粉末冶金的烧结技术
一、烧结基本原理解析

一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。
烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。
烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。
在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。
人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。
烧结的工艺技术

烧结的工艺技术烧结是一种重要的粉末冶金加工工艺,其主要用于生产金属粉末冶金制品。
烧结的工艺技术通常可以分为四个步骤:混合、压制、烧结和后处理。
首先是混合步骤。
混合是将不同金属粉末按照一定比例混合均匀。
混合的目的是将不同金属粉末充分混合,形成均匀的混合粉末。
接下来是压制步骤。
压制是将混合粉末放入模具中,并通过机械或液体压力对粉末进行分子压缩,使其形成一定形状。
压制的目的是提高粉末密度,增加粉末颗粒间的力学联系。
然后是烧结步骤。
烧结是通过高温和压力作用下,将粉末颗粒相互融合,形成致密的固体材料。
烧结的目的是使金属粉末颗粒间的结合力增强,从而提高材料的力学性能。
最后是后处理步骤。
后处理是将烧结得到的材料进行表面处理、热处理等工艺,以改善材料的性能。
后处理的目的是消除材料内部的缺陷,增强材料的强度和耐久性。
在烧结工艺中,一些关键参数对最终产品的品质和性能有着重要影响。
例如,烧结温度和时间决定了烧结过程中金属粉末颗粒的表面扩散速率和结合力形成,过高的温度和时间可能导致结合界面的烧结不均匀和晶粒长大,从而降低材料的力学性能。
压制力度的大小直接影响到烧结后的密度,过低的压制力度可能导致烧结后的材料孔隙率较高,而过高的压制力度则可能导致烧结成型困难。
此外,烧结工艺中的气氛和保护措施,以及烧结过程中的冷却速率等因素也会对烧结工艺和产品质量产生影响。
总的来说,烧结作为一种重要的粉末冶金加工工艺,具有许多优点,如可以制备高强度、高硬度和高耐磨性的制品,且原材料利用率高、产品尺寸精度高等。
但是,烧结工艺也存在一些挑战,如烧结时控制工艺参数较为复杂,产品质量易受原料和工艺影响,烧结成本相对较高等。
因此,烧结工艺技术的研究和改进仍然具有重要意义,可进一步提高产品质量和开发新材料。
烧结生产工艺流程

烧结生产工艺流程烧结是一种重要的金属制造工艺,通过粉末冶金的方式将金属粉末加热到合适的温度,使其粒子间发生扩散和结合,从而形成固态的金属件。
下面将介绍烧结生产工艺流程。
1. 准备原材料:选择合适的金属粉末作为原材料,根据产品要求控制粉末的成分和粒度。
2. 混合:将不同成分的金属粉末按一定比例混合均匀,可以加入一些助剂如润滑剂、增塑剂等,以提高粉末的流动性和可塑性。
3. 成型:将混合好的金属粉末放入模具中,进行成型。
常见的烧结成型方法有压制成型和注射成型两种。
4. 压制成型:将金属粉末放入专用的压制机中,通过给予一定的压力使其成型。
压制成型包括冷压和等静压两种方式,通常需要经过多道工序进行。
5. 注射成型:将金属粉末和一定比例的粘结剂混合后,通过注射成型机将其注入模具中,利用粘结剂的粘合力将粉末粒子黏结在一起。
6. 烧结:将成型好的金属零件置于烧结炉中进行加热处理。
烧结温度通常在金属的熔点以下,但足够高以使粉末颗粒表面形成液相。
烧结过程中,金属粉末的颗粒间发生扩散和结合,形成密实的结构。
7. 冷却:烧结结束后,将待烧结的金属件从烧结炉中取出,进行自然冷却。
冷却过程中需要控制冷却速度,以避免由于温度变化过快引起的应力和变形。
8. 后处理:经过烧结和冷却后的金属件通常需要进行后处理,以提高其性能。
后处理过程包括热处理、表面处理、机械加工等,以获得所需的尺寸、性能和外观。
9. 检验:对烧结成品进行检验,包括尺寸、密度、力学性能等方面的检测,确保产品符合要求。
10. 包装和出货:对合格的烧结件进行包装,并按照订单要求出货。
烧结生产工艺流程是一个相对复杂的过程,需要控制好各个环节的参数和条件,以确保最终产品的质量。
随着科技的进步和生产工艺的发展,烧结技术在各个行业中得到广泛应用,成为一种重要的制造方法。
粉末冶金烧结工艺

粉末冶金中的烧结烧结是粉末冶金过程中最重要的工序。
在烧结过程中,由于温度的变化粉末坯块颗粒之间发生粘结等物理化学变化,从而增加了烧结制品的电阻率、强度、硬度和密度,减小了孔隙度并使晶粒结构致密化。
一.定义将粉末或粉末压坯经过加热而得到强化和致密化制品的方法和技术。
二.烧结分类根据致密化机理或烧结工艺条件的不同,烧结可分为液相烧结、固相烧结、活化烧结、反应烧结、瞬时液相烧结、超固相烧结、松装烧结、电阻烧结、电火花烧结、微波烧结和熔浸等。
1.固相烧结:按其组元的多少可分为单元系固相烧结和多元系固相烧结两类。
单元系固相烧结纯金属、固定成分的化合物或均匀固溶体的松装粉末或压坯在熔点以下温度(一般为绝对熔点温度的2/3一4/5)进行的粉末烧结。
单元系固相烧结过程大致分3个阶段:(1)低温阶段(T烧毛0.25T熔)。
主要发生金属的回复、吸附气体和水分的挥发、压坯内成形剂的分解和排除。
由于回复时消除了压制时的弹性应力,粉末颗粒间接触面积反而相对减少,加上挥发物的排除,烧结体收缩不明显,甚至略有膨胀。
此阶段内烧结体密度基本保持不变。
(2)中温阶段(T烧(0.4~。
.55T动。
开始发生再结晶、粉末颗粒表面氧化物被完全还原,颗粒接触界面形成烧结颈,烧结体强度明显提高,而密度增加较慢。
(3)高温阶段(T烧二0.5一。
.85T熔)。
这是单元系固相烧结的主要阶段。
扩散和流动充分进行并接近完成,烧结体内的大量闭孔逐渐缩小,孔隙数量减少,烧结体密度明显增加。
保温一定时间后,所有性能均达到稳定不变。
(2)多元固相烧结:组成多元系固相烧结两种组元以上的粉末体系在其中低熔组元的熔点以下温度进行的粉末烧结。
多元系固相烧结除发生单元系固相烧结所发生的现象外,还由于组元之间的相互影响和作用,发生一些其他现象。
对于组元不相互固溶的多元系,其烧结行为主要由混合粉末中含量较多的粉末所决定。
如铜一石墨混合粉末的烧结主要是铜粉之间的烧结,石墨粉阻碍铜粉间的接触而影响收缩,对烧结体的强度、韧性等都有一定影响。
粉末冶金新技术-烧结

用SPS制取块状纳米晶Fe90Zr7B3软磁的过程是: 先将由非 晶薄带经球磨制成的50~150μm非晶粉末装入WC/Co合金 模具内,并在SPS烧结机上烧结(真空度1×10-2Pa以下、升温 速度0.09~1.7K/s、温度673~873K、压力590MPa), 再把所 得的烧结体在1×10-2Pa真空下、以3 7K/s速度加热到923K、 保温后而制成。材料显示较好的磁性能:最大磁导率29800、 100Hz下的动态磁导率3430, 矫顽力12A/m。
3
双频微波烧结炉 生产用大型微波烧结炉 已烧结成多种材料:如陶瓷和铁氧体等材料。另 外,在日本又开发出相似的毫米波烧结技术,并成功 地在2023K下保温1h烧结成全致密的AlN材料。
4
2.爆炸压制技术 爆炸压制又称冲击波压制是一种有前途的工艺
方法,它在粉末冶金中发挥了很重要的作用, 爆炸压 制时,只是在颗粒的表面产生瞬时的高温,作用时间 短,升温和降温速度极快。适当控制爆炸参数,使得 压制的材料密度可以达到理论密度的90%以上,甚至 达到99%。
3)快速脉冲电流的加入, 无论是粉末内的放电部位还是焦耳 发热部位, 都会快速移动, 使粉末的烧结能够均匀化。
11
与传统的粉末冶金工艺相比,SPS工艺的特点是:
• 粉末原料广泛:各种金属、非金届、合金粉末,特别是 活性大的各种粒度粉末都可以用作SPS 烧结原科。
• 成形压力低:SPS烛结时经充分微放电处理,烧结粉末表 面处于向度活性化状态.为此,其成形压力只需要冷压烧 结的l/10~1/20。
17
SPS制备软磁材料 通常用急冷或喷射方法可得到FeMe(Nb、Zr、Hf)B的非 晶合金,在稍高于晶化温度处理后, 可得到晶粒数10nm,具有 体心立方结构,高Bs 、磁损小的纳米晶材料。但非晶合金目 前只能是带材或粉末, 制作成品还需要将带材重叠和用树脂固 结, 这使得成品的密度和Bs均变低。近年, 日本采用SPS工艺研 究FeMeB块材的成形条件及磁性能。
粉末烧结技术

加压烧结—加压和加热同时并用,以达到消除孔
隙的目的,从而大幅度提高粉末制品的性能。常用
的加压烧结工艺有热压、热等静压及烧结-热等静压。
热压—将粉末装在压模内,在加压的同时把粉末加热到熔
点以下,使之加速烧结成比较均匀致密的制品。
热等静压—把粉末压坯或把装入特制容器内的粉末置于热
等静压机高压容器内,使其烧结成致密的材料或零件的过 程。
电火花等离子烧结—也叫等离子活化烧结或电火
花等离子烧结,是利用粉末间火花放电多产生的等
离子活化颗粒,同时在外力作用下进行的一种特殊
烧结方法。
真空热压烧结炉图
微波生物陶瓷烧结炉图
微波烧结炉图
热等静压烧结炉图
放电等离子烧结炉图
烧结-热等静压—把压坯放入烧结-热等静压设备的高压容
器内,先进行脱蜡、烧结,再充入高压气体进行热等静压。
反应烧结—先将原材料(如制备Si3N4时使用Si粉)
粉末以适当方式成形后,在一定气氛中(如氮气)
加热发生原位反应合成所需的材料并同时发生烧结。
微波烧结—材料内部整体地吸收微波能并被加热,
使得在微波场中试样内部的热梯度和热流方向与常规 烧结的试样相反。
表面张力造成的一种机械力,它垂直作用于烧结颈曲面上, 使烧结颈向外扩大,最终形成孔隙网。 过剩空位浓度梯度将引起烧结颈表面下微小区域内的空位 向粉末颗粒内扩散,从而造成原子在相反方向上的迁移, 使颈部得以长大。
烧结时物质迁移
烧结过程的传质机理很复杂,目前大体上有四种说法
粘塑性流动过程 扩散过程,包括体积、 表面和界面的扩散
依靠外在条件变 化活化烧结过程
提高粉末 本身活性
二、烧结工艺
烧结工艺
无压烧结
粉末冶金的烧结技术

粉末冶金烧结技术1.烧结法不同的产品、不同性能的不同烧结方法。
⑴ 按原料组成不同分类。
可以将烧结分为单元系烧结、多组分固相烧结和多组分液相烧结。
单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、MoSi2等)熔点以下的温度进行固相烧结。
多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。
粉末烧结合金多属于这一类。
如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag-W等。
在高于系统中低熔点组分熔点的温度下进行多系统液相烧结。
如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu<10%)等⑵ 按进料方式不同分类。
可分为连续烧结和间歇烧结。
连续烧结烧结炉具有脱蜡、预烧、烧结、制冷各功能区段,在烧结过程中,烧结材料是连续的或稳定的、分段地完成各阶段的烧结。
连续烧结生产效率高,适用于大批量生产。
常用的进料方式有推杆式、辊道式和网带传送式等。
间歇烧结零件置于炉内静止不动,通过控温设备,对烧结炉进行需要的预热、加热及冷却循环操作,完成烧结材料的烧结过程。
间歇烧结可以根据炉内烧结材料的性能确定合适的烧结系统,但生产效率低,适用于单件、小批量生产,常用的烧结炉有钟罩式炉、箱式炉等。
除上述分类方法外。
根据烧结温度下是否存在液相,可分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,氢气保护烧结(如钼丝炉、不锈钢管和氢气炉等)和真空烧结。
另外还有超高压烧结、活化热压烧结等新的烧结技术。
2.影响粉末制品烧结质量的因素影响烧结体性能的因素很多,主要是粉末体的性状、成形条件和烧结的条件。
烧结条件的因素包括加热速度、烧结温度和时间、冷却速度、烧结气氛及烧结加压状况等。
粉末冶金的烧结技术

粉末冶金的烧结技术粉末冶金是一种通过将金属或非金属粉末在一定条件下,加工成具有一定形状和尺寸的零部件的方法。
烧结技术是粉末冶金中的关键步骤之一,它将粉末颗粒通过加热并施加压力使其质点之间结合得更加牢固,形成一体化的零部件。
本文将对粉末冶金的烧结技术进行深入探讨。
一、烧结技术的基本原理和过程烧结技术是将粉末颗粒通过加热至其熔点以下,但高于材料的再结晶温度,同时施加压力,使粉末颗粒发生结合,形成一体化的零部件。
其基本原理是利用了粉末颗粒与粉末颗粒之间的扩散作用和表面张力降低效应。
烧结过程中,颗粒间的间隙先得到迅速消除,然后颗粒之间产生再结晶,通过扩散使粒间结合更为牢固。
整个烧结过程可以分为初期活化期、再结晶期和液相期三个阶段。
初期活化期是指在烧结过程开始的阶段,颗粒发生活化并形成结合,此时烧结坯体变得更为致密。
再结晶期是指烧结坯体中增强再结晶的发生。
液相期是指在达到受结合的颗粒之间的最小距离后,材料产生液相,并通过液相扩散加快了颗粒间的结合。
在这个过程中,烧结坯体结构的致密度和强度会显著提高。
二、烧结技术的主要参数在进行粉末冶金的烧结过程中,有许多参数需要注意和控制,如温度、压力、时间和气氛等。
这些参数会对烧结过程和烧结产品的质量产生重要影响。
1. 温度:温度是烧结过程的关键参数之一。
合适的温度能够使粉末颗粒迅速熔结,并形成均匀的结构。
过高或过低的温度都会影响烧结效果和质量。
2. 压力:在烧结过程中,施加的压力可以使粉末颗粒更加紧密地结合在一起。
增加压力可以提高烧结物品的致密度和强度。
3. 时间:烧结时间是烧结过程中的一个重要参数。
适当的烧结时间可以使粉末颗粒充分结合并形成致密的结构。
时间过长或过短都会影响产品的质量。
4. 气氛:烧结过程中的气氛对烧结质量和产品性能有很大影响。
不同的气氛可以对不同材料产生不同的效果。
常用的烧结气氛有氢气、氮气、氧气和真空等。
三、烧结技术的应用和优点烧结技术在现代工业中有着广泛的应用,尤其是在金属材料和陶瓷材料的制备过程中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末冶金的烧结技术作者:本站整理文章来源:本站搜集点击数:466 更新时间:2008-3-17 16:03:201.烧结的方法不同的产品、不同的性能烧结方法不一样。
⑴按原料组成不同分类。
可以将烧结分为单元系烧结、多元系固相烧结及多元系液相烧结。
单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、M oSi2等)熔点以下的温度进行固相烧结。
多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。
粉末烧结合金多属于这一类。
如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag -W等。
多元系液相烧结以超过系统中低熔成分熔点的温度进行的烧结。
如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu<10%)等⑵按进料方式不同分类。
分为为连续烧结和间歇烧结。
连续烧结烧结炉具有脱蜡、预烧、烧结、制冷各功能区段,烧结时烧结材料连续地或平稳、分段地完成各阶段的烧结。
连续烧结生产效率高,适用于大批量生产。
常用的进料方式有推杆式、辊道式和网带传送式等。
间歇烧结零件置于炉内静止不动,通过控温设备,对烧结炉进行需要的预热、加热及冷却循环操作,完成烧结材料的烧结过程。
间歇烧结可依据炉内烧结材料的性能确定合适的烧结制度,但生产效率低,适用于单件、小批量生产,常用的烧结炉有钟罩式炉、箱式炉等。
除上述分类方法外。
按烧结温度下是否有液相分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,氢气保护烧结(如钼丝炉、不锈钢管和氢气炉等)和真空烧结。
另外还有超高压烧结、活化热压烧结等新的烧结技术。
2.影响粉末制品烧结质量的因素影响烧结体性能的因素很多,主要是粉末体的性状、成形条件和烧结的条件。
烧结条件的因素包括加热速度、烧结温度和时间、冷却速度、烧结气氛及烧结加压状况等。
⑴烧结温度和时间烧结温度的高低和时间的长短影响到烧结体的孔隙率、致密度、强度和硬度等。
烧结温度过高和时间过长,将降低产品性能,甚至出现制品过烧缺陷;烧结温度过低或时间过短,制品会因欠烧而引起性能下降。
⑵烧结气氛粉末冶金常用的烧结气氛有还原气氛、真空、氢气氛等。
烧结气氛也直接影响到烧结体的性能。
在还原气氛下烧结防止压坯烧损并可使表面氧化物还原。
如铁基、铜基制品常采用发生炉煤气或分解氨,硬质合金、不锈钢常采用纯氢。
活性金属或难熔金属(如铍、钛、锆、钽)、含TiC的硬质合金及不锈钢等可采用真空烧结。
真空烧结能避免气氛中的有害成分(H2O、O2、H2)等的不利影响,还可降低烧结温度(一般可降低100~150℃)。
粉末冶金基础知识作者:本站整理文章来源:本站搜集点击数:404 更新时间:2008-3-17 16:25:00 (一)粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
⑷成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。
成形性受颗粒形状和结构的影响。
(二)粉末冶金的机理1.压制的机理压制就是在外力作用下,将模具或其它容器中的粉末紧密压实成预定形状和尺寸压坯的工艺过程。
钢模冷压成形过程如图7.1.2所示。
粉末装入阴模,通过上下模冲对其施压。
在压缩过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒表面的氧化膜破碎,颗粒间接触面积增大,使原子间产生吸引力且颗粒间的机械楔合作用增强,从而形成具有一定密度和强度的压坯。
2.等静压制压力直接作用在粉末体或弹性模套上,使粉末体在同一时间内各个方向上均衡受压而获得密度分布均匀和强度较高的压坯的过程。
按其特性分为冷等静压制和热等静压制两大类。
⑴冷等静压制即在室温下等静压制,液体为压力传递媒介。
将粉末体装入弹性模具内,置于钢体密封容器内,用高压泵将液体压入容器,利用液体均匀传递压力的特性,使弹性模具内的粉末体均匀受压。
因此,冷等静压制压坯密度高,较均匀,力学性能较好,尺寸大且形状复杂,已用于棒材、管材和大型制品的生产。
⑵热等静压制把粉末压坯或装入特制容器内的粉末体置入热等静压机高压容器中,施以高温和高压,使这些粉末体被压制和烧结成致密的零件或材料的过程。
在高温下的等静压制,可以激活扩散和蠕变现象的发生,促进粉末的原子扩散和再结晶及以极缓慢的速率进行塑性变形,气体为压力传递媒介。
粉末体在等静压高压容器内同一时间经受高温和高压的联合作用,强化了压制与烧结过程,制品的压制压力和烧结温度均低于冷等静压制,制品的致密度和强度高,且均匀一致,晶粒细小,力学性能高,消除了材料内部颗粒间的缺陷和孔隙,形状和尺寸不受限制。
但热等静压机价格高,投资大。
热等静压制已用于粉末高速钢、难熔金属、高温合金和金属陶瓷等制品的生产。
3.粉末轧制将粉末通过漏斗喂入一对旋转轧辊之间使其压实成连续带坯的方法。
将金属粉末通过一个特制的漏斗喂入转动的轧辊缝中,可轧出具有一定厚度、长度连续、强度适宜的板带坯料。
这些坯体经预烧结、烧结,再轧制加工及热处理等工序,就可制成具有一定孔隙度的、致密的粉末冶金板带材。
粉末轧制制品的密度比较高,制品的长度原则上不受限制,轧制制品的厚度和宽度会受到轧辊的限制;成材率高为80%~90%,熔铸轧制的仅为60%或更低。
粉末轧制适用于生产多孔材料、摩擦材料、复合材料和硬质合金等的板材及带材。
4.粉浆浇注是金属粉末在不施加外力的情况下成形的,即将粉末加水或其它液体及悬浮剂调制成粉浆,再注入石膏模内,利用石膏模吸取水分使之干燥后成形。
常用的悬浮剂有聚乙烯醇、甘油、藻肮酸钠等,作用是防止成形颗粒聚集,改善润湿条件。
为保证形成稳定的胶态悬浮液,颗粒尺寸不大于5μm~10μm,粉末在悬浮液中的质量含量为40%~70%。
粉浆成形工艺参见本书6.2.2。
5.挤压成形将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。
按照挤压条件不同,分为冷挤压和热挤压。
冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(4 0℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。
挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
挤压成形能挤压出壁很薄直经很小的微形小管,如厚度仅0.01mm,直径1mm的粉末冶金制品;可挤压形状复杂、物理力学性能优良的致密粉末材料,如烧结铝合金及高温合金。
挤压制品的横向密度均匀,生产连续性高,因此,多用于截面较简单的条、棒和螺旋形条、棒(如麻花钻等)。
6.松装烧结成形粉末未经压制而直接进行烧结,如将粉末装入模具中振实,再连同模具一起入炉烧结成形,用于多孔材料的生产;或将粉末均匀松装于芯板上,再连同芯板一起入炉烧结成形,再经复压或轧制达到所需密度,用于制动摩擦片及双金属材料的生产。
将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。
按照挤压条件不同,分为冷挤压和热挤压。
冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(4 0℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。
挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
7.爆炸成形借助于爆炸波的高能量使粉末固结的成形方法。
爆炸成形的特点是爆炸时产生压力很高,施于粉末体上的压力速度极快。
如炸药爆炸后,在几微秒时间内产生的冲击压力可达106MPa(相当于107个大气压),比压力机上压制粉末的单位压力要高几百倍至几千倍。
爆炸成形压制压坯的相对密度极高,强度极佳。
如用炸药爆炸压制电解铁粉,压坯的密度接近纯铁体的理论密度值。
爆炸成形可加工普通压制和烧结工艺难以成形的材料,如难熔金属、高合金材料等,还可压制普通压力无法压制的大型压坯。
除上述方法外,还有注射成形及热等静压制新技术等新的成形方法。
粉末冶金的后处理作者:本站整理文章来源:本站搜集点击数:345 更新时间:2008-3-17 15:53:51指压坯烧结后的进一步处理,根据产品具体要求决定是否需要后处理。
常用的后处理方法有复压、浸渍、热处理、表面处理和切削加工等。
1.复压为提高烧结体物理和力学性能而进行的施加压力处理,包括精整和整形等。
精整是为达到所需尺寸而进行的复压,通过精整模对烧结体施压以提高精度。
整形是为达到特定的表面形状而进行的复压,通过整形模对制品施压以校正变形且降低表面粗糙度值。
复压适用于要求较高且塑性较好的制品,如铁基、铜基制品。
2.浸渍用非金属物质(如油、石蜡和树脂等)填充烧结体孔隙的方法。
常用的浸渍方法有浸油、浸塑料、浸熔融金属等。
浸油即在烧结体内浸入润滑油,改善其自润滑性能并防锈,常用于铁、铜基含油轴承。
浸塑料是采用聚四氟乙烯分散液,经固化后,实现无油润滑,常用于金属塑料减摩零件。
浸熔融金属可提高强度及耐磨性,铁基材料常采用浸铜或铅。
3.热处理对烧结体加热到一定温度,再通过控制冷却方法等处理,以改善制品性能的方法。
常用的热处理方法有淬火、化学热处理、热机械处理等,工艺方法一般与致密材料相似。
对于不受冲击而要求耐磨的铁基制件可采用整体淬火,由于孔隙的存在能减少内应力,一般可以不回火。