2015年郑州市九年级第一次质量预测-数学试卷及答案(word版)

合集下载

2015年郑州市第一次质量预测数学模拟试题1(一)

2015年郑州市第一次质量预测数学模拟试题1(一)

2015年郑州市第一次质量预测数学模拟试题(一)(满分120分,考试时间100分钟)1、( 2014•珠海,第1题3分)﹣的相反数是( ) A .2 B .C . ﹣2D . ﹣2、(2014•呼和浩特,第4题3分)如图是某几何体的三视图,根据图中数据, 求得该几何体的体积为( ) A .60π B .70π C .90π D .160π 3、(2014•毕节地区,第3题3分)下列运算正确的是( ) A π﹣3.14=0B .+=C .a •a =2a D .a 3÷a =a 2 4、(2014年云南省,第8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表: 成绩(分)9.40 9.50 9.60 9.70 9.80 9.90 人数235431则入围同学决赛成绩的中位数和众数分别是( ) A . 9.70,9.60B . 9.60,9.60C . 9.60,9.70D . 9.65,9.605、2015年某市的旅游收入约为359.8万元,用科学记数法表示旅游收入为( )元A .3.598×102B .3.598×106C .3.598×105D .35.98×1056、(2014•菏泽,第6题3分)已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( )A . 1B . ﹣1C . 0D . ﹣27、(2014•孝感,第18题3分)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是 ( )A.(3,4).B (7,8).C (15,16).D.(63,32) 8、(2014•甘肃兰州)如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于对角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t (秒),下列能反映S 与t 之间函数关系的图象是( ) A .B .C .D .二、填空题(本题共7个小题,每小题3分,共21分)9、( 2014•安徽省,第6题4分)设n 为正整数,且n <<n +1,则n 的值为 .10、(2014•滨州)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是.11、(2014•四川内江,第5题,5分)有6张背面完全相同的卡片,每张正面分别有三角形、平行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀,从中任取两张卡片,抽中正面画的图形是中心对称图形的概率为.12、(2014•扬州)若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是13、(2014·新疆)如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值为14、(2013·温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC ⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标为15、(2013·玉林)如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有____个,写出其中一个点P的坐标是三、解答题(本大题共8个小题,满分75分)16、(2014•毕节地区,第22题8分)先化简,再求值:(﹣)÷,其中a2+a﹣1=0..17、(2014•山东烟台,第20题7分)2014年世界杯足球赛6月12日﹣7月13日在巴西举行,某初中学校为了了解本校2400名学生对本次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”、“一般关注”、“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.18、(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?19、(2014•泰州,第22题,10分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20、(2014•广东,第23题9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.21、如图,有一座抛物线型的拱桥,在正常水位时,桥下水面宽AB =20m ,当水位上升3m 时,水面宽CD =10m .(1)在如图所示的平面直角坐标系中,求此抛物线的函数表达式;(2)有一条船以5km/h 的速度向此桥驶来,当船距离此桥35km 时,桥下水位正好在AB 处,之后水位每小时上涨0.25m ,当水位达到CD 处时,将禁止船只通行.如果该船按原来的速度行驶,那么它能否安全通过此桥?y xDCBAO22.(10分)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1,若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 的中点,点P 是线段AC 上的动点,在△A BC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.23.(11分)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是1x =-. (1)求抛物线对应的函数关系式.(2)动点Q 从点O 出发,以每秒1个单位长度的速度在线段OA 上运动,同时动点M 从O 点出发以每秒3个单位长度的速度在线段OB 上运动,过点Q 作x 轴的垂线交线段AB于点N ,交抛物线于点P ,设运动的时间为t 秒.①当t 为何值时,四边形OMPQ 为矩形?②△AON 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.。

2015年河南省郑州中考数学试卷及答案

2015年河南省郑州中考数学试卷及答案

2015年河南初中学业水平暨高级中等学校招生考试试题数 学注意事项:1. 本试卷共6页,三个大题,总分值120分,考试时间100分钟。

2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题〔每题3分,共24分〕以下各小题均有四个答案,其中只有一个是正确的。

1. 以下各数中最大的数是〔 〕 A . 5 B .3 C . π D . -82. 如下列图的几何体的俯视图是〔 〕3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为〔 〕A . 4.0570×109B . 0.40570×1010C . 40.570×1011D . 4.0570×1012 4. 如图,直线a ,b 被直线e ,d 所截,假设∠1=∠2,∠3=125°,则∠4的度数为〔 〕A . 55°B . 60°C .70°D . 75°5. 不等式组⎩⎨⎧>-≥+13,05x x 的解集在数轴上表示为〔 〕CDBA正面 第2题dc ba第4题-52-52-52 0 -520 CDBA6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,假设依次按照2:3:5的比例确定成绩,则小王的成绩是〔 〕 A . 255分 B . 84分 C . 84.5分 D .86分7. 如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,假设BF =6,AB =5,则AE 的长为〔 〕 A . 4 B . 6 C . 8 D . 108. 如下列图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点PA.〔2014,0〕 B .〔2015,-1〕 C . 〔2015,1〕 D . 〔2016,0〕二、填空题〔每题3分,共21分〕 9. 计算:(-3)0+3-1= .10. 如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE //AC ,假设DB =4,DA =2,BE =3,则EC = . 11. 如图,直线y =kx 与双曲线)0(2>=x xy 交于点 A 〔1,a 〕,则k = .12. 已知点A 〔4,y 1〕,B 〔2,y 2〕,C 〔-2,y 3〕都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是 . 13. 现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片反面朝上洗匀,从中随机抽取一张后放回,再 反面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数 字不同的概率是 .EFCDBG A第7图第8题E C DBA第10题第17题14. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径 作CD 交OB 于点D ,假设OA =2,则阴影部分的面积为 .15. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在B ′处,假设△CDB ′恰为等腰三角形,则 DB ′的长为 .三、解答题〔本大题共8个小题,总分值75分〕16.〔8分〕先化简,再求值:)11(22222a b b a b ab a -÷-+-, 其中15+=a ,15-=b .17.〔9分〕如图,AB 是半圆O 的直径,点P 是半圆上 不与点A 、B 重合的一个动点,延长BP 到点C ,使 PC =PB ,D 是AC 的中点,连接PD ,PO . 〔1〕求证:△CDP ∽△POB ; 〔2〕填空:① 假设AB =4,则四边形AOPD 的最大面积为 ; ② 连接OD ,当∠PBA 的度数为 时,四边形BPDO 是菱形.第14题EFCD B A 第15B18.〔9分〕为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图。

郑州市2015-2016学年九年级第一次质量预测数学试卷含解析

郑州市2015-2016学年九年级第一次质量预测数学试卷含解析

根据平行线判定条件,内错角相等,两直线平行,选 D
【答案】D
5.下列计算正确的 是( )

A.a3÷a 2=a
B.( - 2a2 )3=8a6
C.2a2 +a2 =3a4
D.( a - b )2=a2 - b2
【考点】幂的运算
【试题解析】
同底数幂乘或者除,底数不变,指数相加减,所以选 A
【答案】A
6.在下列调查中,适宜采用普查方式的是( )
河南省郑州市 2015—2016 学年九年级第一次质量预测数学试卷
一.选择题(每小题 3 分,共 24 分)
1.在:-1,0,2, 2 四个数中,最大的数是 ( )
A.-1
B.0
C.2
【考点】实数大小比较
【试题解析】
D. 2
正数比 0 和负数大,所以在 C 和 D 中选, ≈1.414<2,所以选 C
A.了解全国中学生的视力情况
B.了解九(1)班学生鞋子的尺码情况
C.监测一批电灯泡的使用寿命
D.了解郑州电视台《郑州大民生》栏目的收视率
【考点】数据的收集与整理
【试题解析】
采用普查方式,一般是调查对象比较少,而且不是像灯泡一样是损耗的,所以选 B
【答案】B
7.抛物线 y=(x﹣1)2+2 的顶点坐标是( ) A.(-1,2) B.(-1,- 2) C.(1,-2) D.(1,2) 【考点】二次函数的图像及其性质
【试题解析】 根据二次函数的顶点式,二次函数的顶点坐标是(1,2),选 D
【答案】D 8.如图,矩形 ABCD 中,AB=4,AD=6,延长 BC 到点 E,使 CE=2,连接 DE,动点 P 从点 B 出发,以 每秒 2 个单位的速度沿 BC-CD-DA 向终点 A 运动,设点 F 的运动时间为 t 秒,当 t 的值为( )秒时, △ABP 和△DCE 全等。 A.1 B.1 或 3 C.1 或 7 D.3 或 7

2015年郑州市九年级第一次质量预测-数学试卷及答案(word版)

2015年郑州市九年级第一次质量预测-数学试卷及答案(word版)

2015年九年级第一次质量预测数学试题卷注意事项:本试卷分试题卷和答题卡两部分,考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(−b2a ,4ac−b24a).一、选择题(每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组数中,互为相反数的两个数是A.−3和+2 B.5和15C.−6和6 D.−13和122.如图所示的几何体是由一个正方体切去一个小正方体形成的,从正面看到的平面图形为3.黄河农场各用10块面积相同的试验田种植甲、乙两种麦子,收获后对两种麦子产量(单位:吨/亩)的数据统计如下:x甲=0.61,x乙=0.59,S甲2=0.01,S乙2=0.002,则由上述数据推断乙种麦子产量比较稳定的依据是A.x甲>x乙B.S甲2>S乙2C.x甲>S甲2D.x乙>S乙24.下列各式计算正确的是A.2a+a=3a2B.(−b3)2=−b6C.c2∙c3=c5D.m−n2=m2−n25.如图,∆ABC中,BE、CF分别是么∠ABC、∠ACB的角平分线,∠A=50°,那么∠BDC的度数为A.105°B.115°C.125°D.135°6.第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有3名来自莫斯科国立大学,有5名来自圣彼得堡国立大学,现从这8名志愿者中随机抽取1人,这名志愿者来自莫斯科国立大学的概率是A.14B.15C.18D.387.如图,D 是△ABC 内一点,BD ⊥CD ,AD =12,BD =8,CD =6,E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点,则四边形EFGH 的周长是 A .14 B .18 C .20 D .228.观察二次函数y =ax 2 +bx +c (a ≠0)的图象,下列四个结论中: ①4ac −b 2>0;②4a +c <2b ;③b +c <0;④n (an +b ) −b <a (n ≠1). 正确结论的个数有A .4个B .3个C .2个D .1个二、填空题(每小题3分,共21分) 9.计算2sin30°=________.10.中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为________. 11.请你写出一个大于1而小于5的无理数________.12.在平面直角坐标系中,直线y = − 2x +11与直线y =13x +53导的交点坐标为(4,3),则方程 2x +y =11x −3y =−5的解为________.13.冯老师为了响应市政府“绿色出行”的号召,上下班方式由自驾车改为骑自行车.已知冯老师家距学校15 km ,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多13h .如果设骑自行车的速度为x km/h ,则由题意可列方程为________.14.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB =2,BC =3,则△FCB'与△B'DG 的面积之比为________. 15.在平面直角坐标系中,已知点A (-4,2),B (-2,-2),以原点O 为位似中心,把△ABO 放大为原来的2倍,则点A 的对应点A'的坐标是________.三、解答题(本大题共8个小题,共75分)16.(本题8分)课堂上,王老师出了这样一道题:已知x = 2015 −5 3,求代数式x 2−2x +1x 2−1÷ 1+x−3x +1 的值,小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与x 无关”,解答过程如下:原式= x−1 2x +1 x−1 ÷x +1+x−3x +1………………①=x−1x +1÷………………②=x−1x +1×x +12 x−1 …………………………③ =12……………………………………④当x=2015−5=1.2(1)从原式到步骤①,用到的数学知识有:________________;(2)步骤②中的空白处的代数式为:________________;(3)从步骤③到步骤④,用到的数学知识有:________________.17.(本题9分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图和表格.已知A、B两组户数直方图的高度比为1:5,请结合图表中相关数据回答下列问题:(1)A组的频数是,本次调查样本的容量是________;(2)补全直方图(需标明C组频数)________;(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?18.(本题9分)如图1,小颖将一组对边平行的纸条沿EF折叠,点A、B分别落在A'、B’处,线段FB'与AD交于点M.(1)如图1,△MEF的形状是________;(2)如图2,小颖又将纸条的另一部分CFMD沿MN折叠,点C、D分别落在C'、D'处,且使MD'经过点F,请你猜想四边形MNFE的形状,并说明理由;(3)当∠BFE=________度时,四边形MNFE是菱形.19.(本题9分)住在郑东新区的小明想知道“中原第一高楼”有多高,他登上了附近的另一个高层酒店的顶层某处,已知小明所处位置距离地面有160米高,测得“中原第一高楼”顶部的仰角为37°,测得“中原第一高楼”底部的俯角为45°,请你用初中数学知识帮助小明解决这个问题.(请你画出示意图,并说明理由.)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0. 75).(k1<0)与一次函y2=k2x+1(k2≠0)相20.(本题9分)如图,已知反比例函数y1=k1x交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值小于一次函数y2的值.21.(本题10分)某旅馆有客房120间,每间房的日租金为160元,每天都客满,旅馆装修后要提高租金,经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金总收入增加多少元?22.(本题10分)如图①,正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上.(1)求S∆DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S∆DBF;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S∆DBF存在最大值与最小值,请直接写出最大值,最小值.23.(本题11分)已知抛物线y=ax2 +bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,OB=2,OC=8,抛物线的对称轴是直线x=−2.(1)求抛物线的表达式;(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(3)在(2)的基础上,试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标;若不存在,请说明理由.2015年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分)1. C2. A3. B4. C5. B6. D7. D8. C 二、填空题(每小题3分,共21分)9. 1; 10. ; 11. 答案不唯一,如12. ;13.; 14. 16:9 ; 15.(,)或(,). 三、解答题(本大题共8小题,共75分) 16.解:(1)因式分解,通分,分解因式中的完全平方公式和平方差公式,分式的基本性质; (写对一个即可)……………… 3分 (2)(或);………6分 (3)约分(或分式的基本性质). ………………8分17. 解:(1)A 组的频数是: 2 ;调查样本的容量是: 50 ; ……………………… 4分(2)C 组的频数是:50×40%=20,如图.…………………6分(3)∵ 1500×(28%+8%)=540,∴ 全社区捐款不少于300元的户数是540户.…………………9分 18. 解:(1)△MEF 是等腰三角形;…………… 2分 (2)四边形MNFE 为平行四边形,…………… 3分 理由如下:∵AD ∥BC , ∴∠MEF=∠EFB .由折叠知∠MFE=∠EFB , 故∠MEF=∠MFE . ∴ME =MF ,同理NF =MF .…………… 5分 ∴ME =NF . 又∵ME ∥NF ,∴四边形MNFE 为平行四边形.…………… 7分 (3) 60.…………… 9分8210⨯π43x y =⎧⎨=⎩1515123x x -=A '8-4A '84-221x x -+2(1)1x x -+19.解:如图所示,…………… 2分AB 代表小明所处位置到地面的距离,即米, CD 代表“中原第一高楼”, ………………… 3分 作AE ⊥CD 于点E.由题意可知,四边形ABDE 是矩形,所以米. 在Rt △ADE 中,∵,, ∴,∴.…………… 5分 在R t △AEC 中,∵,,∴,∴,…………… 7分 ∴(米), ∴“中原第一高楼”高米. ……………9分20.解:(1)∵点在的图象上,S △ACO =1,∴,又∵,∴. ∴反比例函数的表达式为.……………2分 设点(,),, ∵在R t △AOC 中,,∴, ∵, ∴. ∴(,).∵点(,)在上,∴,∴. ∴一次函数的表达式为. ……………5分 (2)点坐标为(,),……………7分 观察图象可知,当或时,反比例函数的值小于一次函数的值. …………… 9分21.设每间客房的日租金提高10x 元,则每天客房出租数会减少6x 间.设装修后客房日租金总收入为y ,……………1分则y =(160+10x )(120-6x ),……………4分即y =-60(x -2)2+19 440. ∵x ≥0,且120-6x >0, ∴0≤x <20.当x =2时,y max =19 440. ……………7分这时每间客房的日租金为160+10×2=180(元). ……………8分装修后比装修前日租金总收入增加19 440-120×160=240(元). ……………9分160AB =160AB DE ==tan DEDAE AE∠=160DE =160tan 451AE==160AE =tan CEAEC AE∠=160AE =tan 370.75160CE ==120CE =120160280CD CE DE =+=+=280A 11ky x=1212k =⨯=10k <12k =-12y x=-A a 2a-0a <tan 2ACAOC OC ∠==22a a-=-0a <1a =-A 1-2A 1-2221y k x =+221k =-+21k =-21y x =-+B 21-1x <-02x <<1y 2y答:每间客房的日租金提高到180元时,客房日租金的总收入最高;装修后比装修前日租金总收入增加240元. ……………10分22. 解:(1)∵点在上, ∴∴……………3分 (2)连结, 由题意易知,∴.…………… 6分(3);.…………… 10分 23. 解:(1)∵点B 在轴的正半轴上,点在轴的正半轴上,,,∴点B 的坐标为(2,0),点C 的坐标为(0,8). ……… 2分 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2, ∴由抛物线的对称性可得点A 的坐标为(-6,0). ∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上, ∴c =8,将A (-6,0)、B (2,0) 分别代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧0=36a -6b +80=4a +2b +8 ⎩⎨⎧a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83x +8. ………3分(2)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,由勾股定理得AC =10,∵EF ∥AC , ∴△BEF ∽△BAC . ∴ EF AC =BEAB .即EF 10=8-m8 . ∴EF =40-5m 4.过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45.∴FG EF =45. ∴ FG =45×40-5m 4=8-m . ∴ S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=-12m 2+4m .…………… 7分自变量m 的取值范围是0<m <8. …………… 8分 (3)存在. …………… 9分理由:∵ S =-12m 2+4m =-12(m -4)2+8,且-12<0,∴ 当m =4时,S 有最大值,S 最大值=8.此时,点E 的坐标为(—2,0) …………… 11分F AD AF =3DF =119(3222DBF S DF AB =⨯⨯=-=-△××3AF AF BD ∥92DBF ABD S S ==△△15232x C y 2OB =8OC =。

河南省郑州市2015届九年级第一次质量测评(一模)数学试

河南省郑州市2015届九年级第一次质量测评(一模)数学试

2015年郑州市九年级第一次质量预测模拟(数学)(答案)一、选择题(每题3分,共24分)题号12345678答案D C B D A B C B二、填空题(每题3分,共21分)题号9101112131415答案485621x-<<-19321或2三、解答题(本大题8分,共75分)16.原式=====,∵x2﹣1≠0,x+3≠0,x﹣1≠0,x+1≠0,∴取x=2,代入得:原式==.17. 解:(1)本次抽样测试的学生人数是:124030%=(人),故答案为:40;(2)根据题意得:360°×640=54°,C级的人数是:40﹣6﹣12﹣8=14(人),如图:(3)根据题意得:3500×840=700(人),(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)=612=12.18. 解:设CD 为x 米. ∵∠ACD=90°,∴在直角△ADC 中,∠DAC=30°,AC=CD ÷tan30°=3x , 在直角△BCD 中,∠DBC=45°,BC=CD=x ,BD=2x 37x x -=又∵2≈1.414,3≈1.732, ∴x=10米,则小明此时所收回的风筝的长度为:AD-BD=2x-2x 所以x=6米19.20. 证明:在正方形ABCD 中,AB=BC ,∠ABC=∠B, 在△ABM 和△B CP 中, AB BC ABC B CP BM =⎧⎪∠=∠⎨⎪=⎩, ∴△ABM ≌△BCP (SAS ), ∴AM=BP ,∠BAM=∠CBP , ∵∠BAM+∠AMB=90°, ∴∠CBP+∠AMB=90°, ∴AM ⊥BP ,∵AM 并将线段AM 绕M 顺时针旋转90°得到线段MN , ∴AM ⊥MN ,且AM=MN , ∴MN ∥BP ,∴四边形BMNP 是平行四边形; (2)解:BM=MC .理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°, ∴∠BAM=∠CMQ , 又∵∠B=∠C=90°, ∴△ABM ∽△MCQ , ∴AB MC =AM MQ , ∵△MCQ ∽△AMQ , ∴△AMQ ∽△ABM , ∴AB AM BM MQ =, ∴AB AB MC BM =, ∴BM=MC .21. 根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,. 所求一次函数的表达式为120y x =-+.⑵22(60)(120)1807200(90)900W x x x x x =-⋅-+=-+-=--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤, ∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元. ⑶由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,. 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤. 22. 解析:(2)AE=CD ,AE ⊥CD , ∵∠DBE=∠ABC=90°, ∴∠ABE=∠DBC , 在△AEB 和△CDB 中,∴△AEB ≌△CDB ,∴AE=CD ,∠EAB=∠DCB ,∵∠DCB+∠COB=90°,∠AOK=∠COB , ∴∠KOA+∠AOK=90°, ∴∠AKC=90°, ∴AE ⊥CD ;(3)AE=1kCD ,AE ⊥CD ,∵BC=kAB ,DB=kEB ,∴ABBC=BEBD=1k,∴BE BD AB BC=,∵∠DBE=∠ABC=90°,∴∠ABE=∠DBC,∴△AEB∽△CDB,∴1AE ABCD BC k==,∠EAB=∠DCB,∴AE=1k CD,∵k>1,∴AE≠CD,∵∠DCB+∠COB=90°,∠AOK=∠COB,∴∠KAO+∠AOK=90°,∴∠AKC=90°,∴AE⊥CD.23. 解:(1)令y=0,解得x1=﹣1或x2=3,∴A(﹣1,0),B(3,0),将C点的横坐标x=2,代入y=x2﹣2x﹣3,得:y=﹣3,∴C(2,﹣3);∴直线AC的函数解析式是:y=﹣x﹣1;(2)设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣12)2+94,∴当12x=时,PE的最大值=94;(3)存在4个这样的点F,分别是:F1(1,0),F2(﹣3,0),F3(4+,0),F4(4﹣,0).①如图1,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图2,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图3,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中,即可得出G点的坐标为(1±,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为:y=﹣x+h,将G点代入后,可得出直线的解析式为:y=﹣x+7.因此直线GF与x轴的交点F的坐标为:(4+,0);④如图4,同③可求出F的坐标为:(4﹣,0);综合四种情况可得出,存在4个符合条件的F点. .。

2015年初三一模数学试卷及 答 案

2015年初三一模数学试卷及 答 案
2
2
21.已知关于 x 的一元二次方程 x 2 x 3 m 0 有两个实数根.
2
(1)求 m 的取值范围; (2)若 m 为符合条件的最小整数,求此方程的根. 22.列方程或方程组解应用题: 小辰和小丁从学校出发,到离学校 2 千米的“首钢篮球馆”看篮球比赛.小丁 步行 16 分钟后,小辰骑自行车出发,结果两人同时到达.已知小辰的速度是 小丁速度的 3 倍,求两人的速度. 四、解答题(本题共 20 分,每小题 5 分) 23.如图,菱形 ABCD 中, E , F 分别为 AD ,
2014—2015 学年初三统一练习暨毕业考试
数 学 试 卷
学校
考 生 须 知
班级
姓名
1.本试卷共 7 页,共五道大题,29 道小题.满分 120 分,考试时间 120 分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个 是符合题意的. .. 1. 3 的绝对值是 A. 3 B.
10.在平面直角坐标系 xOy 中,四边形 OABC 是矩形,且 A , C 在坐标轴上,满 足 OA 3 ,OC 1 . 将矩形 OABC 绕原点 O 以每秒 15 的速度逆时针旋 转.设运动时间为 t 秒 0 t 6 ,旋 转过程中矩形在第二象限内的面积为
S 3 3 2
E
A F G B
D
AB 上的点,且 AE AF ,连接 EF 并延
水费为
元.

2015年郑州市第一次质量预测数学模拟试题2(二)

2015年郑州市第一次质量预测数学模拟试题2(二)

D C B A 图52015年郑州市第一次质量预测数学模拟试题(二)(满分120分,考试时间100分钟)一、选择题(共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、(2014•益阳,第1题,4分)四个实数﹣2,0,﹣,1中,最大的实数是( )2、(菏泽)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .3、(2014•菏泽,第3题3分)下列计算中,正确的是( ) .=±34、(2014•呼和浩特,第2题3分)以下问题,不适合用全面调查的是( ) )人(保留两个有效数字)A .7.2×101 B .7.163×105 C .0.72×106 D .7.2×1056、(2014·滨州)a ,b 都是实数,且a <b ,则下列不等式的变形正确的是( )A .a +x >b +xB .-a +1<-b +1C .3a <3b D.a2> b27、(2012·绍兴)在如图所示,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A ′(5,-1)处,则此平移可以是()A .向右平移5个单位,向下平移1个单位B .向右平移5个单位,向下平移3个单位C .向右平移4个单位,向下平移1个单位D .向右平移4个单位,向下平移3个单位8、(2013葫芦岛市)如图矩形ABCD 的对角线交于点O ,∠BOC=60°,AD=3.动点P 从点A 出发,沿折线AD-DO 以每秒1个单位的速度运动到点O 停止,设运动时间为x 秒,y=S △POC ,则y 与x 的函数关系式为( )(二、填空题(本题共7个小题,每小题3分,共21分)9的立方根是 .10、如图,直线m ∥n ,将含有45°角的三角板ABC 的直角顶点C 放在直线n 上,则∠1+∠2等于 .11、( 2014年河南.)一个不进明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 . 12、(2014•孝感,如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =经过斜边OA 的中点C ,与另一直角边交于点D .若S △OCD =9,则S △OBD 的值为 .13、(2013葫芦岛市)如图所示,一段抛物线C 1:y=-x(x -3)(0≤x ≤3)与x 轴相交于点O ,A 1;将C 1向右平移得到第二段抛物线C 2,交x 轴于点A 1,A 2;再将C 2向右平移得到第三段抛物线C 3,交x 轴于点A 2,A 3;又将C 3向右平移得到第四段抛物线C 4,交x 轴于点A 3,A 4.若P(11,m)在C 4上,则m= . 14、(2014·牡丹江)如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,则∠A 的度数为 .15、(2013·苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为 .三、解答题(本大题共8个小题,满分75分)16、(8分)先化简,再求值:35(2), 3.22x x x x x -÷+-=--其中17、( 2014•广西玉林市)第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A +等级,则小明得到A +的概率是多少?图818、(12分)(2014年上海市)已知:如图,四边形ABCD 中,AD ∥BC ,AB=DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE=∠ABD . (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:=.19、(2014·钦州)在电线杆CD 上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留小数点后一位,参考数据:2≈1.41,3≈1.73)20、已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.21(10分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外,上市时,有一外商按市场价格10元/千克收购了2 000千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存110天,同时,平均每天有6千克的猴头菇损坏不能出售.(1)若存放x 天后,将这批猴头菇一次性出售,设这批猴头菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)如果这位外商想获得利润24 000元,需将这批猴头菇存放多少天后出售?(3)这位外商将这批猴头菇存放多少天后出售可获得最大利润?最大利润是多少?22(10分)如图l,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,D,F分别在A B,AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,BG的长.23、(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠O)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E (1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q 为顶点的四边形是平行四边形,求点P的坐标。

2015年河南省中考一模数学试卷(解析版)

2015年河南省中考一模数学试卷(解析版)

2015年河南省中考数学一模试卷一、选择题(每小题3分,共24分)1.(3分)a3•a4的结果是()A.a4B.a7C.a6D.a122.(3分)数字,,π,,cos45°,中是无理数的个数有()个.A.1B.2C.3D.43.(3分)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆D.宁夏4.(3分)如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°5.(3分)a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9)B.a2b(a﹣3)(a+3)C.b(a2﹣3)2D.a2b(a﹣3)26.(3分)一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.37.(3分)如图所示,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按照这样的方法拼下去,第n个大正方形比第(n﹣1)个大正方形多()几个小正方形?A.2n+1B.2n﹣1C.2n﹣3D.2n+38.(3分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A.B.C.D.二、填空题(每小题3分,共21分)9.(3分)计算:(+1)0﹣2﹣1+﹣6sin60°=.10.(3分)如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为.11.(3分)某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是.12.(3分)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是分,众数是分.13.(3分)在平面直角坐标系中,点O为坐标原点,点A的坐标为(1,0).将线段OA绕点O逆时针旋转∠α,当60°≤∠α≤90°,点A的纵坐标y的取值范围是.14.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在直线上的C′处,得到经过点D的折痕DE.则=.15.(3分)在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=,反比例函数的图象经过AO的中点C,且与AB交于点D,则点D的坐标为.三、解答题(共75分)16.(8分)先化简,再求值:÷,其中x=2cos45°+1.17.(9分)如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.18.(9分)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有万人到市图书馆阅读,其中商人所占百分比是,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?19.(9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈)20.(9分)如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.21.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)22.(10分)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为,此时AE与BF的数量关系是;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.23.(11分)如图,抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),顶点D的坐标为(﹣1,4).(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,请直接写出点F的坐标.2015年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)a3•a4的结果是()A.a4B.a7C.a6D.a12【解答】解:a3•a4=a3+4=a7.故选:B.2.(3分)数字,,π,,cos45°,中是无理数的个数有()个.A.1B.2C.3D.4【解答】解:=2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选:C.3.(3分)2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆D.宁夏【解答】解:﹣8<﹣4<5<6,故选:D.4.(3分)如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.5.(3分)a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9)B.a2b(a﹣3)(a+3)C.b(a2﹣3)2D.a2b(a﹣3)2【解答】解:a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)=a2b(a﹣3)2.故选:D.6.(3分)一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3【解答】解:①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③两函数图象的交点横坐标为3,∴当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④.故选:D.7.(3分)如图所示,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按照这样的方法拼下去,第n个大正方形比第(n﹣1)个大正方形多()几个小正方形?A.2n+1B.2n﹣1C.2n﹣3D.2n+3【解答】解:∵第一个图形有22=4个正方形组成,第二个图形有32=9个正方形组成,第三个图形有42=16个正方形组成,∴第n个图形有(n+1)2个正方形组成,第(n﹣1)个图形有n2个正方形组成,∴第n个大正方形比第(n﹣1)个大正方形多(n+1)2﹣n2=(2n+1)个小正方形.故选:A.8.(3分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A.B.C.D.【解答】解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM•CN=×6×2=6,∴S△CAB =4S△CMN=4×6=24,∴S四边形MABN =S△CAB﹣S△CMN=24﹣6=18.故选:C.二、填空题(每小题3分,共21分)9.(3分)计算:(+1)0﹣2﹣1+﹣6sin60°=.【解答】解:原式=1﹣+3﹣6×=1﹣+3﹣3=.故答案为.10.(3分)如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为135°.【解答】解:根据旋转的性质可知,∠ACB=∠A′CB′=45°,那么旋转角度的大小为∠ACA′=180°﹣45°=135°;故答案为:135.11.(3分)某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是.【解答】解:P(黄灯亮)==.故答案为:.12.(3分)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是90分,众数是90分.【解答】解:观察折线图可知:成绩为90的最多,所以众数为90;这组学生共10人,中位数是第5、6名的平均分,读图可知:第5、6名的成绩都为90,故中位数90.故答案为:90,90.13.(3分)在平面直角坐标系中,点O为坐标原点,点A的坐标为(1,0).将线段OA绕点O逆时针旋转∠α,当60°≤∠α≤90°,点A的纵坐标y的取值范围是.【解答】解:如图,将线段OA绕点O逆时针旋转∠α,当∠α=60°时,线段OA旋转到OA′的位置,过点A′作A′B⊥x轴于点B,∠BOA′=60°,OA=OA′=1,BA′=OA′•sin60°=,∴此时点A′的纵坐标为,将线段OA绕点O逆时针旋转∠α,当∠α=90°时,线段OA旋转到y轴上,∴此时点A的纵坐标为1,∴将线段OA绕点O逆时针旋转∠α,当60°≤∠α≤90°,点A的纵坐标y的取值范围是.故答案为:.14.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在直线上的C′处,得到经过点D的折痕DE.则=.【解答】解:如图,连接BD,交C′E于点F;∵四边形ABCD为菱形,∴DC∥AB,AB=AD;而∠A=60°,∴△ABD为等边三角形,∠ADC=120°;∴AD=BD,而AP=BP,∴DP⊥AB,∠ADP=30°,∴∠PDC=120°﹣30°=90°;由题意得:∠C′DE=∠CDE=45°,∠ADB=∠C′DB=60°,∠C′=∠C;∴∠C′DF=90°﹣60°=30°;∵四边形ABCD为菱形,∴∠A=∠C,AD=DC=BC(设为λ);∵∠C′=∠C,DC′=DC,∴∠C′=60°,DC′=λ,∴∠DFC′=90°,cos30°=,∴DF=λ,BF=λ(1﹣);在△DCE中,∵∠DEC=180°﹣45°﹣60°=75°,∴∠DEC′=∠DEC=75°,∴∠BEF=180°﹣2×75°=30°,∴BE=2BF=2λ﹣λ,∴CE=λ﹣=()λ,∴=,故答案为+1.15.(3分)在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=,反比例函数的图象经过AO的中点C,且与AB交于点D,则点D的坐标为(8,).【解答】解:∵斜边AO=10,sin∠AOB=,∴sin∠AOB===,∴AB=6,∴OB==8,∴A点坐标为(8,6),而C点为OA的中点,∴C点坐标为(4,3),又∵反比例函数的图象经过点C,∴k=4×3=12,即反比例函数的解析式为y=,∵D点在反比例函数的图象上,且它的横坐标为8,∴当x=8,y==,所以D点坐标为(8,).故答案为(8,).三、解答题(共75分)16.(8分)先化简,再求值:÷,其中x=2cos45°+1.【解答】解:原式=•=x﹣1,当x=2cos45°+1=2×+1=1+时,原式=1+﹣1=.17.(9分)如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.【解答】(1)解:有4对全等三角形.分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA;(2)证明:∵OA=OC,∠1=∠2,OE=OF,∴△OCF≌△OAE.∴∠EAO=∠FCO.在平行四边形ABCD中,AB∥CD,∴∠BAO=∠DCO.∴∠EAM=∠NCF.18.(9分)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有16万人到市图书馆阅读,其中商人所占百分比是12.5%,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?【解答】解:(1)4÷25%=16 2÷16×100%=12.5%(2)职工人数约为:28000×=10500人答:估计其中约有10500名职工.19.(9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈)【解答】解:根据题意得:PC⊥AB,设PC=x海里.在Rt△APC中,∵tan∠A=,∴AC=.…(3分)在Rt△PCB中,∵tan∠B=,∴BC=.…(5分)∵AC+BC=AB=21×5,∴=21×5,解得x=60.∵sin∠B=,∴PB==60×=100(海里).∴向阳号轮船所处位置B与城市P的距离为100海里.…(9分)20.(9分)如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.【解答】解:(1)∵y=(x>0,k是常数)的图象经过点A(1,4),∴k=4,∴反比例函数解析式为y=;(2)∵点A(1,4),点B(m,n),∴AC=4﹣n,BC=m﹣1,ON=n,OM=1,∴==﹣1,∵B(m,n)在y=上,∴=n,∴=m﹣1,而=,∴=,∵∠ACB=∠NOM=90°,∴△ACB∽△NOM;(3)∵△ACB与△NOM的相似比为2,∴m﹣1=2,m=3,∴B(3,),设AB所在直线解析式为y=kx+b,∴,解得,∴解析式为y=﹣x+.21.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y=4500;最大值(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.22.(10分)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.【解答】解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x2+42=[(4﹣x)]2,解得:x1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH是菱形,由△EGM≌△FHN,可知EG=FH,∴四边形EFGH的形状为正方形.∴∠HEF=90°∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,∴△AEH ≌△BFE (ASA )∴AE =BF .②利用①中结论,易证△AEH 、△BFE 、△CGF 、△DHG 均为全等三角形, ∴BF =CG =DH =AE =x ,AH =BE =CF =DG =4﹣x .∴y =S 正方形ABCD ﹣4S △AEH =4×4﹣4×x (4﹣x )=2x 2﹣8x +16.∴y =2x 2﹣8x +16(0<x <4)∵y =2x 2﹣8x +16=2(x ﹣2)2+8,∴当x =2时,y 取得最小值8;当x =0时,y =16,∴y 的取值范围为:8≤y <16.23.(11分)如图,抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C (0,3),顶点D 的坐标为(﹣1,4).(1)求抛物线的解析式;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG =2DQ ,请直接写出点F 的坐标.【解答】解:(1)设函数解析式为y =a (x +1)2+4,将C (0,3)代入解析式得,a (0+1)2+4=3,a =﹣1,可得,抛物线解析式为y=﹣x2﹣2x+3;(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=×1×1=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FG=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方,∴(n+3)﹣(﹣n2﹣2n+3)=4,解得:n=﹣4或n=1.∴F(﹣4,﹣5)或(1,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年九年级第一次质量预测数学试题卷注意事项:本试卷分试题卷和答题卡两部分,考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(−b2a ,4ac−b24a).一、选择题(每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组数中,互为相反数的两个数是A.−3和+2 B.5和15C.−6和6 D.−13和122.如图所示的几何体是由一个正方体切去一个小正方体形成的,从正面看到的平面图形为3.黄河农场各用10块面积相同的试验田种植甲、乙两种麦子,收获后对两种麦子产量(单位:吨/亩)的数据统计如下:x甲=0.61,x乙=0.59,S甲2=0.01,S乙2=0.002,则由上述数据推断乙种麦子产量比较稳定的依据是A.x甲>x乙B.S甲2>S乙2C.x甲>S甲2D.x乙>S乙24.下列各式计算正确的是A.2a+a=3a2B.(−b3)2=−b6C.c2∙c3=c5D.m−n2=m2−n25.如图,∆ABC中,BE、CF分别是么∠ABC、∠ACB的角平分线,∠A=50°,那么∠BDC的度数为A.105°B.115°C.125°D.135°6.第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有3名来自莫斯科国立大学,有5名来自圣彼得堡国立大学,现从这8名志愿者中随机抽取1人,这名志愿者来自莫斯科国立大学的概率是A.14B.15C.18D.387.如图,D 是△ABC 内一点,BD ⊥CD ,AD =12,BD =8,CD =6,E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点,则四边形EFGH 的周长是 A .14 B .18 C .20 D .228.观察二次函数y =ax 2 +bx +c (a ≠0)的图象,下列四个结论中: ①4ac −b 2>0;②4a +c <2b ;③b +c <0;④n (an +b ) −b <a (n ≠1). 正确结论的个数有A .4个B .3个C .2个D .1个二、填空题(每小题3分,共21分) 9.计算2sin30°=________.10.中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为________. 11.请你写出一个大于1而小于5的无理数________.12.在平面直角坐标系中,直线y = − 2x +11与直线y =13x +53导的交点坐标为(4,3),则方程 2x +y =11x −3y =−5的解为________.13.冯老师为了响应市政府“绿色出行”的号召,上下班方式由自驾车改为骑自行车.已知冯老师家距学校15 km ,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多13h .如果设骑自行车的速度为x km/h ,则由题意可列方程为________.14.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB =2,BC =3,则△FCB'与△B'DG 的面积之比为________. 15.在平面直角坐标系中,已知点A (-4,2),B (-2,-2),以原点O 为位似中心,把△ABO 放大为原来的2倍,则点A 的对应点A'的坐标是________.三、解答题(本大题共8个小题,共75分)16.(本题8分)课堂上,王老师出了这样一道题:已知x = 2015 −5 3,求代数式x 2−2x +1x −1÷ 1+x−3x +1的值, 小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与x 无关”,解答过程如下:原式= x−1 2x +1 x−1 ÷x +1+x−3x +1………………①=x−1x +1÷………………②=x−1x +1×x +12 x−1 …………………………③ =12……………………………………④当x=2015−5=1.2(1)从原式到步骤①,用到的数学知识有:________________;(2)步骤②中的空白处的代数式为:________________;(3)从步骤③到步骤④,用到的数学知识有:________________.17.(本题9分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图和表格.已知A、B两组户数直方图的高度比为1:5,请结合图表中相关数据回答下列问题:(1)A组的频数是,本次调查样本的容量是________;(2)补全直方图(需标明C组频数)________;(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?18.(本题9分)如图1,小颖将一组对边平行的纸条沿EF折叠,点A、B分别落在A'、B’处,线段FB'与AD交于点M.(1)如图1,△MEF的形状是________;(2)如图2,小颖又将纸条的另一部分CFMD沿MN折叠,点C、D分别落在C'、D'处,且使MD'经过点F,请你猜想四边形MNFE的形状,并说明理由;(3)当∠BFE=________度时,四边形MNFE是菱形.19.(本题9分)住在郑东新区的小明想知道“中原第一高楼”有多高,他登上了附近的另一个高层酒店的顶层某处,已知小明所处位置距离地面有160米高,测得“中原第一高楼”顶部的仰角为37°,测得“中原第一高楼”底部的俯角为45°,请你用初中数学知识帮助小明解决这个问题.(请你画出示意图,并说明理由.)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0. 75).(k1<0)与一次函y2=k2x+1(k2≠0)相20.(本题9分)如图,已知反比例函数y1=k1x交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值小于一次函数y2的值.21.(本题10分)某旅馆有客房120间,每间房的日租金为160元,每天都客满,旅馆装修后要提高租金,经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金总收入增加多少元?22.(本题10分)如图①,正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上.(1)求S∆DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S∆DBF;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S∆DBF存在最大值与最小值,请直接写出最大值,最小值.23.(本题11分)已知抛物线y=ax2 +bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,OB=2,OC=8,抛物线的对称轴是直线x=−2.(1)求抛物线的表达式;(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(3)在(2)的基础上,试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标;若不存在,请说明理由.2015年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分)1. C2. A3. B4. C5. B6. D7. D8. C 二、填空题(每小题3分,共21分)9. 1; 10. ; 11. 答案不唯一,如12. ;13.; 14. 16:9 ; 15.(,)或(,). 三、解答题(本大题共8小题,共75分) 16.解:(1)因式分解,通分,分解因式中的完全平方公式和平方差公式,分式的基本性质; (写对一个即可)……………… 3分 (2)(或);………6分 (3)约分(或分式的基本性质). ………………8分17. 解:(1)A 组的频数是: 2 ;调查样本的容量是: 50 ; ……………………… 4分(2)C 组的频数是:50×40%=20,如图.…………………6分(3)∵ 1500×(28%+8%)=540, ∴ 全社区捐款不少于300元的户数是540户.…………………9分 18. 解:(1)△MEF 是等腰三角形;…………… 2分 (2)四边形MNFE 为平行四边形,…………… 3分 理由如下:∵AD ∥BC , ∴∠MEF=∠EFB .由折叠知∠MFE=∠EFB , 故∠MEF=∠MFE . ∴ME =MF ,同理NF =MF .…………… 5分 ∴ME =NF . 又∵ME ∥NF ,∴四边形MNFE 为平行四边形.…………… 7分 (3) 60.…………… 9分8210⨯π43x y =⎧⎨=⎩1515123x x -=A '8-4A '84-221x x -+2(1)1x x -+19.解:如图所示,…………… 2分AB 代表小明所处位置到地面的距离,即米, CD 代表“中原第一高楼”, ………………… 3分 作AE ⊥CD 于点E.由题意可知,四边形ABDE 是矩形,所以米. 在Rt △ADE 中,∵,, ∴,∴.…………… 5分 在R t △AEC 中,∵,,∴,∴,…………… 7分 ∴(米), ∴“中原第一高楼”高米. ……………9分20.解:(1)∵点在的图象上,S △ACO =1,∴,又∵,∴. ∴反比例函数的表达式为.……………2分 设点(,),, ∵在R t △AOC 中,,∴, ∵, ∴. ∴(,).∵点(,)在上,∴,∴. ∴一次函数的表达式为. ……………5分 (2)点坐标为(,),……………7分 观察图象可知,当或时,反比例函数的值小于一次函数的值. …………… 9分21.设每间客房的日租金提高10x 元,则每天客房出租数会减少6x 间.设装修后客房日租金总收入为y ,……………1分则y =(160+10x )(120-6x ),……………4分即y =-60(x -2)2+19 440. ∵x ≥0,且120-6x >0, ∴0≤x <20.当x =2时,y max =19 440. ……………7分这时每间客房的日租金为160+10×2=180(元). ……………8分装修后比装修前日租金总收入增加19 440-120×160=240(元). ……………9分160AB =160AB DE ==tan DEDAE AE∠=160DE =160tan 451AE==160AE =tan CEAEC AE∠=160AE =tan 370.75160CE==120CE =120160280CD CE DE =+=+=280A 11ky x=1212k =⨯=10k <12k =-12y x=-A a 2a-0a <tan 2ACAOC OC ∠==22a a-=-0a <1a =-A 1-2A 1-2221y k x =+221k =-+21k =-21y x =-+B 21-1x <-02x <<1y 2y答:每间客房的日租金提高到180元时,客房日租金的总收入最高;装修后比装修前日租金总收入增加240元. ……………10分22. 解:(1)∵点在上, ∴∴……………3分 (2)连结, 由题意易知,∴.…………… 6分(3);.…………… 10分 23. 解:(1)∵点B 在轴的正半轴上,点在轴的正半轴上,,,∴点B 的坐标为(2,0),点C 的坐标为(0,8). ……… 2分 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2, ∴由抛物线的对称性可得点A 的坐标为(-6,0). ∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上, ∴c =8,将A (-6,0)、B (2,0) 分别代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧0=36a -6b +80=4a +2b +8 ⎩⎨⎧a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83x +8. ………3分(2)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,由勾股定理得AC =10,∵EF ∥AC , ∴△BEF ∽△BAC . ∴ EF AC =BEAB. 即EF 10=8-m8 . ∴EF =40-5m 4.过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45.∴FG EF =45. ∴ FG =45×40-5m4=8-m . ∴ S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=-12m 2+4m .…………… 7分自变量m 的取值范围是0<m <8. …………… 8分 (3)存在. …………… 9分理由:∵ S =-12m 2+4m =-12(m -4)2+8,且-12<0,∴ 当m =4时,S 有最大值,S 最大值=8.此时,点E 的坐标为(—2,0) …………… 11分F AD AF =3DF =119(3222DBF S DF AB =⨯⨯=-=-△××3AF AF BD ∥92DBF ABD S S ==△△15232x C y 2OB =8OC =。

相关文档
最新文档