新北师大版数学七上45《多边形和圆的初步认识》练习题
北师大版初中数学七年级上册《4.5 多边形和圆的初步认识》同步练习卷

北师大新版七年级上学期《4.5 多边形和圆的初步认识》同步练习卷一.填空题(共3小题)1.把一个圆心为O,半径为r的小圆面积增加一倍,两倍,三倍,分别得到如图所示的四个圆(包括原来的小圆),则这四个圆的周长之比(按从小到大顺序排列)是.2.如图,将一块实心三角板和实心半圆形量角器按图中方式叠放,三角板一直角边与量角器的零刻度线所在直线重合,斜边与半圆相切,重叠部分的量角器弧对应的圆心角(∠AOB)为120°,BC的长为2,则三角板和量角器重叠部分的面积为.3.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=4,则阴影部分图形的面积为.二.解答题(共32小题)4.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:;(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:.5.附加题:如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.6.如图,在⊙O中,D、E分别是半径OA、OB的中点,C是⊙O上一点,CD=CE.(1)求证:=;(2)若∠AOB=120°,CD=2,求半径OA的长.7.如图,⊙O的直径EF为10cm,弦AB、CD分别为6cm、8cm,且AB∥EF∥CD.求图中阴影部分面积之和.8.小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙O中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,P A,PB 组成⊙O的一条折弦.C是劣弧AB的中点,直线CD⊥P A于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;(3)如图3,P A.PB组成⊙O的一条折弦,若C是优弧AB的中点,直线CD⊥P A于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明.9.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠C=40°,求∠E及∠AOC的度数.10.用三种方法证明:如图,已知在⊙O中,半径OA⊥OB,C是OB延长线上一点,AC 交⊙O于D,求证:弧AD的度数是∠C的2倍.11.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②;(2)实际应用数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.12.已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.13.一个四边形的周长是46cm,已知第一条边长是acm,第二条边长比第一条边长的三倍还少5cm,第三条边长等于第一、第二条边长的和.(1)写出表示第四条边长的式子;(2)当a=7cm还能得到四边形吗?为什么?此时的图形是什么形状?14.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC 于点E.(1)若∠A=25°,求的度数.(2)若BC=9,AC=12,求BD的长.15.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=25,AC=7.(1)如图(1),若点P是弧AB的中点,求P A的长;(2)如图(2),若点P是弧BC的中点,求P A的长.16.如图,半圆的直径AB=40,C,D是半圆的三等分点,求弦AC,AD与围成的阴影部分的面积.17.如图所示,在一个半径为R的均匀圆形薄金属片上挖去一个半径为的小圆孔,且圆孔跟圆板的边缘相切,求剩余部分的重心位置.18.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若的度数70°,且AD∥OC,求的度数.19.如图,在⊙O中,弦AB所对的劣弧是圆周长的,其中圆的半径为4cm,求:(1)求AB的长.(2)求阴影部分的面积.20.如图,在⊙O中半径OA⊥OB,C,D是的两个三等分点,弦AB分别交OC,OD于E,F点.求证:AE=BF=CD.(提示:连接AC,BD,先证:AC=CD=BD)21.已知正n边形共有n条对角线,它的周长等于p,所有对角线长的和等于q,求的值.22.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.23.已知:A是半径为1的⊙O外一点,OA=2,AB是⊙O的切线,B是切点,弦BC∥OA,连接AC,求阴影部分面积.24.如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.25.如图,在△ABC中,∠BAC=105°,∠B=45°,,AD⊥BC,垂足为D,以A为圆心,AD为半径画弧EF,求图中阴影部分的面积.26.已知正方形的边长为a,以各边为直径在正方形内画半圆,则所围成的阴影部分(如图)的面积为.27.如图,在⊙O中弦AB⊥CD于点E,过E作AC的垂线交BD于点Q,P为垂足,求证Q为BD的中点.28.如图,已知△ABD与△BCD都是边长为3厘米的等边三角形,以A为圆心,AB长为半径画弧BD;以B为圆心,BC长为半径画弧CD,求阴影部分图形的周长.29.如图,有甲、乙两个圆,它们的半径之比为3:8,每个圆又都被分割成黑、白两个扇形,其中甲圆被分成的黑、白两个扇形的面积之比为1:2,乙圆被分成的黑、白两个扇形的面积之比为1:3,那么图中两个黑色扇形的面积之和与两个白色扇形的面积之和的比是.(直接写出答案)30.如图,已知一把展开的扇子的圆心角是150°,扇子的骨架AO的长是40厘米,扇面宽AB的长是30厘米,求扇面的面积.(结果保留π)31.如图所示,AB,CD是⊙O的两条直径,弦BE=BD,则与是否相等?为什么?32.如图,矩形ABCD内接于⊙O,且AB=,BC=1,求图中阴影部分所表示的扇形OAD 的面积.33.如图,在⊙O中,=,∠1=45°,求∠2的度数.34.(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?…猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?35.已知:如图,Rt△ABC中,∠C=90°,∠B=30°,,以A点为圆心,AC长为半径作,求∠B与围成的阴影部分的面积.北师大新版七年级上学期《4.5 多边形和圆的初步认识》2019年同步练习卷参考答案与试题解析一.填空题(共3小题)1.把一个圆心为O,半径为r的小圆面积增加一倍,两倍,三倍,分别得到如图所示的四个圆(包括原来的小圆),则这四个圆的周长之比(按从小到大顺序排列)是1:::2.【分析】设最小的圆的面积是a,则其它三个圆的面积分别是2a,3a,4a.由题意得四个圆是相似形,根据面积比可求得其相似比,根据周长比等于相似比即可得到答案.【解答】解:设最小的圆的面积是a,则其它三个圆的面积分别是2a,3a,4a,所有的圆都是相似形,面积的比等于半径的比的平方,因而半径的比是1:::2,周长的比等于相似比,即半径的比,是1:::2.故答案为:1:::2.【点评】本题主要考查了圆相似形时,面积的比等于相似比的平方,周长的比等于相似比.2.如图,将一块实心三角板和实心半圆形量角器按图中方式叠放,三角板一直角边与量角器的零刻度线所在直线重合,斜边与半圆相切,重叠部分的量角器弧对应的圆心角(∠AOB)为120°,BC的长为2,则三角板和量角器重叠部分的面积为+2.【分析】根据题意和锐角三角函数求出OB、OC的长,根据扇形面积公式和三角形面积公式计算即可.【解答】解:∵∠AOB=120°,∴∠BOC=60°∵∠OCB=90°,BC=2,∴OC==2,OB=4,∴重叠部分的面积=+×2×2=+2,故答案为:+2.【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S=是解题的关键.3.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=4,则阴影部分图形的面积为.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠COE=60°,然后通过解直角三角形求得线段OC、OE的长度,最后将相关线段的长度代入S阴影=S扇形OCB﹣S+S△BED.△COE【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠CDB=30°,∴∠COE=2∠CDB=60°,∠OCE=30°,∴OE=CE•cot60°=2×=2,OC=2OE=4,∴S阴影=S扇形OCB﹣S△COE+S△BED=﹣OE×EC+BE•ED=﹣2+2=.故答案为:.【点评】考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.二.解答题(共32小题)4.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=S△DBC+S;△ABC(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=S△DBC+S△ABC..【分析】(2)仿照(1)的方法,只需把换为;(3)注意由(1)(2)得到一定的规律;(4)综合(1)(2)(3)得到面积和线段比值之间的一般关系;(5)利用(4),得到更普遍的规律.【解答】解:(2)∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.∴S△PBC=S△DBC+S△ABC(3)S△PBC=S△DBC+S△ABC;(4)S△PBC=S△DBC+S△ABC;∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.∴S△PBC=S△DBC+S△ABC问题解决:S△PBC=S△DBC+S△ABC.【点评】注意总结相应规律,类似问题通常采用类比的方法求解.5.附加题:如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.【分析】可以再做五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.【解答】证明:取A1A5中点B3,连接A3B3、A1A3、A1A4、A3A5,∵A3B1=B1A4,∴S△A1A3B1=S△A1B1A4,又∵四边形A1A2A3B1与四边形A1B1A4A5的面积相等,∴S△A1A2A3=S△A1A4A5,同理S△A1A2A3=S△A3A4A5,∴S△A1A4A5=S△A3A4A5,∴△A3A4A5与△A1A4A5边A4A5上的高相等,∴A1A3∥A4A5,同理可证A1A2∥A3A5,A2A3∥A1A4,A3A4∥A2A5,A5A1∥A2A4.【点评】此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行.6.如图,在⊙O中,D、E分别是半径OA、OB的中点,C是⊙O上一点,CD=CE.(1)求证:=;(2)若∠AOB=120°,CD=2,求半径OA的长.【分析】(1)连接OC,由SSS证明△OCD≌△OCE,得出对应角相等∠COD=∠COE,由圆心角,弧,弦的关系即可得出结论;(2)连接AC,证明△AOC是等边三角形,得出CD⊥OA,由三角函数求出OC,即可得出OA.【解答】解:(1)证明:连接OC,如图1所示:∵D、E分别是半径OA、OB的中点,OA=OB,∴OD=OE,在△OCD和△OCE中,,∴△OCD≌△OCE(SSS),∴∠COD=∠COE,∴=;(2)连接AC,如图2所示:∵∠AOB=120°,∴∠COD=∠COE=60°,∵OC=OA,∴△AOC是等边三角形,∵D是OA的中点,∴CD⊥OA,∴OC===4,∴OA=4.【点评】本题考查的是圆心角,弧,弦的关系、全等三角形的判定与性质、三角函数;证明三角形全等和等边三角形是解决问题的关键.7.如图,⊙O的直径EF为10cm,弦AB、CD分别为6cm、8cm,且AB∥EF∥CD.求图中阴影部分面积之和.【分析】本题易得出△ABO与△ABE的面积相等,△OCD与△CDF的面积相等(这两组三角形都是同底等高),因此阴影部分的面积为扇形OAB的面积和扇形OCD的面积和.直接求两个扇形的面积由难度,因此可找出它们之间的关系再进行求解.过O作圆的直径MN,使得MN⊥EF与O,交AB于G;那么在Rt△BOG和Rt△COH中,易证得∠GBO =∠COH(通过两角的正弦值求证).因此可得出∠BOF=∠CON,即扇形OBF的面积与扇形OCN的面积相等,也就得出了扇形OBF与扇形OAE的面积和正好等于扇形OCD 的面积;因此阴影部分的面积和正好是半个圆的面积,由此可得出所求的解.【解答】解:如图,作直径MN,使MN⊥EF于O,交AB于G,交CD于H;连接OA、OB、OC、OD;在Rt△OBG中,BG=3cm,OB=5cm,因此OG=4cm;同理:在Rt△OCH中,CH=4cm,OC=5cm,因此OH=3cm;sin∠DOF==,sin∠BOF==,sin∠COE==,sin∠AOE==,即∠DOF=∠AOM=∠COE=∠BOM,∠CON=∠DON=∠AOE=∠BOF,因此S扇形OAE=S扇形OBF=S扇形CON=S扇形ODN∴S阴影=S△ABE+S弓形AMB+S△CDF+S弓形CND=S△OAB+S弓形AMB+S△OCD+S弓形CND=S扇形OAB+S扇形OCN+S扇形ODN=S扇形OAB+S扇形OAE+S扇形OBF=S⊙O=12.5πcm2.故图中阴影部分面积之和为12.5πcm2.【点评】本题考查扇形面积的计算,学生的观察能力及计算能力.本题中找出两个阴影部分面积之间的联系是解题的关系.8.小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙O中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,P A,PB 组成⊙O的一条折弦.C是劣弧AB的中点,直线CD⊥P A于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;(3)如图3,P A.PB组成⊙O的一条折弦,若C是优弧AB的中点,直线CD⊥P A于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明.【分析】(1)连接AD,BD,易证△ADB为等腰三角形,根据等腰三角形三线合一这一性质,可以证得AE=BE.(2)根据圆内接四边形的性质,先∠CDA=∠CDF,再证△AFD为等腰三角形,进一步证得PB=PF,从而证得结论.(3)根据∠ADE=∠FDE,从而证明△DAE≌△DFE,得出AE=EF,然后判断出PB=PF,进而求得AE=PE﹣PB.【解答】证明:(1)如图1,连接AD,BD,∵C是劣弧AB的中点,∴∠CDA=∠CDB,∵DE⊥AB,∴∠AED=∠DEB=90°,∴∠A+∠ADE=90°,∠B+∠CDB=90°,∴∠A=∠B,∴△ADB为等腰三角形,∵CD⊥AB,∴AE=BE;(2)如图2,延长DB、AP相交于点F,再连接AD,∵ADBP是圆内接四边形,∴∠PBF=∠P AD,∵C是劣弧AB的中点,∴∠CDA=∠CDF,∵CD⊥P A,∴△AFD为等腰三角形,∴∠F=∠A,AE=EF,∴∠PBF=∠F,∴PB=PF,∴AE=PE+PB(3)AE=PE﹣PB.连接AD,BD,AB,DB、AP相交于点F,∵弧AC=弧BC,∴∠ADC=∠BDC,∵CD⊥AP,∴∠DEA=∠DEF,∠ADE=∠FDE,∵DE=DE,∴△DAE≌△DFE,∴AD=DF,AE=EF,∴∠DAF=∠DF A,∴∠DF A=∠PFB,∠PBD=∠DAP,∴∠PFB=∠PBF,∴PF=PB,∴AE=PE﹣PB.【点评】此题主要考查了垂径定理及其推论,垂径定理﹣在5个条件中,1.平分弦所对的一条弧;2.平分弦所对的另一条弧;3.平分弦;4.垂直于弦;5.经过圆心(或者说直径).只要具备任意两个条件,就可以推出其他的三个.9.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠C=40°,求∠E及∠AOC的度数.【分析】连接OD,根据等边对等角可得∠ODC=∠C=40°,再根据AB=2DE,OD=AB 可得OD=DE,再根据三角形外角的性质可得∠E的度数,进而可得∠AOC的度数.【解答】解:连接OD,∵OC=OD,∠C=40°,∴∠ODC=∠C=40°,∵AB=2DE,OD=AB,∴OD=DE,∵∠ODC是△DOE的外角,∴∠E=∠EOD=∠ODC=20°,∵∠AOC是△COE的外角,∴∠AOC=∠C+∠E=40°+20°=60°.【点评】此题主要考查了圆的认识,以及三角形内角与外角的关系,关键是掌握同圆中的半径是相等的.10.用三种方法证明:如图,已知在⊙O中,半径OA⊥OB,C是OB延长线上一点,AC 交⊙O于D,求证:弧AD的度数是∠C的2倍.【分析】求证:弧AD的度数是∠C的2倍,就是求证∠AOD=2∠C即可.【解答】证明:证法一:延长AO交圆与点M,连接DM,∵AM是圆的直径,∵∠ADM=90°则△OAC与△ADM都是直角三角形,且∠A是公共角,∴∠M=∠C,而∠AOD=2∠M.∴∠AOD=2∠C.∵∠AOD的度数就等于弧AD的度数,∴弧AD的度数是∠C的2倍.证法二:连接OD,在直角△AOC中,∠C=90°﹣∠A,在△OAD中,∵OA=OD,∴∠A=∠ADO.∴∠AOD=180﹣2∠A.∴∠AOD=2∠C.∵∠AOD的度数就等于弧AD的度数,∴弧AD的度数是∠C的2倍.证法三:延长AO交圆于点N,连接CN,交圆于点M,连接OM、OD,∵AN⊥OC,OA=ON,∴AC=CN.∴∠A=∠N∠ACN=2∠ACO.∴∠ACN=180﹣∠A﹣∠N=180﹣2∠A.∵△OAD中OA=OD,∴∠A=∠ADO=∠N.∴∠AOD=∠ACN=2∠ACO.又∵∠AOD的度数就等于弧AD的度数,弧AD的度数是∠ACO的2倍.【点评】本题把弧的度数转化为角的度数,是解题的关键.11.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:②n(n﹣3)(1)观察探究请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①n﹣3;②n(n﹣3);(2)实际应用数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.【分析】(1)依据图形以及表格中的变换规律,即可得到结论;(2)依据数学社团有18名同学,即可得到数学社团的同学们一共将拨打电话数量;(3)每个同学相当于多边形的一个顶点,则共有n个顶点,进而得到每人要给不同组的同学打一个电话,则每人要打(n﹣3)个电话,据此进行判断.【解答】解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n﹣3,多边形对角线的总条数为n(n﹣3);故答案为:n﹣3,n(n﹣3);(2)∵3×6=18,∴数学社团的同学们一共将拨打电话为×18×(18﹣3)=135(个);(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n﹣3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n﹣3);数学社团有18名同学,当n=18时,×18×(18﹣3)=135.【点评】本题主要考查了多边形的对角线,n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:n(n ﹣3)(n≥3,且n为整数).12.已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.【分析】根据n边形从一个顶点出发可引出(n﹣3)条对角线,可求多边形的边数,再根据多边形的周长的定义可求这个多边形的各边长.【解答】解:依题意有n﹣3=4,解得n=7,设最短边为x,则7x+1+2+3+4+5+6=56,解得x=5.故这个多边形的各边长是5,6,7,8,9,10,11.【点评】考查了多边形的对角线,熟悉从多边形的一个顶点出发的对角线条数公式是解题关键.13.一个四边形的周长是46cm,已知第一条边长是acm,第二条边长比第一条边长的三倍还少5cm,第三条边长等于第一、第二条边长的和.(1)写出表示第四条边长的式子;(2)当a=7cm还能得到四边形吗?为什么?此时的图形是什么形状?【分析】(1)根据题意分别运用代数式表示其它各边,再根据周长进行计算;(2)注意根据(1)中的式子代入进行计算分析.【解答】解:(1)根据题意得:第二条边是3a﹣5,第三条边是a+3a﹣5=4a﹣5,则第四条边是46﹣a﹣(3a﹣5)﹣(4a﹣5)=56﹣8a.答:第四条边长的式子是56﹣8a.(2)当a=7cm时不是四边形,因为此时第四边56﹣8a=0,只剩下三条边,三边长为:a=7cm,3a﹣5=16cm,4a﹣5=23,由于7+16=23,所以,图形是线段.答:当a=7cm不能得到四边形,此时的图形是线段.【点评】首先根据第一条边长表示出第二条边,然后表示出第三条边,最后根据周长表示出第四条边.其中要注意合并同类项法则.(2)中,只需根据(1)中所求的代数式,把字母的值代入计算,然后进行分析图形的形状.14.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC 于点E.(1)若∠A=25°,求的度数.(2)若BC=9,AC=12,求BD的长.【分析】(1)连接CD,如图,先利用互余计算出∠B=90°﹣∠A=65°,再利用等腰三角形的性质和三角形内角和计算出∠BCD的度数,从而得到的度数;(2)作CH⊥BD,如图,根据垂径定理得到BH=DH,再利用勾股定理计算出AB=15,接着利用面积法计算出CH=,然后利用勾股定理计算出BH,从而得到BD的长.【解答】解:(1)连接CD,如图,∵∠ACB=90°,∴∠B=90°﹣∠A=90°﹣25°=65°,∵CB=CD,∴∠CDB=∠B=65°,∴∠BCD=180°﹣2∠B=50°,∴的度数为50°;(2)作CH⊥BD,如图,则BH=DH,在Rt△ACB中,AB==15,∵CH•AB=BC•AC,∴CH==,在Rt△BCH中,BH==,∴BD=2BH=.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和勾股定理.15.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=25,AC=7.(1)如图(1),若点P是弧AB的中点,求P A的长;(2)如图(2),若点P是弧BC的中点,求P A的长.【分析】(1)根据圆周角的定理,∠APB=90°,p是弧AB的中点,所以三角形APB是等腰三角形,利用特殊角的三角函数即可求得;(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得P A.【解答】解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠P AB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△APB中有AB=25,∴P A==;(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径,∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△ONP∴=,又∵AB=25,AC=7,OP=,代入得ON=,∴AN=OA+ON=16,∴在Rt△OPN中,有NP2=OP2﹣ON2=144在Rt△ANP中有P A==20∴P A=20.【点评】本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.16.如图,半圆的直径AB=40,C,D是半圆的三等分点,求弦AC,AD与围成的阴影部分的面积.【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD 的面积,然后计算扇形面积就可.【解答】解:连接OC、OD、CD.∵△COD和△CDA等底等高,∴S△COD=S△ACD.∵点C,D为半圆的三等分点,∴∠COD=180°÷3=60°,∴阴影部分的面积=S扇形COD==π.【点评】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD 的面积是解题关键.17.如图所示,在一个半径为R的均匀圆形薄金属片上挖去一个半径为的小圆孔,且圆孔跟圆板的边缘相切,求剩余部分的重心位置.【分析】采用挖填转换法:设金属片厚为h,密度为ρ.(1)、假设剩余部分的重心还在O点不变,则必须在大圆上的对称位置再挖去一个与原来等大的小圆孔,则剩下部分的重力为G′=πR2hρg﹣2π•()2hρg=πR2hρg(2)、由于左边挖去了一个半径为的小圆孔,必须在它的对应位置(左边)填上一个半径为的小圆孔,则它的重力为G2=πR2hρg,重心在O2上,OO2=,设挖孔后的圆片的重心在O′点,经过上面的这一“挖”一“填”,再将1和2综合在一起,就等效于以O′为支点的杠杆,由杠杆的平衡条件知,G2•O2O=G•OO′,求得OO′的值即可.【解答】解:(采用挖填转换法)①假设剩余部分的重心还在O点不变,则必须在大圆上的对称位置再挖去一个与原来等大的小圆孔.则剩下部分的重力为G′=πR2hρg﹣2π•()2hρg=πR2hρg如答图甲(设金属片厚为h,密度为p).②由于左边挖去了一个半径为的小圆孔,必须在它的对应位置(左边)填上一个半径为的小圆孔,则它的重力为G2=π•()2hρg=πR2hρg,重心在O2上,且OO2=,如图乙,设挖孔后的圆片的重心在O′点,经过上面的这一“挖”一“填”,再将①和②综合在一起,就等效于以O′为支点的杠杆.如图丙,由杠杆的平衡条件得G2•O2O′=G′•OO′,即πR2hρg•(﹣OO′)=πR2hρg •OO′,解得OO′=.【点评】本题利用了采用挖填转换法,涉及到物理中的密度知识,杠杆平衡条件的知识,是一道跨学科的题.18.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若的度数70°,且AD∥OC,求的度数.【分析】利用圆心角的度数等于它所对的弧的度数得到∠AOC=70°,则利用平行线的性质得∠A=∠AOC=70°,然后根据等腰三角形的性质和三角形内角和计算出∠AOD=40°,从而得到的度数.【解答】解:∵的度数70°,∴∠AOC=70°,∵AD∥OC,∴∠A=∠AOC=70°,∵OA=OC,∴∠D=∠A=70°,∴∠AOD=180°﹣70°﹣70°=40°,∴的度数为40°.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.19.如图,在⊙O中,弦AB所对的劣弧是圆周长的,其中圆的半径为4cm,求:(1)求AB的长.(2)求阴影部分的面积.【分析】(1)要求AB的长,只要作OC⊥AB于点C,然后根据勾股定理即可解答本题;(2)由图可知,阴影部分的面积是扇形的面积与三角形的面积之差.【解答】解:(1)作OC⊥AB于点C,如右图所示,∵在⊙O中,弦AB所对的劣弧是圆周长的,其中圆的半径为4cm,∴∠AOB=120°,∴∠AOC=60°,∠OAC=30°,∴OC=2cm,∴AC=2cm,∴AB=4cm;(2)∵OC=2cm,AB=4cm,∠AOB=120°,OA=4cm,∴阴影部分的面积是:=()cm2.【点评】本题考查扇形面积的计算、勾股定理,解题的关键是明确题意,找出所求问题需要的条件.20.如图,在⊙O中半径OA⊥OB,C,D是的两个三等分点,弦AB分别交OC,OD于E,F点.求证:AE=BF=CD.(提示:连接AC,BD,先证:AC=CD=BD)【分析】由于C、D是弧AB的三等分点,易得∠AOC=∠DOB,又OA=OB=OC,易证得△AOC≌△OCD,可得∠ACO=∠OCD,易知∠AEC=∠OCD,因此∠ACO=∠AEC,即AE=BF=CD.【解答】解:连接AC、BD,∵C,D是的三等分点,∴AC=CD=BD,∠AOC=∠COD,OA=OC=OD,在△ACO与△DCO中,∵∴△ACO≌△DCO(SAS),∴∠ACO=∠OCD.∵∠OEF=∠OAE+∠AOE=45°+30°=75°,∠OCD==75°,∴∠OEF=∠OCD,∴CD∥AB,∴∠AEC=∠OCD,∴∠ACO=∠AEC,∴AC=AE,同理,BF=BD.又∵AC=CD=BD,∴AE=BF=CD.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.21.已知正n边形共有n条对角线,它的周长等于p,所有对角线长的和等于q,求的值.【分析】n边形的对角线有n•(n﹣3)条,根据正n边形共有n条对角线,列方程即可求得多边形的边数为5.再作正五边形ABCDE,连接AD,根据正五边形的特点求出△ABC ≌△AED,△ACD为等腰三角形,作∠ACD的平分线,交AD于F;根据△ACD与△CDF 各角的度数可求出△FCD∽△CAD,根据其对应边成比例即可解答.【解答】解:设这个多边形的边数是n.。
七年级上《4.5多边形和圆的初步认识》课时练习含答案解析

北师大版数学七年级上册第四章4.5多边形和圆的初步认识同步练习一、选择题1.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A.8B.9C.10D.11答案:C解析:解答:设多边形有n条边,则n-2=8,解得n=10.故这个多边形的边数是10.故选:C.分析:经过n边形的一个顶点的所有对角线把多边形分成(n-2)个三角形,根据此关系式求边数.2.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.9答案:C解析:解答:设这个多边形是n边形.依题意,得n-3=5,解得n=8.故这个多边形的边数是8.故选C.分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.3.过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是()A.八边形B.九边形C.十边形D.十一边形答案:B解析:解答:设多边形有n条边,则n-2=7,解得:n=9.所以这个多边形的边数是9,故选:B.分析:经过n边形的一个顶点的所有对角线把多边形分成(n-2)个三角形,根据此关系式求边数.4.七边形的对角线共有()A.10条B.15条C.21条D.14条答案:D解析:解答:七边形的对角线总共有:()773142⨯-=条.故选D.分析:可根据多边形的对角线与边的关系求解.5.连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是()边形.A.五B.六C.七D.八答案:D解析:解答:设原多边形是n 边形, 则n -2=6, 解得n =8. 故选:D .分析:根据n 边形从一个顶点出发可把多边形分成(n -2)个三角形进行计算. 6.一个多边形有五条对角线,则这个多边形的边数为( ) A .8 B .7 C .6 D .5 答案:D解析:解答:设多边形的边数为n ,则()352n n -=,整理得23100n n --=, 解得15n =,22n =-(舍去). 所以这个多边形的边数是5. 故选:D .分析:根据n 边形的对角线公式()32n n -进行计算即可得解.7.已知过一个多边形的某一个顶点共可作条对角线,则这个多边形的边数是( ) A . B . C . D . 答案:D解析:解答:∵多边形从一个顶点出发可引出条对角线, 设多边形为n 边形,则 n -3=, 解得n =. 故选:D .分析:根据从多边形的一个顶点可以作对角线的条数公式(n-3)求出边数即可得解.8.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形答案:A解析:解答:设这个多边形是n边形.依题意,得n-3=10,∴n=13.故这个多边形是13边形.故选:A.分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.9.高中要好的五个学生,相互约定在毕业后的一周,每两人通话一次.则在毕业后的一周,这五位同学一共通讯()次.A.8B.10C.14D.12答案:B解析:解答:5×(5-1)÷2=5×4÷2=20÷2=10(次).故选:B.分析:5个人每两个人通话一次,则每个人都要和其他4个人分别通话,则每人通话的次数为:5-1=4次,则所有的人通话的次数为:5×4=20次,由于通话是在两个人之间进行的,所以共通话20÷2=10次.10.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿1ADA 、1A E 2A 、2A F 3A 、3A GB 路线爬行,乙虫沿AC 1B 路线爬行,则下列结论正确的是( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到BD .无法确定 答案:C解析:解答:12π(A 1A +1A 2A +2A 3A +3A B )12π×AB ,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等, 因此两个同时到B 点. 故选C .分析:甲虫走的路线应该是4段半圆的弧长,那么应该是12π(A 1A +1A 2A +2A 3A +3A B )=12π×AB ,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B 点.11.下列说法,正确的是( ) A .弦是直径 B .弧是半圆 C .半圆是弧D .过圆心的线段是直径 答案:C解析:解答:A.弦是连接圆上任意两点的线段,只有经过圆心的弦才是直径,不是所有的弦都是直径.故本选项错误;B.弧是圆上任意两点间的部分,只有直径的两个端点把圆分成的两条弧是半圆,不是所有的弧都是半圆.故本选项错误;C.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.所以半圆是弧是正确的.D.过圆心的弦才是直径,不是所有过圆心的线段都是直径,故本选项错误.故选:C.分析:根据弦,弧,半圆和直径的概念进行判断.弦是连接圆上任意两点的线段.弧是圆上任意两点间的部分.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.直径是过圆心的弦.12.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A.1B.2C.3D.4答案:B解析:解答:①圆确定的条件是确定圆心与半径,是假命题,故此说法错误;②直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;③弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选:B.分析:根据弦的定义、弧的定义、以及确定圆的条件即可解决.13.下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧答案:B解析:解答:A.直径相等的两个圆是等圆,正确,不符合题意;B.长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C.圆中最长的弦是直径,正确,不符合题意;D.一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意, 故选:B .分析:利用圆的有关定义进行判断后利用排除法即可得到正确的答案;14.有两个圆,⊙1O 的半径等于地球的半径,⊙2O 的半径等于一个篮球的半径,现将两个圆都向外膨胀(相当于作同心圆),使周长都增加1米,则半径伸长的较多的圆是( ) A .⊙1O B .⊙2OC .两圆的半径伸长是相同的D .无法确定 答案:C解析:解答:设⊙1O 的半径等于R ,膨胀后的半径等于R ′;⊙2O 的半径等于r ,膨胀后的半径等于r ′,其中R >r .由题意得,2πR +1=2πR ′,2πr +1=2πr ′,解得R ′=R +12π,R ′=R +12π; 所以R ′-R =12π,R ′-R =12π,所以,两圆的半径伸长是相同的. 故选C .分析:由L =2πR 计算出半径的伸长量,然后比较大小. 15.下列语句中,不正确的个数是( )①直径是弦;②弧是半圆;③长度相等的弧是等弧;④经过圆内一定点可以作无数条直径. A .1个 B .2个 C .3个 D .4个答案:C解析:解答:①根据直径的概念,知直径是特殊的弦,故正确;②根据弧的概念,知半圆是弧,但弧不一定是半圆,故错误;③根据等弧的概念:在同圆或等圆中,能够互相重合的弧是等弧.长度相等的两条弧不一定能够重合,故错误;④如果该定点和圆心不重合,根据两点确定一条直线,则只能作一条直径,故错误.故选C.分析:根据弦、弧、等弧的定义即可求解.二、填空题16.若点M取在多边形的一条边上(不是顶点),再将点M与n边形个顶点连结起来,将此多边形分割成9个三角形,则n边形是_____边形.答案:十解析:解答:多边形一条边上的一点M(不是顶点)出发,连接各个顶点得到9个三角形,则这个多边形的边数为9+1=10.故答案为:十.分析:可根据多边形的一点(不是顶点)出发,连接各个顶点得到的三角形个数与多边形的边数的关系求解.17.从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为_____边形.答案:九解析:解答:由题意可知,n-2=7,解得n=9.则这个多边形的边数为9,多边形为九边形.故答案为:九.分析:从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形.18.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n的值是_____.答案:8解析:解答:设多边形有n条边,则n-2=6,解得n=8.故答案为:8.分析:根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.19.如图,MN为⊙O的弦,∠M=50°,则∠MON等于_____.答案:80°解析:解答:∵OM=ON,∴∠N=∠M=50°,∴∠MON=180°-∠M-∠N=80°,故答案为80°.分析:利用等腰三角形的性质可得∠N的度数,根据三角形的内角和定理可得所求角的度数.20.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A =65°,则∠DOE=_____.答案:50°解析:解答:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.三、解答题21.(1)六边形从一个顶点可引出几条对角线?共有几条对角线?答案:3|9解答:(1)六边形从一个顶点可引出对角线:6-3=3(条),共有对角线:() 66392⨯-=(条);(2)n边形从一个顶点可以引出几条对角线?共有几条对角线?答案:(n-3)|()32 n n-解答:n边形从一个顶点可以引出(n-3)条对角线,共有()32n n-条对角线.解析:分析:根据n边形从一个顶点可引出(n-3)条对角线,及n边形一共()32n n-条对角线可求解(1)与(2).22.在凸多边形中,四边形的对角线有两条,五边形的对角线有5条,经过观察、探索、归纳,你认为凸九边形的对角线为多少?简单扼要地写出你的思考过程.答案:27条.解答:27条.通过四边形和五边形的对角线图形可知,过n边形的1个顶点可以作(n-3)条对角线,故过n个顶点可作n(n-3)条对角线,而这些对角线重复一遍,故n边形的对角线为()32n n-条,所以凸九边形的对角线为()993272⨯-=.解析:分析:作出四边形与五边形的对角线,然后观察从一个顶点作出的对角线的条数,从而确定规律并求出n边形的对角线的条数公式,再令n=9进行计算即可得解.23.画出下面多边形的全部对角线.答案:解答:如图所示:解析:分析:此图为5边形,有()55352⨯-=条对角线,依次画出即可.24.实践探究:有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种装置,你认为应选哪种比较合适?安装在什么地方?答案:选射程为10米的喷灌装置,安装在圆形草坪的中心处.解答:设圆形草坪的半径为R,则由题意知,2πR=62.8,解得:R≈10m.所以选射程为10米的喷灌装置,安装在圆形草坪的中心处.解析:分析:具体应选哪一种装置,取决于圆形草坪的半径,周长为62.8米的圆的半径约是10米.25.(1)经过凸n边形(n>3)其中一个顶点的对角线有_______条;答案:(n-3).解答:n边形过每一个顶点的对角线有(n-3)条;故答案为:(n-3).(2)一个凸边形共有20条对角线,它是几边形;答案:八解答:根据()32n n-=20,解得:n=8或n=-5(舍去),∴它是八边形.(3)是否存在有18条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明得出结论的道理.答案:不存在,理由:()3n n-=18,解得:3317n±=,∵n不为正整数,∴不存在.解析:分析:(1)根据n边形从一个顶点出发可引出(n-3)条对角线即可求解;(2)根据任意凸n边形的对角线有()32n n-条,即可解答;(3)不存在,根据()32n n-=18,解得:3317n±,n不为正整数所以不存在.。
北师大版七年级数学上册《4.5 多边形和圆的初步认识》同步训练题-带答案

北师大版七年级数学上册《4.5 多边形和圆的初步认识》同步训练题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法正确的是()A.三棱柱有六条棱B.圆锥的侧面展开图是三角形C.两点之间,线段最短D.各边相等的多边形是正多边形2.在长方形、长方体、三角形、球、直线、圆中有()个平面图形.A.3B.4C.5D.63.用边长为1的正方形做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积为原正方形面积的()A.12B.13C.23D.不能确定4.如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是()A.88mm B.96mm C.80mm D.84mm5.过七边形的一个顶点共有a条对角线,将这个七边形分成b个三角形,则a,b的值分别为()A.4,5B.5,4C.3,4D.4,36.小丽用圆规画了一个半径为2cm的圆,小杰用12.56cm的线围成一个圆.下列说法正确的是()A.两个圆一样大B.小杰围的圆大C .小丽画的圆大D .无法确定两个圆的大小7.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m n 的值为( )A .5B .6C .7D .88.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是( ). A . B . C . D . 9.如图,在边长为1的小正方形网格中小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形图中①,①,①,①四个格点多边形的面积分别记为1234,,,,S S S S 下列说法正确的是( )A .12S SB .23S S =C .124S S S +=D .134S S S +=二、填空题14.如图,用正多边形镶嵌地面,则图中α的大小为度.三、解答题15.计算阴影部分的面积.16.已知从一个七边形的某一个顶点出发的所有对角线将这个七边形分成了x个三角形,且的值.这些对角线的条数是y,求x xy17.如图,长方形的长为a,宽为b,在它的内部分别挖去以b为半径的四分之一圆和以b 为直径的半圆.(1)用含a、b的代数式表示阴影部分的面积;(2)当a=8,b=4时,求阴影部分的面积(π取3).参考答案:1.C2.B3.A4.B5.A6.A7.C8.B。
七年级数学上册 第四章 基本平面图形 4.5 多边形和圆的初步认识练习题 (新版)北师大版

多边形和圆的初步认识班级:___________姓名:___________得分:__________一、选择题(每小题8分,共40分)1. 如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()A、4 B、 5 C、 6 D、72. 用各种不同的方法把图形分割成三角形,至少可以分割成5个三角形的多边形是()A、五边形B、六边形C、七边形D、八边形3. 一个多边形,把一个顶点与其它各顶点连接起来,把这个多边形分成了12个三角形,则这个多边形的边数()A.14 B.15 C.13 D.164. 如图(1),小强拿一张正方形的纸,沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线剪去一个角,再打开后的形状是()A、B、C、D、5. 下列说法中,结论错误的是()A、直径相等的两个圆是等圆B、长度相等的两条弧是等弧C、由不在一直线上四条线段首尾顺次连接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形D、相等的圆心角所对的弧相等二、填空题(每小题8分,共40分)6. 用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________ (圆形、正方形两者选一)场地面积较大.7. 从七边形的一个顶点出发可以画出______条对角线.8. 下图中每个小平行四边形的面积是1个面积单位,求阴影部分的面积________。
9. 已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,此多边形的边数为_______10. 请利用圆规,找出图中的扇形(不要添加其他线).图(1)中有_____个扇形,图(2)中有______个扇形三、解答题(共20分)11. 已知扇形AOB的圆心角为240°,其面积为8㎝².求扇形AOB所在的圆的面积。
北师大版(2024)七年级上册《4.3_多边形和圆的初步认识》2024年同步练习卷+答案解析

北师大版(2024)七年级上册《4.3多边形和圆的初步认识》2024年同步练习卷一、选择题:本题共9小题,每小题3分,共27分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图所示的图形中,属于多边形的有()A.1个B.2个C.3个D.4个2.过某个多边形一个顶点的所有对角线,将这个多边形分成5个三角形,则这个多边形的边数为()A.6B.7C.8D.93.过多边形一个顶点的所有对角线,将这个多边形分成8个三角形,这个多边形的边数是()A.8B.9C.10D.114.下列说法正确的是()A.弧就是一条弯曲的线B.扇形就是一条弧和两条半径组成的图形C.若干个小扇形组成一个圆D.弧是圆周的一部分5.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3B.3,3C.3,4D.4,46.从多边形一条边上的一点不是顶点出发,连接各个顶点得到2023个三角形,则这个多边形的边数为()A.2021B.2025C.2024D.20267.已知从一个顶点出发有4条对角线的正多边形的周长为42cm,则这个正多边形的边长为()A.6cmB.7cmC.D.8.扇子最早称“翣”,在我国已有两千多年历史.“打开半个月亮,收起兜里可装,来时荷花初放,去时菊花正黄.”这则谜语说的就是扇子.如图,一竹扇完全打开后,外侧两竹条AB,AC夹角为,AB的长为30cm,扇面BD的长为20cm,则扇面面积为A. B. C. D.9.在学习完多边形后,小华同学将一个五边形沿如图所示的直线1剪掉一个角后,得到一个多边形,下列说法正确的是()A.这个多边形是一个五边形B.从这个多边形的顶点A出发,最多可以画4条对角线C.从顶点A出发的所有对角线将这个多边形分成4个三角形D.以上说法都不正确二、填空题:本题共4小题,每小题3分,共12分。
10.如图所示,将一个圆分成4个扇形,已知扇形AOB,AOD,BOD的圆心角的度数之比为2:3:4,OC为的平分线,圆心角的度数为______.11.如图,甲、乙、丙、丁四个扇形的面积之比是1:2:3:4,则扇形“丁”的圆心角度数是______.12.如图所示,若扇形甲、乙的圆心角的度数之比为2:1,则扇形甲圆心角的度数为______;扇形丙圆心角的度数为______.13.已知扇形的面积为圆心角为,则它的半径为______.三、解答题:本题共4小题,共32分。
北师大版七年级上册数学4.5多边形和圆的初步认识优秀试题

4.5多边形和圆的初步认识1.(8 分) 如图三角形的对角线有 0 条, 四边形的对角线有 2 条, 五边形的对角线有 5 条, 六边形的对角线有 9 条.经过剖析上边的资料 , 请你谈谈十边形的对角线有多少条 ?你能总结出n 边形的对角线有多少条吗 ?2.(8 分) 一个圆和一个扇形的半径相等 , 已知圆的面积是 30cm2, 扇形的圆心角是 36°. 求扇形的面积 .【拓展延长】3.(10 分) 已知扇形的圆心角为120°, 面积为 300π. 求扇形的弧长 .答案分析1.【分析】十边形的对角线有错误!未找到引用源。
=5×7=35(条),n 边形的对角线有错误!未找到引用源。
条.2.【分析】设半径为 r, 则 30÷π =r 2,错误!未找到引用源。
=错误!未找到引用源。
=3(cm2).2答: 扇形的面积是 3cm.3.【分析】设扇形的半径为 R,依据题意 , 得 300π=错误!未找到引用源。
,因此 R2=900,由于 R>0,因此 R=30.因此扇形的弧长 =错误!未找到引用源。
=20π.【知识拓展】扇形的弧长公式我们知道圆心角为n°, 半径为 R的扇形面积为错误!未找到引用源。
,这个公式是借助扇形面积与圆面积的比而求出的. 借助推导这一公式的思想方法 , 我们能够推导出其所对弧的长度的公式, 即:l弧=错误!未找到引用源。
, 则 l 弧=错误!未找到引用源。
×2πR=错C误!未找到引用源。
.。
七年级数学上册第四章基本平面图形4.5多边形和圆的初步认识同步作业【北师大版】

班别
姓名
基础题:
1、一个多边形对角线的条数与它的边数相等,这个多边形的边数(是 )
A.7
B.6
C.5
D.4
2、一个正方形纸片,截去一角后得到的多边形是( )
A.三角形
B.四边形
C.五边形
D.以上都有可能3、判断题①扇形是圆的一部分. ( )
②圆的一部分是扇形. ( )
③扇形的周长等于它的弧长. ( )
个三角形。
个多边形的边数为( )
A.2 001
B.2005
C.2004
D .2006
提高题:
1、已知扇形AOB 的圆心角为270° ,其面积为9cm2.求扇形AOB 所在的圆的面积。
2、过四边形的一个顶点引的所有对角线可分出
个三角形,过五边形的一个顶点引的
所有对角线可分出
个三角形,过n 边形的一个顶点引的所有对角线可分出
④所有边长都相等的多边形叫做正多边形。( )
⑤所有角的度数都相等的多边形叫做正多边形。( )
4、把图形分割成三角形,至少可以分割成 5 个三角形的多边形是( )
A.五边形
B.六边形 C.七边形
D.八边形
5、 已知一个圆,任意 画出它的三条半径,能得到( )个扇形.
A.4
B.5
C.6
D.8
6、从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到 2003 个三角形 ,则这
北师大版数学七年级上册4.5多边形和圆的初步认识同步测试(无答案)

北师大版数学七年级上册4.5多边形和圆的初步认识同步测试(无答案)4.5多边形和圆的初步认识一、单选题1.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.82.若多边形的边数由3增加到n时,其外角和的度数A.增加B.减少C.不变D.变为(n-2)180º3.下面图形中,平面图形是()A. B. C. D.4.若从多边形的某一顶点出发只能画两条对角线,则它是( )A.三角形B.四边形C.五边形D.六边形5.从一个n边形的某个顶点出发,分别连接这个点与其他顶点可以把这个n边形分割成三角形个数是()A.3个B.(n﹣1)个C.5个D.(n﹣2)个6.下列正多边形地砖中,单独选用一种地砖不能铺满地面的是()A.正三角形地砖B.正方形地砖C.正六边形地砖D.正八边形地砖7.以3cm为半径画圆,这样的圆有()A.1个B.2个C.3个D.无数个8.下列图中表示六边形的是()1 / 4A. B. C. D.9.如图4-2,作出正五边形的所有对角线,得到一个五角星,那么,在五角星含有的多边形中()A.只有三角形B.只有三角形和四边形C.只有三角形、四边形和五边形D.只有三角形、四边形、五边形和六边形10.如图中三个小圆周长之和与大圆周长比较,较长的是( )A.三个小圆周长之和B.大圆周长C.一样长D.不能确定二、填空题11.已知圆的半径为r,用r表示圆的周长_________,面积__________。
12.从一个多边形的某顶点出发,连接其余各顶点,把该多边形分成了4个三角形,则这个多边形是______边形.13.从十边形的一个顶点出发共有_____条对角线.14.如果一个正多边形的内角和等于它外角和的5倍,则这个正多边形的对称轴条数为_____.15.过m边形的一个顶点有8条对角线,n边形没有对角线,则m-n=________.北师大版数学七年级上册4.5多边形和圆的初步认识同步测试(无答案)3 / 416.用三根火柴依次首尾相接,形成一个封闭图形是_____形.17.如图,1∠,2∠,3∠,4∠,5∠是五边形ABCDE 的5个外角,若1234300∠+∠+∠+∠=︒,则5∠=_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.5多边形和圆的初步认识
一、选择题
1、用各种不同的方法把图形分割成三角形,至少可以分割成5个三角形的多边形是()
A、五边形
B、六边形
C、七边形
D、八边形
2、如图1,图中共有正方形()
A、12个
B、13个
C、15个
D、18个
图1 图2 图3
3、如图2,图中三角形的个数为()
A.2
B.18
C.19
D. 20
4.如图3,已知一个圆,任意画出它的三条半径,能得到()个扇形.
A、4
B、5
C、6
D、8
二、判断题
5.扇形是圆的一部分. ()
6.圆的一部分是扇形. ()
7.扇形的周长等于它的弧长. ()
三、填空题
8.我们熟悉的平面图形中的多边形有_____________等.它们是由一些_______同一条直线上的线段依次_______相连组成的_______图形.
9.圆上两点之间的部分叫做_______,由一条_______和经过它的端点的两条_______所组成的图形叫做扇形.
10、如图4,用简单的平面图形画出三位携手同行的的小人物,请你仔细观察,
图中共有三角形____个,圆_____个.
图4 图5
11. 如图5,你能数出_______个三角形,_______个四边形
12. 平面内三条直线把平面分割成最少 ____ 块最多 ____ 块。
13.如下图,将标号为A、B、C、D的正方形沿图中的虚线剪开后得到标号为P、Q、M、N的四组图形.试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:
A、与____对应
B、与____对应
C、与____对应
D、与_____对应
14.(1)从一个五边形的同一顶点出发,分别连接这个顶点与其余各顶点,可
以把这个五边形分成_______个三角形.若是一个六边形,可以分割成_______
个三角形.n边形可以分割成______个三角形.
(2)若将n边形内部任意取一点P,将P与各顶点连接起来,则可将多边形分割成多少个三角形?
(3)若点P取载多边形的一条边上(不是顶点),在将P与n边形各顶点连接起来,则可将多边形分割成多少个三角形?
15、如果从一个多边形的一个顶点出发,分别连接这个定点与其余各顶点,可将
这个多边形分割成2003个三角形,那么此多边形的边数为多少?
16、已知扇形AOB的圆心角为240o ,其面积为8cm2 .求扇形AOB所在的圆的面积。