听说“9”和“44”与错位排列更配哦-全错位排列问题
全错位排列递推公式的简易推导(齐麟-晋级)

全错位排列递推公式的简易证明华图教育 齐麟错位排列作为排列组合中的一类典型题目,自身难度较高,考生往往只是知其然而不知其所以然,即只了解全错位排列的递推公式,而不能理解其含义以及灵活的运用。
本文结合图示的方法,对全错位排列公式进行简易的证明。
首先,我们先来认识错位排列:1.部分错位排列:【例】5个人站成一排,其中甲不站第一位,乙不站第二位,共有多少种不同的站法。
用排除法:先考虑5个人的全排列,有55A 种不同的排法,然后除去甲排第一(有44A 种)与乙排第二(也有44A 种),但两种情况又有重复部分,因此多减了一部分,必须加上多减部分,这样得到共有:55A -244A +33A =78种。
2.全错位排列:【例】5个人站成一排,其中A 不站第一位,B 不站第二位,C 不站第三位,D 不站第四位,E 不站第五位,共有多少种不同的站法。
【分析】仿照以上解法,我们有51423324150555453525150D A C A C A C A C A C A 44=-⨯+⨯-⨯+⨯-⨯=故5人的全错位排列方式共有44种。
因此我们可以由容斥原理得到n 个元素的全错位排列公式:n D =n!(1-1/1!+1/2!-1/3!+...+(-1)^n*1/n!)错位排列的递推公式简单计算后我们有:1D 0=;2D 1=;3D 2=。
计算四元素全错位排列时我们可以这样考虑:假定元素为A 、B 、C 、D ;对应的位置为a 、b 、c 、d 。
对于元素A ,我们可将其放在b 、c 、d 三个位置,容易看出,这三个位置对于元素A 来说是等价的;假定A 现在放在了b 位置。
AB C D b a c d此时,元素B 有两种选择:①放在a 位置;②不放在a 位置;当元素B 放在a 位置时,我们会发现,之后的情形与2D 相同;而当B 不放在a 位置时,情况与3D 相同(因为B 不放在a 位置,我们可以认为a 位置就是b 位置)。
全错位排列——精选推荐

全错位排列以前接触过这样的题⽬,但是现在稍微系统点⾸先看⼀下百度百科对全错位排列的解释:基本简介全错位排列:即被著名数学家(Leonhard Euler,1707-1783)称为组合数论的⼀个妙题的“装错信封问题”。
“装错信封问题”是由当时最有名的数学家(Johann Bernoulli,1667-1748)的⼉⼦(DanidBernoulli,1700-1782)提出来的,⼤意如下:⼀个⼈写了n封不同的信及相应的n个不同的信封,他把这n封信都装错了信封,问都装错信封的装法有多少种?公式证明n个相异的元素排成⼀排a1,a2,...,an。
则ai(i=1,2,...,n)不在第i位的排列数为:公式证明:设1,2,...,n的全排列t1,t2,...,tn的集合为I,⽽使ti=i的全排列的集合记为Ai(1<=i<=n),则Dn=|I|-|A1∪A2∪...∪An|.所以Dn=n!-|A1∪A2∪...∪An|.注意到|Ai|=(n-1)!,|Ai∩Aj|=(n-2)!,...,|A1∩A2∩...∩An|=0!=1。
由:Dn=n!-|A1∪A2∪...∪An|=n!-C(n,1)(n-1)!+C(n,2)(n-2)!-C(n,3)(n-3)!+...+(-1)^nC(n,n)*0!=n!(1-1/1!+1/2!-1/3!+...+(-1)^n*1/n!)(可以举例试试,很好懂)应⽤:(1)简单排列1个元素没有全错位排列,2个元素的全错位排列有1种,3个元素的全错位排列有2种,4个元素的全错位排列有9种,5个元素的全错位排列有44种。
递推公式数学家欧拉按⼀般情况给出了⼀个递推公式:⽤A、B、C……表⽰写着n位友⼈名字的信封,a、b、c……表⽰n份相应的写好的信纸。
把错装的总数为记作f(n)。
假设把a错装进B⾥了,包含着这个错误的⼀切错装法分两类:(1)b装⼊A⾥,这时每种错装的其余部分都与A、B、a、b⽆关,应有f(n-2)种错装法。
错位重排题目

选择题设有n个元素进行错位重排,若其中没有一个元素出现在其原来位置上,则这种排列称为全错位排列(也称错排)。
对于n=4,全错位排列的个数是?A. 6B. 9C. 11D. 15(正确答案)在错位重排中,若5个元素进行排列,要求恰有2个元素处于其原位置,则这样的排列共有多少种?A. 20B. 40C. 60D. 90(正确答案)有n个不同的元素进行排列,若要求其中任意元素都不在其原来的位置上,对于n=5,满足条件的排列数为?A. 44B. 120C. 265D. 376(正确答案)在错位重排问题中,若6个元素进行排列,要求至少有1个元素不在其原位置上的排列数占总排列数的比例为?A. 5/6B. 31/32(正确答案)C. 1/2D. 2/3设有n个不同的元素,若对这些元素进行错位重排,使得恰有3个元素处于其原位置,当n=6时,这样的排列有多少个?A. 120B. 240C. 360(正确答案)D. 480在错位重排中,若对7个元素进行排列,要求至少有多少个元素不在其原来的位置上,才能使得这样的排列数占总排列数的比例大于0.5?A. 1B. 2C. 3D. 4(正确答案)有8个不同的元素,若要求其中任意3个元素都不在其原来的位置上,则满足条件的错位重排数有多少个?A. 14833B. 20160C. 32256D. 40320(正确答案)设n个元素进行错位重排,若要求其中至少有k个元素不在其原位置上,已知n=5,k=4,则满足条件的排列有多少个?A. 96B. 114C. 120D. 150(正确答案)在错位重排问题中,若对n个元素进行排列,要求恰有n-2个元素处于其原位置,当n=5时,这样的排列共有几种?A. 10B. 20(正确答案)C. 30D. 40。
全装错信问题即全错位排列问题及拓展

全装错信问题即全错位排列问题及拓展——龙城老欧全装错信问题又称全错位排列问题,最早由瑞士数学家伯努利提出,最后由伯努利与他的学生欧拉讨论解决,这个问题就是——我们将编号是1、2、…、n的n封信,装入编号为1、2、…、n的n个信封,要求每封信都和信封的编号不同,即1不能装进1,2不能装进2,3不能装进3……问有多少种装法?看到这个问题时,我们的第一反应就是退到简单处入手研究,如果只有一封信,2封信,3封信,4封信,……,然后从中再思考,之间是否有共性,是否有关联,共性用归纳,关联构成递推,或者其他。
〖解法〗容易知道:a[1]=0,a[2]=1,a[3]=2,a[4]=6;依我们设a[i]为i封信的全错位排列数据递归推理那么有a[i]=(a[i-1]+a[i-2])×(i-1), (i>=3)。
为什么?为什么?为什么?大多数人看不明白。
不急,尽量先自己思考,不行的话,听我来解释:思考1:对于插入第i个元素,只可能有两种情况:第一种情况:插入第i个元素时,前i-1个已经错位排好,则选择其中任意一个与第i个互换一定满足要求,选择方法共i-1种,前i-1位错排f[i-1]种,记f[i-1]*(i-1),如下图:第二种情况:插入第i个元素时,前i-1个中恰有一个元素恰好在自己的位置上,即恰好只有一个元素不满足错位排列,其他i-2个错位排好,则将i与j交换,j在i-2位中的插入共i-1种,前i-2位错排a[i-2]种,记f[i-2]*(i-1),如下图:以上两种情况求和可得: a[i]=(a[i-1]+a[i-2])×(i-1) (i>=3)我们还可以这样思考:思考2:有(i-1)个人已经都坐在在自己的板凳上了,现在第i个人张三带着自己的板凳来了,下面我们来对这i个人进行全错位排排坐,方法1:前面(i-1)个人中的某一个带着板凳出来与第i个人张三互换板凳坐(有(i-1)种方法),其它(i-2)个人进行全错位排列(有a[i-2]种方法),这样就整体上都是全错位;方法2:第i 个人张三走进去与将(i-1)个人中的某一个人换出来(i-1种方法),换出来的人(不妨称是李四)坐张三的板凳,换出来的李四的板凳看作张三的新板凳,这样又面临了(i-1)个元素进行全错位排列问题(a[i-2]种方法),这样就整体上也都是全错位了。
错位重排专题

错位重排专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(错位重排专题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为错位重排专题的全部内容。
错位重排问题专项错位重排1—6个元素的错位重排数分别为0,1,2,9,44,265递推公式:Dm=(m—1)*[D (m—1)+D(m—2)];错位重排模型:把编号为1—m的小球分别放入编号为1-n的箱子错位重排(即1号球不在1号箱子、2号球不在2号箱子…m号球不在m号箱子),且每个箱子一个球,有多少种不同情况?楚香凝证明:假设总情况数为D(m)种,如果让1号球先选,有(m-1)种选择;假设1号球选的2号箱子,接下来让2号球选箱子,进行分类讨论:①如果2号球选的1号箱子,相当于剩下的(m-2)个球进行错位重排,有D(m—2)种;②如果2号球选的不是1号箱子,则题目可转化为把编号为2→m的小球分别放入编号为1、3→m的箱子错位重排(即2号球不在1号箱子、3号球不在3号箱子…m号球不在m号箱子),相当于m-1个球错位重排,有D(m—1)种;所以可得D(m)=(m-1)*[D(m-1)+D(m—2)],得证;例1:相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求所有车都不得停在原来的车位中,则一共有多少种不同的停放方式?【北京2014】A.9B.12C.14D.16楚香凝解析:解法一:四种元素错位重排有9种,选A解法二:ABCD四辆车分别停放在一二三四号位置,A先选有三种情况,假设A选了二号,那么B再选、有三种选择,剩下C和D都只有一种选择,共3*3=9种,选A例2:相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求有三辆车不能停在原来的车位中,则一共有多少种不同的停放方式?A.2B.6C.8 D。
关于解决全错位排列问题若千方法的研究

则有 =一 . . , 即, + 一 . =0 .
所以 D 一 , z 一 . =( 一 1 )
进 而 可 以 推 出
声波降解 亲和层 析克隆诱变分 子纯化 电泳磁珠
分 离等 检 测 所 需要 的运 算 结 果 。
我们令 S =D 一, z
全 错位 排列问题,也称为 “ 伯努利 一 欧拉
错 装信 封问题 ”等,问题的来源可以简单地 描 述为 :一个 人 写 了 1 1 封信 和 n个 信封 ,而 他 把这 1 3 封 信 全都 装错 了信封 ,那 么这 种错 误 的装法 一共有多少种。将此问题用数学语言描
我 们用 D 表示集 合 { 1 ,2 ,…n l的全 错位排 列个数 ,即错排 数。错 排问题 是组 合数学中非 常重要 的问题 ,也是应用十分广泛的 问题 。 解 决错 排 问题 的方法 有很 多, 比如利 用 递推关系、利用容斥原理等等。本文给出一些 组合数学中常用的方法以及其他学科领域的方 法来解 决全错位 排列 问题 。
计算机技术应用 ・ t h e A p p l i c a t i o n o f C o mp u t e r T e c h n o l o g y
关于解决全错位排列问题 若千方法 的研究
文/ 许 斌 龙
是 l就 在 第 k位 , 一 种 是 1 不 在 第 k位 。 当 l
a l , a 2 ,… , a n满足条件 a . ≠i ( i =l , 2 , …, n ) ,
则称 其 为 f 1 ,2 ,… n , 的 更 列 ,即 全 错 位 排 列 。
确性,这 里就不在一一验证 。
全错位排列——精选推荐

全错位排列
【例1】有编号为1到10的10个球,放到编号为1到10的10个盒⼦⾥,球不能放到相当编号的盒⼦⾥,⼀共有多少种不同的放法?
【例2】1-5共5个数字组成⽆重复数字的五位数,要求数字不能在对应的位数上(⽐如2不能放在第2位),⼀共可以组成多少个不同的五位数?
【例3】10个⼈每⼈写⼀封信寄到这10个⼈中的任意⼀⼈,问每个⼈都没有收到⾃⼰的信的情况⼀共有多少种?
【解析】以上是典型的“全错位”排列问题。
所谓全排列,就是每个元素都不在⾃⼰对应编号的位置上。
假设对于n个元素的全错位排列共有f(n)种,现在有n+1个元素,对于第n+1个元素,假设它放在第k(1<=k<=n)位,对于第k位上的元素k,有两种情况:
1、k排在第n+1位,那么对于剩下的除k和n+1两个元素,共有n-1个元素,对应的位置也是n-1,所以共有f(n-1)种排列⽅式。
2、k不排在第n+1位,那么这个时候完全可以把第n+1个位置看成第k个位置(因为元素k不放在此位置,所以相当于这个位置是第k位),这时除了已经放好的第n+1个元素,剩下n个元素,对应的位置也是n,共有f(n)种排列⽅式。
上述中,对于第k个元素,共有n种选择⽅式,所以
f(n+1)=n*f(n-1)+n*f(n),
也就是f(n)=(n-1)*[f(n-1)+f(n-2)]
显然,f(1)=0,f(2)=1,由此可以依此计算出f(n)。
全错位排列

全错位排列先看下面例子:例1 5个人站成一排,其中甲不站第一位,乙不站第二位,共有多少种不同的站法。
这个问题在高中很多参考书上都有,有几种解法,其中一解法是用排除法:先考虑5个有的全排列,有A55种不同的排法,然后除去甲排第一(有A44种)与乙排第二(也有A44种),但两种又有重复部分,因此多减,必须加上多减部分,这样得到共有:A55-2A44+A33=78种。
现在考虑:例2 5个人站成一排,其中甲不站第一位,乙不站第二位,丙不站第三位,共有多少种不同的站法。
仿上分析可得:A55-3A44+3A33-A22=64种这与全错位排列很相似。
全错位排列——即n 个元素全部都不在相应位置的排列。
看下面的问题例3 5个人站成一排,其中A 不站第一位,B 不站第二位,C 不站第三位,D 不站第四位,E 不站第五位,共有多少种不同的站法。
解析:上面例1,例2实际上可以看成n 个不同元素中有m (m≤n )不排在相应位置。
公式一:n 个不同元素排成一排,有m 个元素(m≤n )不排在相应位置的排列种数共有:从而这个问题可能用上面的公式得出:()A C A C A C A m n m n m m m n n m n n m nn ------∙∙-++∙+∙-1 (222111)这个公式在n =m 时亦成立A55-C(5,1)?A44+C(5,2)?A33-C(5,3)?A22+C(5,4)?A11-C(5,5)?A00=44种(注意A00=0!=1)再看1993年高考题:同室四人各写一张贺年卡,先集中起来。
然后每人从中拿一张别人送出的贺年卡。
则四张贺年卡不同的分配方式有(A)6种 (B)9种 (C)11种 (D)23种解析:由上面公式得:A44-C(4,1)?A33+C(4,2)?A22-C(4,3)?A11+C(4,4)?A00=9种,∴选择B 答案因此可得到全错位排列的公式:n 个不同元素排成一排,第一个元素不在第一位,第二个元素不在第二位,……,第n 个元素不在第n 位的排列数为:()A C A C A C A n n n n n n n n n n n n n nn ------∙∙-++∙+∙-1 (222111)这实际上是公式一的特殊情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
听说“9”和“44”与错位排列更配哦-全错位排列问题亲,如果我说记住两个数字就能搞定数量关系中的一类难题,你信吗?
先不用忙着回答!
或许你将信将疑,但等你看完此文,你一定能找到足够的理由让自己相信。
一、问题导入
【引例1】唐僧、孙悟空、猪八戒、沙和尚4人在某公司不同岗位任职,现在需要调换岗位,要求每个人都不能在自己原来的岗位,则共有种不同的安排方法。
【引例2】有4名同学各写了一张贺卡,先全部收集起来,然后每人从中拿出一张贺卡,要求每个人都不拿自己的贺卡,则四张贺卡的不同分配方式共有种。
【引例3】将编号为1,2,3,4的四个小球分别放入编号为1,2,3,4的四个盒子中,要求每个盒子放一个小球,且小球的编号与盒子的编号不能相同(即1不放1,2不放2,3不放3,4不放4,也就是说4个全部放错),则共有种不同的放法。
不难发现,以上三个引例都是同一类问题,答案是多少呢?下面用枚举法给大家答案:假设原来顺序:A、B、C、D
枚举的时候注意按照一定规律进行,如果看成1、2、3、4号位置,那么第一步A可以放2、3、4号位置中的任意一个,第二步把B的位置确定,第三步确定C和D的位置:第1种错位排列:B、A、D、C(A在2位,B在1位,C、D位置就唯一确定了);
第2种错位排列:D、A、B、C(A在2位,B在3位,C、D位置就唯一确定了);
第3种错位排列:C、A、D、B(A在2位,B在4位,C、D位置就唯一确定了);
第4种错位排列:B、D、A、C(A在3位,B在1位,C、D位置就唯一确定了);
第5种错位排列:C、D、A、B(A在3位,B在4位,C、D位置可以是1、2);
第6种错位排列:D、C、A、B(A在3位,B在4位,C、D位置也可以是2、1);
第7种错位排列:B、C、D、A(A在4位,B在1位,C、D位置就唯一确定了);
第8种错位排列:C、D、B、A(A在4位,B在3位,C、D位置可以是1、2);
第9种错位排列:D、C、B、A(A在4位,B在3位,C、D位置也可以是2、1)。
可见,4个元素的错位排列一共有9种。
即以上三道引例的答案都是9种。
那么,问题来了:图图老湿,我不想一个一个的枚举,眼睛都看花了,肿么办?而且如果下次不是4个元素了呢?答案又肿么办?
请耐心看下文。
提前声明一下:接下来这一段需要一定的数学知识,如果觉得自己数学还不错的话可以详细逐字阅读;如果说NO,也没关系嗒,只需你记住最后结论即可哦!
二、理论推导
其实,上面引例涉及的三个问题的本质都是每个元素都不在自己编号的位置上的排列问题,我们把带这种限制条件的排列问题叫做全错位排列问题。
它是一个非常古老的数学问题,贝努利、欧拉等数学家都曾经研究过。
这类问题虽然有难度,但我们解题是有快速破解的“窍门”的。
下面让图图老湿为大家详细解读:我们将n个元素的全错位排列数记做Dn。
由于1个元素没有错位排列,因此D1=0。
2个元素时可以相互交换一下位置,即有1种错位排列,则D2=1。
当n≥3时,在n个不同元素中任取一个元素ai不排在与其编号相对应的i位,必排在剩下n-1个位置之一,所以ai有n-1种排法。
即第一步排ai,有n-1种。
第二步:排ai所占位置对应的元素。
对ai每一种排法,如ai排在j位,对应j位的元素aj的排位共有两类情况:
第一类情况:aj恰好排在i位上,此时,ai排在j位,aj排在i位,元素ai、aj排位已定,还剩n-2个元素,它们的排位问题就转化为n-2个元素全错位排列数,应有Dn-2种;
第二类情况:aj不排在i位上,此时,ai仍排在j位,aj不排在i位,相当于aj也有一个不能排的位置,也就是说,除了ai外,其他n-1个元素,每个元素均有一个不能排的位置,那么问题就可转化为n-1个元素的全错位排列问题,排列数为Dn-1。
即第二步排aj有(Dn-1+Dn-2)种。
根据乘法原理,两步相乘可得:Dn=(n-1)(Dn-1+Dn-2)(n≥3)。
也就是说我们得到了全错位排列数的一个递推公式,对于这个公式,只有我们知道第1项D1和第2项D2的值,就可以推出后面所以项的值。
例如:D1=0,D2=1,D3=2(D2+D1)=2(1+0)=2种,D4=3(D3+D2)=3(2+1)=9种,
D5=4(D4+D3)=4(9+2)=44种,D6=5(D5+D4)=5(44+9)=265种……
记住结论:
D1=0,D2=1,D3=2,D4=9,D5=44,D6=265……Dn=(n-1)(Dn-1+Dn-2)(n≥3)。
记不住,肿么办?请看图图老湿的。
三、图图速记
1个元素时没有错位排列,D1=0;
2个元素错位排列有1种,D2=1,速记:D2=2D1+1;
3个元素错位排列有2种,D3=2,速记:D3=3D2-1;
4个元素错位排列有9种,D4=9,速记:D4=4D3+1;
5个元素错位排列有44种,D5=44,速记:D5=5D4-1;
6个元素错位排列有265种,D6=265,速记:D6=6D5+1;
……
n个元素错位排列有Dn种,速记:Dn=nDn-1+。
如果还是记不住,肿么办?
告诉大家一个特好消息,公务员考试中考得最多的是4个元素和5个元素的情况,所以大家只要记住两个重要数字“9”和“44”即可大功告成!是不是突然感觉很爽啊?
下面跟着图图老湿通过几道考试真题来实战秒杀一把:
四、考场秒杀
【例1】(2014北京)相邻的4个车位中停放了4辆不同的车,现将所有车开出后再重新停入这4个车位,要求所有车都不得停在原来的车位中,则一共有多少种不同的停放方式?( )
A. 9
B. 12
C. 14
D. 16
【答案】A
【解析】全错位排列问题。
记住数字:D4=9,D5=44,……,Dn=nDn-1+,所以,4辆车一共有D4=9种停放方式。
因此,本题答案选择A选项。
【例2】(2011浙江)四位厨师聚餐时各做了一道拿手菜。
现在要求每个人去品尝一道菜,但不能尝自己做的那道菜。
问共有几种不同的尝法?( )
A. 6种
B. 9种
C. 12种
D. 15种
【答案】B
【解析】全错位排列问题。
记住数字:D4=9,D5=44,……,Dn=nDn-1+。
可知,4个元素对应的全错位排列数为D4=9。
因此,本题答案选择B选项。
【例3】(2015四川泸州事业单位)a、b、c、d四台电脑摆放一排,从左往右数,如果a 不摆在第一个位置上,b不摆在第二个位置上,c不摆在第三个位置上,d不摆在第四个位置上,那么不同的摆法共有( )种。
A. 9
B. 10
C. 11
D. 12
【答案】A
【解析】全错位排列问题。
记住数字:D4=9,D5=44,……,Dn=nDn-1+。
可知,4个元素对应的全错位排列数为D4=9。
因此,本题答案选择A选项。
【例4】(2015山东)某单位从下属的5个科室各抽调了一名工作人员,交流到其他科室。
若每个科室只能接收一个人的话,有多少种不同的人员安排方式?( )
A. 120
B. 78
C. 44
D. 24
【答案】C
【解析】全错位排列问题。
记住数字:D4=9,D5=44,……,Dn=nDn-1+。
可知,5个元素对应的全错位排列数为D5=44。
因此,本题答案选择C选项。
综上可见,对于全错位排列问题,数字“9”和“44”与之更配哦!大家务必记住!。