锂硫电池PPT课件

合集下载

锂电池基础知识介绍[优质PPT]

锂电池基础知识介绍[优质PPT]
循环寿命 电池循环寿命是指电池容量下降到
某一规定的值时,电池在某一充放电制 度下所经历的充放电次数。锂离子电池 GB规定,1C条件下电池循环500次后容 量保持率在60%以上。
锂离子电池类型
1
2
圆柱型锂离 子电池
(Cylindrical Li-ion Battery)
方型锂离子电 池(Prismatic
输出电压高
能量密度高
安全,循环性好
锂离子电池 优点
自放电率小 快速充放电 充电效率高
无环境污染,绿色电池
锂离子电池工作原理
锂离子电池工作原理图 schematic representation and operation principle of rechargeable
lithium ion battery
[1] Whittingham M S.U.S.Patent 4009052.1977 [2] Whittingham M S.Science,1975,192:1226
Manley Stanley Whittingham
1941 年 出 生 , 于 牛 津 大 学 BA (1964), MA (1967), 和 DrPhil(1968) 学 位 , 目 前 就 职 于 宾 汉 姆 顿 大 学 。 Dr. Whittingham是发明嵌入式锂离子电池重要人物,在与Exxon公司 合作制成首个锂电池之后,他又发现水热合成法能够用于电极材料的 制备,这种方法目前被拥有磷酸铁锂专利的独家使用权的Phostech 公司所使用。
锂离子电池保持性能最佳的充放电方式为浅充浅放。
锂离子电池性能参数指标
电池内阻
电池内阻是指电池在工作时,电流流过电池内部所受到的阻力。有欧姆内阻 与极化内阻两部分组成。电池内阻值大,会导致电池放电工作电压降低,放 电时间缩短。内阻大小主要受电池的材料、制造工艺、电池结构等因素的影 响。电池内阻是衡量电池性能的一个重要参数。

锂硫电池

锂硫电池
Lithium-sulfur Batteries 锂硫电池
Team members:
李露 郑云天 吴芮冰 赵晨 陈政翰
• • • • • •
Performance and principle
电池性能及原理(李 郑) 电池优缺点(吴)
Advantages and disadvantages Application and the market
Low potential
Disadvantages
Cyclical bad Active material loss
2015-5-6
Provide larger reaction area Prevensure enough of the active material in the electrode material
Production rules of threedimensional network structure, which is beneficial to form effective and conductive network and increase the porosity, stop the spread of the sulfur and improve the using rate of materials
2015-5-6
Application and the market 电池应用与市场
Applications
2015-5-6
Applications
• The lithium–sulphur battery (Li–S battery) is a rechargeable battery, notable for its high energy density. The low atomic weight of lithium and moderate weight of sulfur means that Li–S batteries are relatively light (about the density of water). They were demonstrated on the longest and highestaltitude solar-powered airplane flight in August 2008.

《锂电池基础知识》课件

《锂电池基础知识》课件
和成本等。
负极材料的选用也需要根据具 体的应用场景和电池需求进行
选择。
电解液
电解液是锂电池中传输锂离子的介质,对电池的充放电 性能和安全性具有重要影响。
常用的电解液包括有机溶剂、锂盐和其他添加剂等。
电解液的成分和性质决定了锂离子的传输速率和稳定性 。
电解液的选用应根据电池的具体需求进行选择,以确保 电池的安全性和性能。
循环寿命长
总结词
锂电池经过多次充放电循环后,性能衰减较低,寿命较长。
详细描述
锂电池的循环寿命通常在数百次以上,甚至可以达到上千次 ,远高于普通铅酸电池的循环寿命。
环境友好
总结词
锂电池不含铅、汞等有害物质,对环境友好。
详细描述
锂电池在生产、使用和废弃处理过程中对环境的影响较小,符合绿色环保的理 念。
《锂电池基础知识》 ppt课件
xx年xx月xx日
• 锂电池简介 • 锂电池的组成 • 锂电池的特性 • 锂电池的应用 • 锂电池的安全使用
目录
01
锂电池简介
锂电池定义
01
锂电池是一种由锂金属或锂合金 为负极材料、使用非水电解质溶 液的电池。
02
锂电池的锂含量较高,具有高能 量密度、高电压、自放电率低等 优点。
进行电池更换。
维护与保养
定期检查
应定期检查锂电池的外观、充电 口和电池连接线是否正常,是否
有损坏或松动。
正确充电
应使用正确的充电器为锂电池充电 ,并按照充电器的指示进行充电。 在充电过程中,应注意观察电池的 温度变化,避免过热。
避免深度放电
深度放电可能会对锂电池造成不可 逆的损害。因此,在使用过程中, 应尽量避免深度放电的情况发生。
总结词

锂电池基础知识培训课件(PPT 36张)

锂电池基础知识培训课件(PPT 36张)

注液
激光焊
卷绕
检测包装
配料工艺流程
正极 负极 负极干粉处理 正极干粉处理 负极筛粉 正极混干粉 负极搅拌
正极真空搅拌
负极筛浆料
正极筛浆料
正极拉浆
负极真空搅拌 负极拉浆
拉浆工艺流程
正、负极浆料 送带
上浆
烘烤
收带
正、负极裁片
裁片工艺流程
正极 负极 负极裁大片 正极裁大片 负极划线刮粉 正极划线刮粉 负极吸尘 正极片辊切 负极筛片辊切 正极称重分档 负极称重分档 正极制片 负极制片
制片工艺流程
正极真空烤烘 正极吸尘 正极片辊压 正极焊极耳 正极贴胶纸 正极吸尘 负极真空烤烘
负极片辊压
负极焊极耳 负极帖胶纸
负极冲压极耳
负极吸尘 卷绕
卷绕
卷绕工艺流程
正负极片 配片 隔膜 隔膜裁剪 套绝缘片并固定 入壳 负正极极耳点焊 卷绕 离芯入壳 测短路 压盖帽 底部超声焊 铝镍复合带
压芯 压底部胶纸
测短路 激光焊
激光焊工艺流程
上夹具
激光焊接
全检内阻
全检气密性
称重分级 注液
注液工艺流程
真空烘烤
注液 贴胶纸 称重 擦洗 套胶圈 化成
化成工艺流程
高温烘烤 压钢珠 清洗 高温储存 自检电压 铝镍复合片点焊 分成
测电压、贴不干胶,半成品入库
化成
检测包装工艺流 程
充电 全检电压
放电
全检内阻
反充电
全检尺寸 装盒、包装 客户


要消除这种效应有两种方法,一是采用小电流深度放电 (如用0.1C放至0V)一是采用大电流充放电(如1C)几次 镍氢电池和锂离子电池均无记忆效应

锂硫电池概述

锂硫电池概述

锂硫电池概述锂硫电池(LSBs)是一种以硫为正极活性物质,金属锂为负极的新型二次电池。

受益于硫相态变化的多电子反应,锂硫电池拥有高达1675mAhg-1和2600Whkg-1的理论比容量和比能量,相当于商用锂离子电池数倍,并且硫储量丰富、价格低、环境友好,因而锂硫电池被认为是极具开发潜力和应用前景的新一代二次电池技术。

一、锂硫电池的结构锂硫电池主要由硫正极、锂负极、隔膜和电解质等组成。

硫正极是由活性物质硫与导电剂及粘结剂等按照一定比例均匀混合制备而成;锂负极为普通商用锂片;正负极之间放置隔膜,隔膜材质为聚合物且具有多孔隙、不导电的特点,目的是选择性通过离子而隔绝电子;电解液为含硝酸锂的非水类电解液体系,为锂硫电池内部氧化还原反应提供液态环境。

下图展示了锂硫电池的结构。

二、锂硫电池的储能机理LSBs的工作原理是单质硫与锂离子之间发生的可逆氧化还原反应。

放电时负极反应为锂失去电子变为锂离子,正极反应为硫与锂离子及电子反应生成硫化锂,正极和负极反应的电势差即为锂硫电池所提供的放电电压。

在外加电压作用下,锂硫电池的正极和负极反应逆向进行,即为充电过程。

图1.2为电池充放电过程单质硫的可逆转化示意图,其中放电时大致包括以下反应过程:正极反应:图 1.2可以看出,放电曲线有两个较为明显的平台,分别位于2.4-2.1V和2.1-1.5V。

放电前,正极活性硫的初始状态为环形分子(S8),放电开始后,S8分子发生开环反应并与锂离子结合生成Li2S8分子(式1-1),随着反应的进行,Li2S8进一步与锂离子结合生成长链多硫化锂Li2S6和Li2S4(式1-2和1-3),这一过程对应位于2.4-2.1V的第一放电平台;长链多硫化锂在有机电解液中溶解并在隔膜两侧扩散迁移,随着电化学反应的继续进行,长链多硫化锂在反应过程中得到电子被还原为短链多硫化锂(Li2S2和Li2S)(式1-4和1-5),这个反应过程在放电曲线中对应于第二个较长的平台(2.1-1.5V附近),这一过程贡献了LSBs大部分的理论容量,因此第二平台的反应深度很大程度上决定了LSBs的性能。

锂硫电池

锂硫电池
锂硫电池
锂电池的一种
目录
01 充放电原理
03 解决方法
02 存在的问题 04 新进展
锂硫电池是锂电池的一种,截止2013年尚处于科研阶段。锂硫电池是以硫元素作为电池正极,金属锂作为负 极的一种锂电池。单质硫在地球中储量丰富,具有价格低廉、环境友好等特点。利用硫作为正极材料的锂硫电池, 其材料理论比容量和电池理论比能量较高,分别达到 1675m Ah/g和 2600Wh/kg,远远高于商业上广泛应用的钴 酸锂电池的容量(<150mAh/g)。
新进展
近几十年来,为了提高活性物质硫的利用率,限制多硫化锂的溶解以及电池循环性能差的问题,研究者在电 解质及复合正极材料改性等方面进行了大量探索研究。对于电解质的改性,主要是采用固体电解质、凝胶电解质 或在电解液中添加LiNO3离子液体等措施,以限制电极反应过程中产生的多硫化锂溶解和减小“飞梭效应”,提 高了活性物质硫的利用率,从而达到改善锂硫电池的循环性能的目的。对于硫基复合正极材料的改性,主要是将 具有良好导电性能及特定结构的基质材料与单质硫复合制备高性能的硫基复合正极材料。其中,引入的基质材料 应具有以下功能:
(1)良好的导电性;
(2)活性物质硫可以在基质材料上均匀分散,以确保活性物质的高利用率;
(3)要对硫及多硫化物的溶解具有抑制作用。研究发现,通过将活性物质硫与活性炭、介孔碳、纳米碳纤维 (CNF)、多壁碳纳米管(MWCNTs)、石墨烯、聚丙烯腈(PAN)、聚苯胺(PAn)、聚吡咯(PPy)、聚噻吩 (PTh)等具有特定结构的基质材料制备硫基复合正极材料,可以显著改善锂硫电池的循环性能和倍率性能。
2014年8月22日,中科院大连化物所陈剑研究员带领先进二次电池研究团队,在高比能量锂二次电池方面取 得重要进展,研制成功了额定容量15Ah的锂硫电池,并形成了小批量制备能力。

锂电池课件ppt

锂电池课件ppt

常见问题与解决方案
问题1
电池充不进电。解决方案:检查充电设备是否正常,更换 充电器或充电线;检查电池是否老化或损坏,更换电池。
问题3
电池膨胀或变形。解决方案:立即停止使用该电池,避免 发生危险;联系专业人员处理或更换电池。
问题2
电池续航时间变短。解决方案:检查电池是否过载或老化 ,减轻负载或更换电池;检查电池是否受到高温或低温影 响,保持适宜的工作环境温度。
CHAPTER
04
锂电池的充电与使用
充电方式与注意事项
充电方式
锂电池的充电方式主要有恒流充电、恒压充电和脉冲充电三种。恒流充电是指以恒定电流对电池进行 充电;恒压充电是指以恒定电压对电池进行充电;脉冲充电则采用间歇性的电流脉冲对电池进行充电 。
注意事项
在充电过程中,需要注意控制好充电电流和充电时间,避免过充或欠充。同时,要选择合适的充电设 备,确保充电安全。
负极材料
负极材料是锂电池中储存和释放锂离子的场所,常用的负极 材料包括石墨、钛酸锂等。负极材料的性能直接影响电池的 首次效率、循环寿命和安全性能。
负极材料的制备方法主要包括机械粉碎法、化学气相沉积法 、溶胶凝胶法等。制备过程中需注意控制温度、气氛、反应 时间等参数,以保证材料的晶体结构和纯度。
电解液
安全使用与维护
安全使用
在使用锂电池时,需要注意避免过载、短路、高温等危险情况。过载可能导致电池发热、膨胀甚至爆炸;短路可 能导致电池瞬间释放大量能量,引发火灾;高温则可能加速电池老化,降低电池性能。
维护建议
为了保持锂电池的性能和寿命,建议定期进行电池检查和维护。包括检查电池外观、清洁电池表面、保持电池干 燥、避免过度放电或充电等。
和更高的充电功率。

锂硫电池研究进展(课堂PPT)课件

锂硫电池研究进展(课堂PPT)课件
3
课题背景及意义
锂硫电池:成本低、环境友好、材料来源充足、 理论比容量(1675 mAh g- 1 )和比能量(2500 Wh kg- 1)大
4
课题背景及意义
Li/S电池主要结构
5
存在问题: 1 、S的绝缘性。 2、多硫化物溶解造成活 性物质流失和Li负极的活 性降低,从而导致循环寿 命降低。 3 、S在放电过程中体积发 生膨胀,使结构稳定性发 生破坏。
11
国内外研究现状
4 采用全固态结构电池
国内外研究现状
5 采用电化学控制的测试手段
国内外研究现状
6 改进电池其他结构
国内外研究现状
通过对这些文献的分析发现一个普遍的问题,就是 大多研究只追求了高的放电比容量和长的循环寿命, 而忽视了电池材料硫含量和极片硫载量 (“双低”问题 )。
15
Thank You !
主要内容
1
课题背景及意义
2
国内外研究现状
3
目的内容及方

4 方案依据及已经取得的进展
1
课题背景及意义
在强大的社会发展需求推动下,锂二次电池技术不断向高能量
密度、高功率密度、和长循环寿命等几个方向发展
输出电压高
能量密度高
使用寿命长
锂离子 电池
自放电率低
环境友好
易携带
2ቤተ መጻሕፍቲ ባይዱ
课题背景及意义
目前己商品化的锂离子电池的能量密度已达150-200 Wh/kg。但受到LiCoO2,LiMn204和LiFeP04等传统正 极材料和碳负极材料自身理论容量的限制,很难进一 步提升其能量密度。
9
国内外研究现状
v3纳米线导电网络
也有以带孔的碳纳米线为载体合成的正 极活性材料。具体方法是将溴化十六烷 基三甲铵加入HCl之后,再加入 (NH4)2S2O8 ,搅拌,降温到0-5度。形 成吡咯单体纳米线 10 干燥后600度热处
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复杂,反应机理不明确。
.
8
研究现状
.
9
研究现状
1. 添加一种或多种电子导体与硫复合,达到提高导电性的目的。 2. 通过设计导电相的结构使其具有吸附多硫化物的能力,或者改进电池电
解液体系。 3. 锂负极的保护。
.
10
硫正极的改性
• 硫正极的改性主要包括硫与导电材料的复合、纳米金属氧化物对硫单质 的包覆等,以达到提高硫正极导电率、抑制多硫化物溶解的目的。
充电:Li2S电解
正极 硫/硫化物
Li+
负极 锂/储锂材料
.
6
研究现状
➢ 自2009年起,日本新能源产业技术综合开发机构每年投入300亿日元(约合24亿元人民币) 的研发预算,目标是在2020年使锂硫电池的能量密度达到500Wh/kg。
➢ 美国能源部2011年投入500万美元资助锂硫电池的研究,计划2013年能量密度达到 500Wh/kg。
起着很大的作用。
.
12
正极粘结剂
• 1)水溶性的动物胶。 • 2)环糊精作为黏结剂,硫-聚丙烯腈复合材料作为正极。 • 3)除用基础黏结剂外还采用含有聚环氧乙烷、聚环氧丙烷等氧化聚合物作
为第二黏结剂。
.
13
电解质体系
• 锂硫电池要求电解液具有高电导率、宽电化学窗口和对锂化学稳定等。锂 硫电池电解质体系分为液态有机电解液和全固态陶瓷电解质。
.
15
全固态电解质
• 聚合物电解质的使用温度一般为70-100℃,而全固态无机电解质的使用温 度范围可以更广,且不会溶解多硫化物,可用于锂硫电池的全固态无机电解 质的研究主要集中于硫化物玻璃。
➢ 高能球磨法 ➢ 柠檬酸络合法
.

16
负极研究进展
• 实际应用中锂负极存在以下问题: ➢ 锂负极的充放电效率低、循环性能差 ➢ 由于锂表面的不均匀性,在表面可能会生成锂枝晶,造成安全性问题。 • 因此对锂金属电极进行表面修饰非常必要。
➢ 硫/碳复合材料
10-60次循环后比容量500-1000mAh/g
➢ 硫/碳纳米管复合物 60次循环后比容量500-700mAh/g
➢ 硫/聚合物复合材料 较50次循环后290mAh/g有所改善
➢ 硫/金属氧化物复合材料 30-80次循环后350-700mAh/g
.
11
正极黏结剂的研究
• 高性能的硫正极应具备以下条件: a) 活性物质硫与导电相间紧密接触 b) 电极与电解质间的界面稳定 • 硫与导电相间的接触除了与导电相本身的结构相关外,黏结剂的性能也
.
17
负极研究进展
• 在含有乙二醇二甲基丙烯酸酯的有机溶液中,以甲基苯甲酰甲酯为光引发 剂,在紫外光辐照下发生聚合,在金属锂表面生成一层厚约10μm的保护层。
• 为了避免锂枝晶生长或者锂的界面阻抗对电池循环性能的影响,在Li/S电池 中选择传统的锂离子嵌入脱出型的负极.
.
18
.
19
前景展望
➢ 在保证硫极导电性的同时,提高正极中硫的含量。 ➢ 设计稳定的导电结构,防止在充放电过程中硫正极的结构失效。 ➢ 对于液态电解液体系,开发出对硫极和锂金属兼容性都好的新型电解液。 ➢ 对于全固态电池体系发展高密度和室温高电导率的固态电解质。
单质硫的理论比容量为1675mAh/g,来源丰富、价格便宜且对环境友好,与
料金属是锂目组前成研的究锂的硫电热池点理论比容量达2600Wh/kg,相当于锂离子电池的5倍。
.
5
基本原理
• 锂硫电池:采用硫或含硫化合物作为正极,锂或储锂材料作为负极,以硫-硫键 的断裂/生成来实现电能与化学能相互转换的一类电池体系。
.
20
参考文献
1)梁宵, 温兆银, 刘宇. 高性能锂硫电池材料研究进展[J]. 化学进展, 2011, 23(0203): 520-526.
2)
3)
4) 5)
.
21
仪器预约
• 上海理工大学材料学院>仪器共享>预约系统
.
22
•Thank You!
.
23
.
14
液态有机电解液
• 研究发现线形或环形醚类物质如四氢呋喃(THF)、二甲醚(DME)、四乙二 醇二甲醚(TEGDME)、二氧五环(DOL)等具有较高的多硫化物溶解能力,其中 DOL既可以降低电解液的黏度,也可以在锂负极表面形成保护层。单一的 线形醚类作溶剂时会过多地溶解多硫化物而导致电解液黏度过大,一般为 两种或三种溶剂配合使用。
• (1)无论是“荷电态”的单质硫还是“放电态”的硫化锂,都是绝缘体,对传递电荷造成很大的困扰; • (2)硫化锂可逆性差,很容易失去电化学活性; • (3)反应过程中,正负极材料的体积变化巨大负极锂被消耗而使体积缩减,同时正极将膨胀,巨大的体
积变化会破坏电极结构; • (4)中间产物多硫化物易溶解在电解质中,并向负极迁移,造成活性物质损失和较大的能量损耗 ; • (5)锂硫电池在充放电过程中生成多种中间产物,且多种化学反应伴随电化学反应同时发生,过程极其
➢ 国际上锂硫电池的代表性厂商有美国的Sion Power、Polyplus、Moltech,英国Oxis及韩 国三星等。
Sion Power公司的软包装锂硫电池,比能量达 到350-380Wh/kgm活性物质硫的利用率达到75 %。
.
7
研究现状
• 锂硫电池的研究已经历经了几十年,并且取得了许多成果,但离实际应用还有不小距离。仍有以下问题有 待解决:
锂硫电池
.
上海理工大学
1
锂硫电池
.
2
.
4
锂离子电池发展现状
➢ 负极材料:新型的硅基和锡基等材料分别可达到大于2000和 990mAh/g。
➢ 正极材料:无论是层状结构的三元材料、聚阴离子型的LiFePO4还 是尖晶石结构的LiMn2O4,理论比容量都小于200mAh/g。
➢ 因此,寻找和开发新型高比容量和高比能量的安全、廉价正极材
相关文档
最新文档