξ(n+1)!,且ξ∈(-1,0).因此Dn=n!e-1-(-1)n+1eξn+1.设λ=|n!Rn|=|(-1)n+1eξn+1|=eξn+1,由于eξ∈(1e,1),当n=1时,λ。
全错位排列公式

全错位排列公式什么是错位全排列问题?其实很简单,在生活中可能都会遇到:“装错信封问题”是由当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748)的儿子丹尼尔·伯努利(Danid Bernoulli,1700-1782)提出来的,大意如下:一个人写了 n 封不同的信及相应的n 个不同的信封,他把这 n 封信都装错了信封,问都装错信封的装法有多少种?为了解决这个看似简单的问题,我们从数学的角度出发,尝试几个常用的方法。
记装错 n 封信的种类为 D_n ,并且有 n 封信a_1,a_2,...,a_n(1)枚举法(Enumeration method)计算种数当 n 的值较小时,可以利用枚举法:n=1 时,不可能装错信,则 D_1=0 ;n=2 时,显然装错信时,只可能为两者调换位置,则D_2=1 ;n=3 时,有 (a_2,a_3,a_1) , (a_3,a_1,a_2) 两种装法,则D_3=2 ;n=4 时,装法如下:(a_2,a_1,a_4,a_3) , (a_2,a_3,a_4,a_1) ,(a_2,a_4,a_1,a_3) ,(a_3,a_1,a_4,a_2) ,(a_3,a_4,a_1,a_2) , (a_3,a_4,a_2,a_1) ,(a_4,a_1,a_2,a_3) , (a_4,a_3,a_2,a_1) ,(a_4,a_3,a_1,a_2) ,则 D_4=9 。
当 n 的值越来越大时,枚举会变得异常复杂。
可以考虑用排列数(Permutation)和组合数(Combination),来得到错位全排列的计算公式。
(2)排列组合计算种数显然, n 封信的组合方式共有 A_n^n=n! 种装法,接下来我们要做的就是扣掉其中重复的种类,保证计数“不重不漏”。
假设第一封信装对,即为剩下的 n-1 个元素的一个全排列(All permutation),则有 A_{n-1}^{n-1}=(n-1)! 种装法;并且当第二封信装对时,也有 A_{n-1}^{n-1}=(n-1)! ,以此类推,每一封信装对时,都有 (n-1)! 种装法。
高中数学排列组合:全错位排列问题详解

利用此递推关系可以分别算出 T4=9,T5=44,所以题三的答案为 44+5×9+10×2=109.
3.关于全错位排列数的一个通项公式:Tn= n![ 1 1 (1) n 1 ] (n≥2).
2! 3!
n!
(1).探索
规定 An0 =1(n∈N*),试计算以下各式的值: (1) A42 A41 A40 ; (2) A53 A52 A51 A50 ; (3) A64 A63 A62 A61 A60 .
2! 3!
k! 2! 3!
(k 1)!
= k!·[ k 1 k 1 (1)k1 k 1 +k· (1)k 1 ]
2! 3!
( k 1)!
k!
=k!·[ k 1 k 1 (1)k1 k 1 +(k+1)· (1)k 1 (1)k 1 ]
2! 3!
( k 1)!
k!
k!
= k!·[ k 1 k 1 (1)k1 k 1 +(k+1)· (1)k 1 (1)k k 1 ]
全错位排列问题
每个元素都不在自己编号的位置上的排列问题,我们把这种限制条件的排列问题叫做全错位 排列问题.
1.错位排列问题
例 1. 4 名同学各写一张贺卡,先集中起来,然后每人从中拿出一张别人写的贺卡,则
四张贺卡的不同分配方式共有
Hale Waihona Puke 种.例 2. 将编号为 1,2,3,4 的四个小球分别放入编号为 1,2,3,4 的四个盒子中,
(k 1)!
k!
(k 1)!
∴n=k+1 时(*)式也成立.
由以上过程可知 n 个元素全错位排列的排列数为:
Tn=
aj 不排 i 位
完全错位排列公式

完全错位排列公式
完全错位排列是一种有趣的排列方式,它可以让字母、数字等元素
按照一定的规则排列组合,形成新的组合方式。
完全错位排列的公式
如下:
n! * (1/2! - 1/3! + 1/4! - … + (-1)^n-1 / n!)
其中,n为元素的总数。
完全错位排列的应用很广泛,可以用于密码学、数学、计算机科学等
领域。
在生活中,我们也可以利用完全错位排列来创建有趣的游戏和
谜题。
比如,我们可以创建一个谜题,让玩家猜测某个单词的完全错
位排列。
除了完全错位排列,还有很多其他的排列方式,比如全排列、部分排列、循环排列等等。
每种排列方式都有自己的特点和应用场景,我们
可以根据具体需求选择合适的排列方式。
在中文写作中,我们也可以利用排列方式来增强文章的表现力和趣味性。
比如,我们可以使用倒叙、押韵、交叉等等手法,将文字组合成
不同的形式,创造出独特的效果。
这些手法需要灵活运用,并结合具
体语境来使用,才能发挥最佳的效果。
总之,完全错位排列是一种有趣的排列方式,不仅可以用于理论研究,
也可以用于实际应用。
在中文写作中,我们也可以借鉴其思想,创造出更有趣和富有表现力的文章。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
错位全排公式
错位全排公式
什么是错位全排公式?
错位全排公式是一种数学组合方法,也称为”错位排列”,用于计算某个集合的错位排列数量。
通常在排列问题中,我们考虑的是将n 个元素进行全排列的数量,而在错位全排中,我们要求每个元素都不在原来的位置上。
公式表达
错位全排公式可以通过以下公式来表示:
D_n = (n-1) * (D_{n-1} + D_{n-2})
其中,D_n 表示n个元素的错位排列数量,D_{n-1} 表示n-1个元素的错位排列数量,D_{n-2} 表示n-2个元素的错位排列数量。
如何计算错位全排?
要计算错位全排,我们可以按照以下步骤进行操作:
1.首先,我们需要确定有多少个元素需要进行错位排列。
2.接着,我们需要计算出少于这个数量的元素的错位排列数量,即
D_{n-1} 和 D_{n-2}。
3.最后,我们可以根据上述公式计算出错位全排的数量。
一个例子
假设我们要计算3个元素的错位全排,即 n=3。
首先,我们需要计算 n-1 = 2 个元素的错位排列数量。
根据公式,我们可以猜测 D_2 = 1。
接着,我们需要计算 n-2 = 1 个元素的错位排列数量。
同样地,根据公式,我们可以猜测 D_1 = 0。
现在,我们可以使用公式 D_n = (n-1) * (D_{n-1} + D_{n-2}) 来计算三个元素的错位排列数量:
D_3 = (3-1) * (D_2 + D_1) = (3-1) * (1 + 0) = 2 * 1 = 2
因此,当元素数量为3时,错位全排的数量为2。
总结
错位全排公式是一种用于计算某个集合的错位排列数量的数学方法。
通过公式 D_n = (n-1) * (D_{n-1} + D_{n-2}),我们可以轻松
计算出任意数量元素的错位全排。
使用错位全排可以解决一些排列问题,特别是当我们需要确保每
个元素都不在原来的位置上时。
此外,错位全排也可以用于一些密码
学的应用中。
希望本文能够帮助读者理解错位全排公式的原理和应用。
通过灵
活运用这一方法,我们可以更好地解决各种排列问题。
错位全排的应用场景
错位全排公式在实际应用中有着广泛的应用场景,以下是其中一些常见的应用场景:
1. 密码学
在密码学中,错位全排可以用于生成一种密钥密码算法中的初始置换矩阵。
通过错位全排,可以确保密钥的每个元素都不在原来的位置上,从而增强密码的随机性和安全性。
2. 投票系统
在某些投票系统中,为了防止恶意投票和造假,可以使用错位全排来生成每个选民的投票顺序。
通过错位全排,可以确保每个选民的投票顺序都是随机的,从而增加投票结果的公正性和可靠性。
3. 票据编号
在一些机构和组织中,为了防止票据编号的重复和欺诈行为,可以使用错位全排来生成票据的编号。
通过错位全排,可以确保每个票据的编号都唯一且随机,从而提高票据管理的准确性和可追溯性。
4. 排座位
在某些活动或场合中,为了增加互动和交流的机会,可以使用错位全排来安排参与者的座位。
通过错位全排,可以确保每个参与者的座位都与原先的座位不同,从而创造出更多的交流和认识新朋友的机会。
总结
错位全排公式是一种重要的数学方法,通过使用该公式,我们可以计算出错位全排的数量,并在实际应用中解决各种问题。
无论是在密码学中增强安全性,还是在投票系统中确保公平性,错位全排都具有重要的应用。
此外,错位全排还适用于票据编号和座位安排等领域,为相关工作提供效率和准确性。
希望本文的介绍能够让读者更好地理解错位全排的原理和应用场景,以及如何灵活运用错位全排来解决实际问题。