浙江省单考单招数学知识点汇总
浙江省单考单招数学知识点汇总情况

第一部分:集合与不等式1、集合有n 个元素,它有n 2个子集,12-n 个真子集,22-n 个非空真子集。
2、交集:A B ,由A 和B 的公共元素构成;并集:A B ,由A 和B 的全部元素构成; 补集:U C A 由U 中不属于A 的元素构成。
3.充分条件、必要条件、充要条件: (1)p ⇒q ,则p 是q 的充分条件, (2)p ⇐q ,则p 是q 的必要条件,(2)q p ⇒且p q ⇐,则p q ⇔,p 是q 的充要条件。
技巧:4、一元一次不等式组的解法(a b <):5、一元二次不等式的解法:若a 和b 分别是方程0))((=--b x a x 的两根,且a b <,则(开口向上)6、均值定理: (一正二定三相等)b a =时等号成立时。
7.解绝对值不等式:(0)a >a a a -<>⇔>(...)(...)(...)或a a a <<-⇔<(...)(...)8.分式不等式(化为同解的整式不等式)(1)}{30(32402324x x x x x x -<⇒-+<⇒-<<+ )() (2)}{(3240302324024x x x x x x x -+≤⎧-≤⇒⇒-<≤⎨+≠+⎩)()第二部分:函数1、函数的定义域:函数有意义时x 的取值集合。
(用集合或区间表示)①分式:分母不等于0;②偶次根式:被开方数大于或等于0; ③零次幂、负指数幂:底数不等于0;④对数函数:真数大于0,底数大于0且不等于1. 2、一元二次函数:c bx ax y ++=2 (0)a ≠,它的图像为一条抛物线。
(1)一般式:)0(,2≠++=a c bx ax y ,顶点:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴方程:a bx 2-= (2)顶点式:2()(0)y a x m n a =-+≠, ,其中(m ,n )为抛物线顶点. (3)交点式:12()()(0)y a x x x x a =--≠,其中与x 轴的两个交点为12(0)(,0)x x ,和. 性质:①最值:当abx 2-=时,a b ac y 442-=最大或最小②单调性:2(0)y ax bx c a =++≠,Ⅰ、0a <时,递增:,2b a ⎛⎤-∞- ⎥⎝⎦,递减:,2b a ⎡⎫-+∞⎪⎢⎣⎭Ⅱ、a o >时,递增:,2b a ⎡⎫-+∞⎪⎢⎣⎭,递减:,2b a ⎛⎤-∞- ⎥⎝⎦图像和对应不等式的研究:2(0)y ax bx c a =++> 说明:000y x y x y x >⎧⎪=⎨⎪<⎩:图象在轴上方:图象在轴的交点: 图象在轴下方3、指数和指数函数 指数幂的运算法则: ①、n m n m a a a +=• 如:434322+=•a②、nm n m a a a -= 如:2525222-=③、mn n m a a =)( 如:3232)2(⨯=a ④、()m m mb a ab = 如:()2223434⨯=⨯分数指数幂:n mnm a a=如:534=负指数幂:n n a a 1=- 如:33212=- 规定:)0(,10≠=a a 指数函数:x a y = (01)a a >≠且4、对数和对数函数N a b = ⇔ b N a =log如: 823= ⇔ 38log 2=对数公式: N a Na =log (如:55log 7log 7225549==)积、商、幂的对数公式: 公式逆用:积: ()N M MN a a a log log log += log log =log a a a M N MN +商: N M N M a a a log log log -=⎪⎭⎫⎝⎛ log log =log a a aMM N N- 幂: log log n a a b n b = log log n a a n b b =补充公式:log log mn a a n b b m= (如:352log 352log 32log 25283===)对数函数:x y a log = (01)a a >≠且第三部分:数列 1、数列:①、前n 项和:n n a a a a S ++++= 321②、前n 项和n S 与通项公式n a 的关系:11,1,2n nn S n a S S n -=⎧=⎨-≥⎩2、等差数列:①、定义:数列{}n a ,从第2项起,每一项与它的前一项的差都等于同一个常数, 则这个数列称为等差数列;常数称为该数列的公差,记作:d即:1(2,)n n a a d n n N --=≥∈ 或:1(1,)n n a a d n n N +-=≥∈③、等差数列的前n 项和公式④、等差数列的性质:在等差数列{}n a 中⑤、等差中项:若b A a ,,成等差数列,则称A 是a,b 的等差中项。
单招、对口升学数学考试知识点精华版

-1-单招升学数学考试知识点【集合】1、元素a 与集合A 关系:∈∉或2、集合A 与集合B 的关系①如果集合A 是集合B 的子集,记作:A ⊆B;②如果集合A 是集合B 的真子集,记作:A ⊂B,3、集合的运算①并集:∪②交集:∩③补集:U C A3.充分条件与必要条件:若q p ⇒,则p 叫q 的充分条件;若q p ⇐,则p 叫q 的必要条件;若q p ⇔,则p 叫q 的充要条件;【不等式】1.一元二次不等式的解集:设一元二次方程20,(0)ax bx c a ++=≠的两根为:1212,()x x x x <,则(1))0(02>>++a c bx ax 的解集:12{|}x x x x x <>或,“>”取两边(2))0(02><++a c bx ax 的解集:}|{21x x x x <<,“<”取中间2.绝对值不等式的解法:当0>a 时,a x >||的解集是},|{a x a x x >-<,a x <||的解集是}|{a x a x <<-【函数】1.函数定义域的求法:①分式:分母0≠;②偶次根式:被开方式0≥;③对数:真数0>2.函数的奇偶性:①定义:注意区间是否关于原点对称,比较()f x -与()f x 的关系。
f(x)=f(-x)⇔f(x)为偶函数;f(-x)=-f(x)⇔f(x)为奇函数②性质:奇函数的图像关于原点对称;偶函数的图像关于y 轴对称;【基本初等函数】1.对数及其对数运算:(1)定义:)1,0(≠>=a a N a b⇔log a b N =(2)性质:①负数和零没有对数,②01log =a ,③1log =a a ,(3)法则:①N M MN a a a log log )(log +=;②N M NMa a a log log log -=;③M n M a n a log log =,【三角函数】1、弧度制:(1)度数与弧度数的换算:π=180弧度,2、同角三角函数基本关系式(1)平方关系:1cos sin 22=+αα(2)商数关系:αααcos sin tan =3、诱导公式(理解记忆方法:奇变偶不变,符号看象限)公式一:公式二:公式三:公式四:ααααααtan )360tan(cos )360cos(sin )360sin(=︒⋅+=︒⋅+=︒⋅+k k k ααααααtan )tan(cos )cos(sin )sin(-=-=--=-ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒-2-【数列】一.等差数列:1.通项公式:d n a a n )1(1-+=2.前n 项和:(1).2)(1n n a a n S +=(2).d n n na S n 2)1(1-+=二.等比数列:1.通项公式:11n n a a q-= 2.前n 项和:①)1(1)1(1≠--=q qq a S n n ;○2)1(11≠--=q qqa a S n n ;【平面向量】1.平面向量的坐标运算:(1)坐标运算:设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→设A、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(2)实数与向量的积的运算律:设()y x a ,=→,则λ()()y x y x a λλλ,,==→,(3)平面向量的数量积:①、定义:()00cos 0180a b a b θθ→→→→⋅=⋅≤≤.②、坐标运算:设()()2211,,,y x b y x a ==→→,则2121y y x x b a +=⋅→→;向量a 的模:|a |22y x +=2、重要结论:设()()2211,,,y x b y x a ==→→,(1)//a b →→⇔01221=-y x y x (2)12120a b x x y y →→⊥⇔+=【直线和圆的方程】1.直线的倾斜角和斜率(1)直线的倾斜角α∈[0,π).(2)直线的斜率,即0tan (90)k αα=≠(3)斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为212121(0)y y k x x x x -=-≠-2.直线的方程(1)点斜式:y-y 0=k(x-x 0);(2)斜截式:y=kx+b;(3)一般式:Ax+By+C=0(A、B 不同时0).3.两条直线的位置关系:设两条直线1l 和2l 的斜率分别为1k 和2k ,(1)1l ∥2l :,k 1=k 2且b 1≠b 2;(2)1l ⊥2l :则有12121-=⇔⊥k k l l 4.两点111(,)P x y ,222(,)P x y 间的距离公式12||PP中点M 的坐标公式:M (122x x +,122y y +)5.点到直线的距离:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为2200BA C By Ax d +++=.【圆】1.圆的方程:标准方程(x-a)2+(y-b)2=r 2.(a,b)为圆心,r 为半径.2.直线和圆的位置关系:当r d =时,l 与C 相切;②当d r <时,l 与C 相交;③当d r >时,l 与C 相离.【立体几何】球的计算公式:(1)S 球=4πR2(2)V 球=34πR 3。
浙江省单考单招数学知识点

浙江省单考单招数学知识点1.集合与不等式-集合的概念和运算:包括集合的元素、子集、全集、交集、并集、补集等。
-不等式的性质:包括不等式的加减乘除、绝对值、开平方、乘法取正等性质。
2.函数与方程-函数的基本概念:包括函数的定义域、值域、图像、奇偶性等。
-一次函数和二次函数:包括函数的解析式、图像、性质等。
-方程的解法:包括一元一次方程、一元二次方程及其应用等。
3.三角函数-三角函数的概念:包括正弦函数、余弦函数、正切函数等。
-三角函数的性质:包括周期性、奇偶性、定义域、值域等。
-三角函数的应用:包括三角函数的图像、方程、恒等式等。
4.平面向量-平面向量的概念:包括向量的模、方向、共线、共面等。
-平面向量的性质:包括加法、减法、数量积、向量积、共线、垂直等。
-平面向量的应用:包括平面向量的共线、垂直、平行、面积等应用问题。
5.概率与统计-概率的基本概念:包括样本空间、随机事件、频率、概率等。
-概率的计算方法:包括等可能概型、排列组合、条件概率、贝叶斯定理等。
-统计的基本概念:包括数据的收集、整理、统计指标(平均数、中位数、众数等)。
6.数列与数学归纳法-数列的概念:包括等差数列、等比数列等。
-数列的性质:包括通项公式、前n项和、数列的求和等。
-数学归纳法:包括数学归纳法的原理、步骤和应用。
7.解析几何-直线与圆的方程:包括直线的斜率、截距、一般式、点斜式、两直线关系等。
-二次曲线的方程:包括圆的方程、椭圆的方程、抛物线的方程、双曲线的方程等。
8.导数与微分-导数的概念:包括导数的定义、求导法则、高阶导数等。
-函数的极值与最值:包括极值点、极值条件、最值问题的应用等。
-微分的概念:包括微分的定义、微分近似、微分中值定理等。
以上是浙江省单考单招数学知识点的主要内容,掌握了这些知识点,就能够更好地应对浙江省单考单招数学考试题目。
当然,在备考过程中还需要多做题、多总结,积极参与课堂讨论和答疑,提高对数学知识的理解和应用能力。
单招常考数学知识点总结

单招数学常考知识点总结◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.◆一个平面过另一个平面的垂线,则两个平面垂直.◆理解以下性质定理,并能够证明:◆如果一条直线与一个平面平行,那么过该直线的任一平面与此平面的交线和该直线平行.◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.◆垂直于同一个平面的两条直线平行.◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.4.平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.(2)圆与方程掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断圆与圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.5.统计(1)随机抽样①理解随机抽样的必要性和重要性.②会用简单随机抽样的方法从总体中抽取样本;了解分层抽样方法.(2)用样本估计总体①了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图,体会它们各自的特点.理解样本数据标准差的意义和作用,会计算数据标准差.③能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理解释.④会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积①理解平面向量数量积的含义及其物理意义.②了解平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.9.三角恒等变换(1)两角和与差的三角函数公式①会用向量数量积推导出两角差的余弦公式.②会用两角差的余弦公式推导出两角差的正弦、正切公式.③会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换.10.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.11.数列(1)数列的概念和简单表示方法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类特殊函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中识别数列的等差关系或等比关系,并能用等差数列、等比数列的有关知识解决相应的问题.④了解等差数列与一次函数的关系、等比数列与指数函数的关系.12.不等式(1)不等关系。
单招考试数学必背知识点

单招考试《数学》必背知识点(一)一.不为0的量1.分式AB中,分母B ≠0; 2.二次方程ax 2+bx +c =0(a ≠0) 3.一次函数y =kx +b (k ≠0) 4.反比例函数ky x=(k ≠0) 5.二次函数y = ax 2+bx +c =0(a ≠0)二.非负数1.│a │≥02. (a ≥0)3. a 2n ≥0(n 为自然数)三.绝对值:(0)(0)aa a a a ≥⎧=⎨-⎩<四.重要概念1. 平方根与算术平方根:如果x 2=a (a ≥0),则称x 为a 的平方根,记作:x=,其中x 的算术平方根.2. 负指数:1p p a a-= 3. 零指数:a 0=1(a ≠0)4. 科学计数法:a ×10 n (n 为整数,1≤a <10) 五.重要公式(一)幂的运算性质1.同底数幂的乘法法则: m n m n a a a +⋅= ( a ≠0,m,n 都是正数)2.幂的乘方法则:()m n mn a a = (m,n 都是正数)3.积的乘方法则:()n n n ab a b =(n 为正整数)4.同底数幂的除法法则: m n m n a a a -÷= (a ≠0,m 、n 都是正数,且m >n ). (二)整式的运算1.平方差公式:22()()a b a b a b +-=-2.完全平方公式:222()2a b a ab b ±=±+ (三)二次根式的运算)0,00,0)a b a b ≥≥=≥>(四)一元二次方程一元二次方程ax 2+bx +c =0(a ≠0)当△=b 2-4ac ≥0时,x ;x 1+x 2= -b a ;x 1x 2=ca(五)函数 平面直角坐标系1.点A 、B 在数轴上的坐标为x A 、x B ,则A 、B 两点间距离=|x A -x B |。
9.P(x ,y)关于x 轴对称点(x ,-y ),关于y 轴对称点(-x ,y ),关于原点对称点(-x ,y ),关于y=x 对称点(y ,x )。
(完整版)浙江省单考单招数学知识点汇总

第一部分:集合与不等式1、集合有n 个元素,它有n 2个子集,12-n 个真子集,22-n 个非空真子集。
2、交集:A B ,由A 和B 的公共元素构成;并集:A B ,由A 和B 的全部元素构成; 补集:U C A 由U 中不属于A 的元素构成。
3.充分条件、必要条件、充要条件: (1)p ⇒q ,则p 是q 的充分条件, (2)p ⇐q ,则p 是q 的必要条件,(2)q p ⇒且p q ⇐,则p q ⇔,p 是q 的充要条件。
技巧:4、一元一次不等式组的解法(a b <):5、一元二次不等式的解法:若a 和b 分别是方程0))((=--b x a x 的两根,且a b <,则(开口向上)6、均值定理: (一正二定三相等)b a =时等号成立时。
7.解绝对值不等式:(0)a >a a a -<>⇔>(...)(...)(...)或a a a <<-⇔<(...)(...)8.分式不等式(化为同解的整式不等式)(1)}{30(32402324x x x x x x -<⇒-+<⇒-<<+ )() (2)}{(3240302324024x x x x x x x -+≤⎧-≤⇒⇒-<≤⎨+≠+⎩)() 第二部分:函数1、函数的定义域:函数有意义时x 的取值集合。
(用集合或区间表示)①分式:分母不等于0;②偶次根式:被开方数大于或等于0; ③零次幂、负指数幂:底数不等于0;④对数函数:真数大于0,底数大于0且不等于1. 2、一元二次函数:c bx ax y ++=2 (0)a ≠,它的图像为一条抛物线。
(1)一般式:)0(,2≠++=a c bx ax y ,顶点:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴方程:a bx 2-= (2)顶点式:2()(0)y a x m n a =-+≠, ,其中(m ,n )为抛物线顶点. (3)交点式:12()()(0)y a x x x x a =--≠,其中与x 轴的两个交点为12(0)(,0)x x ,和. 性质:①最值:当abx 2-=时,a b ac y 442-=最大或最小②单调性:2(0)y ax bx c a =++≠,Ⅰ、0a <时,递增:,2b a ⎛⎤-∞- ⎥⎝⎦,递减:,2b a ⎡⎫-+∞⎪⎢⎣⎭Ⅱ、a o >时,递增:,2b a ⎡⎫-+∞⎪⎢⎣⎭,递减:,2b a ⎛⎤-∞- ⎥⎝⎦图像和对应不等式的研究:2(0)y ax bx c a =++> 说明:000y x y x y x >⎧⎪=⎨⎪<⎩:图象在轴上方:图象在轴的交点: 图象在轴下方3、指数和指数函数 指数幂的运算法则: ①、n m n m a a a +=• 如:434322+=•a②、nm n m a a a -= 如:2525222-=③、mn n m a a =)( 如:3232)2(⨯=a ④、()m m mb a ab = 如:()2223434⨯=⨯分数指数幂:n mnm a a=如:534=负指数幂:n n a a 1=- 如:33212=- 规定:)0(,10≠=a a 指数函数:x a y = (01)a a >≠且4、对数和对数函数N a b = ⇔ b N a =log如: 823= ⇔ 38log 2=对数公式: N a Na =log (如:55log 7log 7225549==)积、商、幂的对数公式: 公式逆用:积: ()N M MN a a a log log log += log log =log a a a M N MN +商: N M N M a a a log log log -=⎪⎭⎫⎝⎛ log log =log a a aMM N N- 幂: log log n a a b n b = log log n a a n b b =补充公式:log log mn a a n b b m= (如:352log 352log 32log 25283===)对数函数:x y a log = (01)a a >≠且1、数列:①、前n 项和:n n a a a a S ++++= 321②、前n 项和n S 与通项公式n a 的关系:11,1,2n n n S n a S S n -=⎧=⎨-≥⎩2、等差数列:①、定义:数列{}n a ,从第2项起,每一项与它的前一项的差都等于同一个常数, 则这个数列称为等差数列;常数称为该数列的公差,记作:d即:1(2,)n n a a d n n N --=≥∈ 或:1(1,)n n a a d n n N +-=≥∈③、等差数列的前n 项和公式④、等差数列的性质:在等差数列{}n a 中⑤、等差中项:若b A a ,,成等差数列,则称A 是a,b 的等差中项。
高职单招考试必备数学知识点

高职单招考试必备数学知识点第一章、集合与函数概念§ 1.1.1、集合1 、 把研究的对象统称为 元素,把一些元素组成的总体叫做 集合。
集合三要素: 确定性、互 异性、无序性 。
2、 只要构成两个集合的元素是一样的,就称这两个 集合相等 。
3、 常见集合: 正整数集合: N * 或 N +, 整数集合: Z , 有理数集合: Q , 实数集合: R .4、集合的表示方法: 列举法、描述法 .§ 1.1.2、集合间的基本关系1 、 一般地,对于两个集合 A 、B ,如果集合 A 中任意一个元素都是集合 B 中的元素,则称 集合 A 是集合 B 的子集 。
记作 A 坚 B .2、 如果集合 A 坚 B , 但存在元素 x = B , 且 x 茫 A , 则称集合 A 是集合 B 的真子集.记作: A B.3 、 把不含任何元素的集合叫做 空集.记作: 气 .并规定:空集合是任何集合的子集 .4、 如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子集.§ 1.1.3、集合间的基本运算1、 一般地, 由所有属于集合 A 或集合 B 的元素组成的集合, 称为集合 A 与 B 的并集.记作:A UB .2、 一般地, 由属于集合 A 且属于集合 B 的所有元素组成的集合, 称为 A 与 B 的交集.记作:A nB .3、 全集、补集? C U A = {x | x =U , 且x 茫U }§ 1.2.1、函数的概念1、 设 A 、B 是非空的数集,如果按照某种确定的对应关系 f ,使对于集合 A 中的任意一个 数 x ,在集合 B 中都有惟一确定的数 f(x) 和它对应,那么就称 f : A ) B 为集合 A 到 集合 B 的一个 函数,记作: y = f(x), x = A .2、 一个函数的构成要素为: 定义域、对应关系、值域 .如果两个函数的定义域相同,并且对应关系完全一致,则称 这两个函数相等 .§ 1.2.2、函数的表示法1、 函数的三种表示方法: 解析法、图象法、列表法 .§ 1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设 x 1 , x 2 =[a, b ]且x 1 < x 2 ,则: f(x 1 ) - f(x 2 ) =…§ 1.3.2、奇偶性1 、 一般地,如果对于函数 f(x) 的定义域内任意一个x , 都有 f(- x) = f(x) ,那么就称函 数 f(x) 为偶函数.偶函数图象关于 y 轴对称.2 、 一般地,如果对于函数 f(x) 的定义域内任意一个x , 都有 f(- x) = -f(x) ,那么就称函数f(x) 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1 、一般地,如果x n = a ,那么x 叫做a 的n 次方根。
(完整word版)单招必备数学知识点①

单招必备数学知识点第一章、会合与函数观点§、会合1、把研究的对象统称为元素,把一些元素构成的整体叫做会合。
会合三因素:确立性、互异性、无序性。
2、只需构成两个会合的元素是同样的,就称这两个会合相等。
3、常有会合:正整数会合:N* 或 N ,整数会合: Z ,有理数会合: Q ,实数会合: R .4、会合的表示方法:列举法、描绘法.§、会合间的基本关系1、一般地,对于两个会合 A 、B ,假如会合 A 中随意一个元素都是会合 B 中的元素,则称会合A 是会合 B 的子集。
记作 A B .2、假如会合 A B ,但存在元素x B ,且 x A ,则称会合 A 是会合 B 的真子集 . 记作:A B.3、把不含任何元素的会合叫做空集 .记作:.并规定:空会合是任何会合的子集.4、假如会合 A 中含有 n 个元素,则会合 A 有2n个子集 .§、会合间的基本运算1、一般地,由全部属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与 B 的并集 . 记作:A B .2、一般地,由属于会合A 且属于会合 B 的全部元素构成的会合,称为A与B的交集.记作:A B .3、全集、补集?C U A { x | x U ,且x U }§、函数的观点1、设 A、 B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合 A 中的随意一个数 x ,在会合B中都有唯一确立的数 f x 和它对应,那么就称 f : A B 为会合A到会合 B 的一个函数,记作:y f x , x A .2、一个函数的构成因素为:定义域、对应关系、值域. 假如两个函数的定义域同样,而且对应关系完整一致,则称这两个函数相等.§、函数的表示法1、函数的三种表示方法:分析法、图象法、列表法.§、单一性与最大(小)值1、 注意函数单一性证明的一般格式:解:设 x 1 , x 2a, b 且 x 1 x 2 ,则: f x 1 f x 2 =§ 、奇偶性1f x 的定义域内随意一个 x ,都有 f xf x ,那么就称函、 一般地,假如对于函数数 f x 为偶函数 . 偶函数图象对于y 轴对称 .2 f x的定义域内随意一个 x ,都有 fxf x,那么就称、 一般地,假如对于函数函数 f x 为奇函数 . 奇函数图象对于原点对称 . 第二章、基本初等函数(Ⅰ) §、指数与指数幂的运算1x n a ,那么 x 叫做 a 的 n 次方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分:集合与不等式1、集合有n 个元素,它有n 2个子集,12-n 个真子集,22-n 个非空真子集。
2、交集:A B ,由A 和B 的公共元素构成;并集:A B ,由A 和B 的全部元素构成; 补集:U C A 由U 中不属于A 的元素构成。
3.充分条件、必要条件、充要条件: (1)p ⇒q ,则p 是q 的充分条件, (2)p ⇐q ,则p 是q 的必要条件,(2)q p ⇒且p q ⇐,则p q ⇔,p 是q 的充要条件。
技巧:4、一元一次不等式组的解法(a b <):5、一元二次不等式的解法:若a 和b 分别是方程0))((=--b x a x 的两根,且a b <,则(开口向上)6、均值定理: (一正二定三相等)b a =时等号成立时。
7.解绝对值不等式:(0)a >a a a -<>⇔>(...)(...)(...)或a a a <<-⇔<(...)(...)8.分式不等式(化为同解的整式不等式)(1)}{30(32402324x x x x x x -<⇒-+<⇒-<<+ )() (2)}{(3240302324024x x x x x x x -+≤⎧-≤⇒⇒-<≤⎨+≠+⎩)()第二部分:函数1、函数的定义域:函数有意义时x 的取值集合。
(用集合或区间表示)①分式:分母不等于0;②偶次根式:被开方数大于或等于0; ③零次幂、负指数幂:底数不等于0;④对数函数:真数大于0,底数大于0且不等于1. 2、一元二次函数:c bx ax y ++=2 (0)a ≠,它的图像为一条抛物线。
(1)一般式:)0(,2≠++=a c bx ax y ,顶点:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴方程:a bx 2-= (2)顶点式:2()(0)y a x m n a =-+≠, ,其中(m ,n )为抛物线顶点. (3)交点式:12()()(0)y a x x x x a =--≠,其中与x 轴的两个交点为12(0)(,0)x x ,和. 性质:①最值:当abx 2-=时,a b ac y 442-=最大或最小②单调性:2(0)y ax bx c a =++≠,Ⅰ、0a <时,递增:,2b a ⎛⎤-∞- ⎥⎝⎦,递减:,2b a ⎡⎫-+∞⎪⎢⎣⎭Ⅱ、a o >时,递增:,2b a ⎡⎫-+∞⎪⎢⎣⎭,递减:,2b a ⎛⎤-∞- ⎥⎝⎦图像和对应不等式的研究:2(0)y ax bx c a =++> 说明:000y x y x y x >⎧⎪=⎨⎪<⎩:图象在轴上方:图象在轴的交点: 图象在轴下方3、指数和指数函数 指数幂的运算法则: ①、n m n m a a a +=• 如:434322+=•a②、nm n m a a a -= 如:2525222-=③、mn n m a a =)( 如:3232)2(⨯=a ④、()m m mb a ab = 如:()2223434⨯=⨯分数指数幂:n mnm a a=如:534=负指数幂:n n a a 1=- 如:33212=- 规定:)0(,10≠=a a 指数函数:x a y = (01)a a >≠且4、对数和对数函数N a b = ⇔ b N a =log如: 823= ⇔ 38log 2=对数公式: N a Na =log (如:55log 7log 7225549==)积、商、幂的对数公式: 公式逆用:积: ()N M MN a a a log log log += log log =log a a a M N MN +商: N M N M a a a log log log -=⎪⎭⎫⎝⎛ log log =log a a aMM N N- 幂: log log n a a b n b = log log n a a n b b =补充公式:log log mn a a n b b m= (如:352log 352log 32log 25283===)对数函数:x y a log = (01)a a >≠且第三部分:数列 1、数列:①、前n 项和:n n a a a a S ++++= 321②、前n 项和n S 与通项公式n a 的关系:11,1,2n nn S n a S S n -=⎧=⎨-≥⎩2、等差数列:①、定义:数列{}n a ,从第2项起,每一项与它的前一项的差都等于同一个常数, 则这个数列称为等差数列;常数称为该数列的公差,记作:d即:1(2,)n n a a d n n N --=≥∈ 或:1(1,)n n a a d n n N +-=≥∈③、等差数列的前n 项和公式④、等差数列的性质:在等差数列{}n a中⑤、等差中项:若b A a ,,成等差数列,则称A 是a,b 的等差中项。
3、等比数列:①、定义:数列{}n a ,从第2项起,每一项与它的前一项的比都等于同一个常数,则这个数列称为等比数列。
常数称为该数列的公比,记作:q 。
即:1(2,)n n a q n n N a -=≥∈ 或 1(1,)n naq n n N a +=≥∈③、等比数列的前n 项和公式11n q S na ==时:1q ≠时:④、等比数列的性质:在等比数列{}n a 中⑤、等比中项若b G a ,,成等比数列,则称G 是a,b 的等比中项。
第四部分:向量1、 向量的加法和减法: (1)加法:→→→=+AC BC AB三角形法则:首尾相接;由始指终;平行四边形法则:同一起点;经过共同起点的对角线;(2)减法: →→-OB OA →=BA 同一起点;减向量的终点指向被减向量的终点; 2、平行(共线)向量、垂直向量的关系://a b →⇔ a b →与的方向相同或相反 a b λ→⇔=12210x y x y ⇔-=3、向量坐标的求法: 如:AB 的坐标=B 的坐标-A 的坐标4、向量的模:a →= (设→a 的坐标为(x ,y ))第五部分:三角函数1、角的度量角度制与弧度制换算关系: π=180°º 1弧度≈57.3° 度化弧度:1180π︒=, 弧度化度:1801π⎛⎫=︒ ⎪⎝⎭弧长公式:l r α= 求圆心角公式:lrα=(弧度) 扇形面积公式:12S lr =扇 或:2360nS r π=扇2、三角函数的概念:设点p (x ,y )是角α终边上任意一点,op=r =(0)r >,则: sin y r α=; cos x rα= ; x y=αtan特殊角的三角函数值:3、三角值正负的判断:4、同角三角函数基本关系式: 22sin (1)sin cos 1(2)tan cos ααααα+== 5、和差角公式:sin()sin cos cos sin αβαβαβ±=±cos()cos cos sin sin αβαβαβ±=tan tan tan()1tan tan αβαβαβ±±=6、倍角公式及其变形:αααcos sin 22sin = 2222cos 2=cos sin 2cos 112sin ααααα-=-=- ααα2tan 1tan 22tan -=O x y ++ - - sin αO x y +- + - cos αO x y + - - + tan α降次: ① 2sin cos sin 2ααα=;② 22cos 1cos 2αα+=; ③ 22cos 1sin 2αα-= 7、诱导公式:①、终边相同的角:sin(2)sin k απα+= cos(2)cos k απα+= tan(2)tan k απα+= ()k Z ∈②、负角:ααsin )sin(-=- ααcos )cos(=- ααtan )tan(-=- ③口诀:奇变偶不变,符号看象限。
(1)④ααπcos )2sin(=- ααπsin )2cos(=-⑤sin()sin παα-= cos()cos παα-=-8、正弦、正弦型函数及其性质①、正弦函数: 1sin 1≤≤-α当2,2x k k Z ππ=+∈时,max 1y =; 当32,2x k k Z ππ=+∈时,min 1y =- 增区间:2222k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 减区间:32222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,②、余弦函数:将正弦函数图像整体向左平移2π个单位,过最高点(0,1). ③、正弦型函数)0,0)(sin(>>+=ωϕωA x A y 的性质:值域为[]A A ,-;最大值为max y A =,最小值为min y A =-;周期2T πω=。
–– π 2π2π- 2π 5π π- 2π- 5π- O x y 1 1- –y 1B当2,2x k k Z πωφπ+=+∈时,A y =max当32,2x k k Z πωφπ+=+∈时,min y A =- 增区间:由2222k x k k Z πππωφπ-+≤+≤+∈,求得,减区间:由32222k x k k Z πππωφπ+≤+≤+∈,求得。
9、公式:最大值为22b a +,最小值为22b a +- 10、解三角形正弦定理:在三角形ABC 中,有:合:sin :sin sin ::A B C a b c =:令:(0)sin sin sin a b ck k A B C===> sin sin sin a k A b k B c k C =⋅=⋅=⋅ , , , (0k >)sin sin sin a b cA B C k k k=== , , 余弦定理:求边:⇒ 求角:三角形面积公式:第六部分:排列与组合1、排列数公式: (1)(2)(1)mnA n n n n m =---+1)阶乘:12)2()1(!⨯⨯⨯-⨯-⨯= n n n n ; 规定1!0=;2、组合数公式:(1) (1)(1) (21)m mn nm m A n n n m C A m m ⨯-⨯⨯-+==⨯-⨯⨯⨯组合数性质:(1)规定:10=nC ; (2如731010C C =,511510410C C C =+。
3、二项式定理(1)通项:1r n r rr nT C a b -+=(2)二项式系数:r n C 叫做二项式系数【注意:二项式系数与项系数的区别】(3)所有二项式系数之和为:n nn n nC C C 2...10=+++: (4)展开式系数之和为:令1x = (或其他参数都取1)。