机构运动仿真基本知识
常用机构的运动仿真(20个例程)

20个常用机构的运动仿真案例1、风扇摇头机构图1是风扇摇头机构的原理模型。
该机构把电机的转动转变成扇叶的摆动。
红色的曲柄与蜗轮固接,蓝色杆为机架,绿色的连架杆与蜗杆(电机轴)固接。
电机带扇叶转动,蜗杆驱动蜗轮旋转,蜗轮带动曲柄作平面运动,而完成风扇的摇头(摆动)运动。
机构中使用了蜗轮蜗杆传动,目的是降低扇叶的摆动速度、模拟自然风。
图 1 风扇摇头机构2、用摆动扇形齿轮实现间接送料机构图2 是一个曲柄摇杆机构。
绿色的可调曲柄可作整周旋转。
并驱动扇形齿轮(摇杆)摆动,扇形齿轮又使蓝色小齿轮正反转动,若小齿轮与电磁离合器或超越离合器结合可完成间歇转动,可完成间断送料。
图 2 摆动扇形齿轮机构3、量筒开盖落料机构图3 用于电子秤自动计量的设备上,绿色的量筒挂在电子秤上(图中未显示),当充填的物料达到设定的要求时,秤重传感器发出信号,通过电磁阀接通单作用气缸,活塞杆伸出推动摇杆转动,打开量筒盖,物料下落;气缸复位,红色的配重块自动关盖。
图 3 开盖落料机构4、犁爪伸缩机构图4 为一犁地机构示意图。
黄色的车轮缘上铰接多个红色的犁爪,犁爪的另一端与绿色的连杆相铰接,连杆又与深蓝色的圆环相铰接,圆环与浅蓝色的偏心圆盘铰接,偏心圆盘与车轴固接;偏心圆盘中心位置应在车轴垂直下方。
当轮转动时圆环绕固定的偏心圆盘转动,并带动犁爪伸缩完成犁地的动作。
该机构原理也可用于包装生产线步进送料机构。
5、转动导杆与摆动导杆串接机构图5 为牛头刨床的运动原理模型。
可实现由转动到往复的直线运动过程。
主动件是一个浅红色的短曲柄,曲柄铰接一个蓝色的滑块,滑块与蓝色的转动导杆相配合,滑块可以在转动导杆的导槽中滑动。
转动导杆的另一端也铰接一个滑块,并与黄色的摆动的导杆相配合,摆动导杆的下端与机架铰接,上端与棕色连杆铰接,棕色连杆可带动粉红色的滑块(刨头)作往复直线运动。
刨头向左运动为工作状态,向右为退出状态。
此机构工作状态近似匀速平稳运动并具有快速退出功能。
机构运动仿真设计

• 二、进行机构运动仿真 • 1.检查机构是否能顺利装配成机构组件。 • 2.进入机构设计/分析模块。 • 3.设置伺服电动机。 • 4.设置凸轮连接。 • 5.进行机构运动分析和仿真。 • 6.播放机构分析及仿真的结果。 • 7.测量滑杆顶点的位置随着时间变化的曲线。 • 8.保存文件。
9.2.2 牛头刨床运动仿真
• 在仿真分析之前,首先要明白约束连接和机构连接的区别,并对常用连接接头的 用法和用途有明确的理解,能够在仿真分析之前使用合理的接头来完成机构的组 装。完成机构组装后,通常需要进一步检查主体的连接情况,还可以通过手工 “拖动”零件来观察机构运动的轨迹是否符合预期要求。
本章大纲
9.1初识仿真原理——十字联轴器运动仿真 9.2综合应用 9.3小结
9.1 初识仿真原理——十字联轴器运动仿真 本例将介绍如图9-1所示十字联轴器的运动仿真设计过程。
图9-1 十字联轴器
9.1.1 设计分析
• 机构仿真设计的基本流程如图9-2所示,其中重点和关 键的步骤如下。
建立连接 设置连接轴 创建运ห้องสมุดไป่ตู้副 创建伺服电机
• 其实,在现代设计中随着CAD和CAE技术的发展和完善,人们正在尝试将生产过 程逐步纳入“虚拟”的轨道,所谓“虚拟”就是在不涉及真实物理材料的前提下, 利用计算机提供的数字环境来模拟加工过程。与真实的加工对象相对应,在虚拟 环境中使用一种被称为“数字样机”的三维实体模型,来取代作为真实加工对象 的“物理样机”。数字样机不但不需要消耗材料和能源,而且可以方便地对其进 行编辑和修改。更为重要的是,设计人员在CAE设计环境中可以对数字样机进行 全方位的仿真分析,借助系统强大的分析工具,可以迅速、直观、简便地获得设 计的工作过程信息,以发现设计中潜在的缺陷。
运动仿真

运动仿真本章主要内容:●运动仿真的工作界面●运动模型管理●连杆特性和运动副●机构载荷●运动分析9.1 运动仿真的工作界面本章主要介绍UG/CAE模块中运动仿真的功能。
运动仿真是UG/CAE(Computer Aided Engineering)模块中的主要部分,它能对任何二维或三维机构进行复杂的运动学分析、动力分析和设计仿真。
通过UG/Modeling的功能建立一个三维实体模型,利用UG/Motion的功能给三维实体模型的各个部件赋予一定的运动学特性,再在各个部件之间设立一定的连接关系既可建立一个运动仿真模型。
UG/Motion的功能可以对运动机构进行大量的装配分析工作、运动合理性分析工作,诸如干涉检查、轨迹包络等,得到大量运动机构的运动参数。
通过对这个运动仿真模型进行运动学或动力学运动分析就可以验证该运动机构设计的合理性,并且可以利用图形输出各个部件的位移、坐标、加速度、速度和力的变化情况,对运动机构进行优化。
运动仿真功能的实现步骤为:1.建立一个运动分析场景;2.进行运动模型的构建,包括设置每个零件的连杆特性,设置两个连杆间的运动副和添加机构载荷;3.进行运动参数的设置,提交运动仿真模型数据,同时进行运动仿真动画的输出和运动过程的控制;4.运动分析结果的数据输出和表格、变化曲线输出,人为的进行机构运动特性的分析。
9.1.1 打开运动仿真主界面在进行运动仿真之前,先要打开UG/Motion(运动仿真)的主界面。
在UG的主界面中选择菜单命令【Application】→【Motion】,如图9-1所示。
图9-1 打开UG/Motion操作界面选择该菜单命令后,系统将会自动打开UG/Motion的主界面,同时弹出运动仿真的工具栏。
9.1.2 运动仿真工作界面介绍点击Application/Motion后UG界面将作一定的变化,系统将会自动的打开UG/Motion 的主界面。
该界面分为三个部分:运动仿真工具栏部分、运动场景导航窗口和绘图区,如图9-2所示。
曲柄摇杆机构运动学仿真

曲柄摇杆机构运动学仿真
曲柄摇杆机构是一种常用的机械传动机构,具有简单、紧凑、高效等特点。
在工程设计中,对于曲柄摇杆机构的运动学性能进行仿真分析可以帮助设计人员更好地理解机构的运动规律,优化设计参数,提高传动效率。
曲柄摇杆机构由曲柄、连杆和摇杆三个部件组成,其中曲柄是通过转动驱动,连杆和摇杆通过曲柄的推动而产生相应的运动。
在运动学仿真中,我们可以通过建立模型,解析运动关系方程,模拟机构运动过程,从而得到机构部件的位置、速度和加速度等参数。
我们需要建立曲柄摇杆机构的几何模型。
通过测量和绘图,确定曲柄、连杆和摇杆的长度和相对位置。
根据机构的几何结构,我们可以利用几何图形的计算方法,计算得到机构各个部件的位置坐标。
接下来,我们需对机构的运动规律进行分析和建模。
由于曲柄摇杆机构是一个复杂的多连杆机构,其运动关系方程较为复杂。
针对不同的机构类型,我们可以应用不同的方法来求解。
常见的方法有几何法、向量法和代数法等。
通过这些方法,我们可以得到机构各个部件之间的角度和位移关系。
运动学仿真的重点是模拟机构的运动过程。
我们可以利用计算机辅助设计软件或者编程软件进行仿真分析。
在仿真过程中,我们通过设定初始条件和边界条件,模拟机构不同时刻的位置、速度和加速度。
通过不断调整参数和观察仿真结果,我们可以对曲柄摇杆机构的运动特性进行深入了解。
我们可以对仿真结果进行分析和评估。
通过比较不同参数组合下的仿真结果,我们可以评估机构的运动性能和传动效率,并选择最佳参数组合。
我们也可以通过仿真结果来验证设计理论和分析方法的正确性。
ProE机构运动仿真设计及分析

活塞连杆机 构的装配注 意需要添加 两个连接。 连杆大头销 钉连接到曲 柄销,活塞 在缸孔内滑 动杆连接。
运动影片
三、机构动力学分析
在5.0中,运动仿真和动态分析功能集成于机构模块中,包括机械设计和动态分析 两方面的分析功能. 在机构动力学分析中简单一种的是不涉及重力、弹簧、阻尼、力和力矩等的 分析,实现机构的运动模拟,可以观察并测量记录如位置、距离、速度、加速度 等运动特征,并可以通过图形直观地显示这些测量值。 另外一种可以在机构上定义重力、弹簧、阻尼、力和力矩等特征,对机构设 置材料、密度等属性,使其更加接近现实中的机构,达到真实模拟现实的目的。
活塞连杆机构装配
先装连杆,采用坐标系 对齐方式
采用销钉连接装配活塞销, 对齐中间平面
销钉连接装配活塞,注意需 选择同一主体的轴和平面
技巧:装配完成后可以按住键,按鼠标左 键拖动零件可检查零件的运动情况。
曲轴及活塞连杆机构装配
基础件机 体按坐标 系对齐装 配,曲轴 按销钉连 接装配到 缸体上, 对齐止推 轴承中心 面。
新建装配, 装配缸体或 骨架模型
曲轴按销钉 连接装配到 基础上
分别按销钉连接和滑 动杆连接装配活塞连 杆机构的连杆大头和 活塞
此机构中基础件为机体(也可以用机体总成骨 架),活塞在气缸中上下运动,不能旋转,活塞 采用滑动杆连接。关键有四组相同的活塞连杆机 构,因此活塞连杆可单独装配成一个小机构,然 后再往曲轴和缸体上连接。
机构连接形式:
序号
1 2 3 4 5 6 7 8 9 10 11
名称
自由度 旋转 平移
0
0
1
0
0
1
1
1
说明
使用一个或多个基本约束,交元件与组件连接在一起,连接后,元件与组件成为一个 主体,相互间没有自由度。 由一个轴对齐约束加一个与轴垂直的平移约束组成。元件可以绕轴旋转,不能平移。 例如,活塞销,齿轮、曲轴等。 由一个轴对齐约束与一个旋转约束组成,元件可沿轴平移,但不能旋转。如活塞。 由一个轴对齐约束组成,元件可绕轴旋转同时可沿轴向平移。如挺柱、气门等。
CATIA航空产品设计与制造课件:运动仿真

运动仿真
1
工程图基础
2
视图的创建
3
三维尺寸标注
CONTENTS
目
录
项目
1
运动机构仿真基础
进入运动机构仿真工作台 运动机构仿真结构树
运动机构仿真基础
1.1 概述
运动机构仿真基础
1.2进入运动机构仿真模块
运动机构仿真基础
用户界面:运动机构仿真
运动机构仿真基础
结构树:运动பைடு நூலகம்构仿真
运动机构仿真 3.1 运动机构仿真
运动机构仿真基础 3.2 定义固定部件
运动机构仿真基础 3.3 机构运动副的添加
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础 3.4 驱动命令的添加
运动机构仿真基础
运动机构仿真基础 3.5 机制修饰的添加
运动机构仿真基础 3.6 驱动命令添加规则
➢ 点和曲面副
运动副的创建
➢ 滑动曲线副
运动副的创建
➢ 滚动曲线副
运动副的创建
➢ 点、曲面副
运动副的创建
➢ 万向节副
运动副的创建
➢ CV关联副
运动副的创建
➢ 齿轮副
运动副的创建
➢ 齿条副
运动副的创建
01 02 03
➢ 课程导学 ➢ 课程录屏
项目
3
运动机构仿真
运动机构仿真一般步骤 运动机构副的添加 运动机构仿真
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础 3.7 使用命令或者规则进行机构仿真
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础
运动机构仿真基础 3.8 运动机构仿真的记录和回放
ug nx motion机构运动仿真基础及实例

ug nx motion机构运动仿真基础及实例
UGNXMotion机构运动仿真是一种基于UGNX软件平台的机构运动分析工具,它能够模拟机构的运动及其相应的反应,为机构设计和优化提供有效的工具支持。
本文将介绍UG NX Motion机构运动仿真的基本原理和操作方法,并通过实例详细说明其应用。
首先,本文将介绍机构运动仿真的基本理论,包括机构运动的分类、运动学和动力学基本概念、运动仿真的基本流程等,以帮助读者更好地理解机构运动仿真的原理和方法。
接着,本文将详细介绍UG NX Motion机构运动仿真的操作方法,包括建立机构模型、定义运动和负载条件、设定仿真参数、运行仿真和分析仿真结果等。
通过这些操作,读者将能够熟练地使用UG NX Motion机构运动仿真工具进行机构设计和优化。
最后,本文将通过实例详细说明UG NX Motion机构运动仿真的应用,包括平面机构、空间机构、连杆机构等。
通过这些实例,读者将能够更加深入地了解UG NX Motion机构运动仿真的能力和优势,为机构设计和优化提供更加有效的支持。
综上所述,《UG NX Motion机构运动仿真基础及实例》将为读者介绍机构运动仿真的基本原理和操作方法,并通过实例详细说明其应用,为机构设计和优化提供有效的工具支持。
- 1 -。
第 1讲 PROE运动仿真基础-四连杆机构.

五、分析 1、类型:运动学; 2、终止时间:1--3 sec; 3、桢频:100-200; 4、若有“快照” ,点“快照”,“运行”。 六、回放 1、播放; 2、生成视频:在“播放”的“动画”窗口内,点“捕获”,输入“路 径”、文件名。 七、分析结果(测量):分析测量 1、新建“测量点”:测量点1(摇杆的位置)、测量点2(摇杆的速度)、 测量点3(摇杆的加速度); 2、按ctrl选多个测量点、复选“分别绘制”、选“结果集”中仿真分析名 称; 3、点左上角 “绘制”图标,再点“文件”——“输出EXCEL文件”。 八、绘制曲线 轨迹曲线——纸零件(选装配图或机架)——选取点——选“结果集”— —确定
(采用普通装配的方式进行约束)
1、刚性:采用普 通装配的方式进行 约束;(自动) 2、焊接:采用坐 标系进行约束; (缺省)
(垫片)
SVA
四连杆机构
一、装配 1、机架(左):缺省方式; 2、机架(右):前面、底面对齐,右面相距120; 3、曲柄、连杆:销钉; 4、摇杆:两个销钉(在“放置”页左下点“新设置”, 添加第2销钉); “应用”——“机构”,进入仿真界面 二、设置运动副(凸轮副、齿轮副) 三、设置电机 1、电机位置(类型):拾取“销钉运动副”; 2、电机大小(轮廓):速度、A为360 deg/sec。 四、调整:手形“拖动”图标,进行调整,“快照”确定当 前位置。
参照下图,设计一万向连接传动机构,结构、尺寸 均自己设计确定,并装配、运动仿真、分析。
缺省专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料sva专业资料专业资料专业资料四连杆机构一装配1机架左
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机构仿真是PROE的功能模块之一。
PROE能做的仿真内容还算比较好,不过用好的兄弟不多。
当然真正专做仿真分析的兄弟,估计都用Ansys去了。
但是,Ansys研究起来可比PROE麻烦多了。
所以,学会PROE的仿真,在很多时候还是有用的。
我再发一份学习笔记,并整理一下,当个基础教程吧。
希望能对学习仿真的兄弟有所帮助。
术语创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。
连接(Connections) - 定义并约束相对运动的主体之间的关系。
自由度(Degrees of Freedom) - 允许的机械系统运动。
连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。
拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。
动态(Dynamics) - 研究机构在受力后的运动。
执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。
齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。
基础(Ground) - 不移动的主体。
其它主体相对于基础运动。
机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。
运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。
环连接(Loop Connection) - 添加到运动环中的最后一个连接。
运动(Motion) - 主体受电动机或负荷作用时的移动方式。
放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。
回放(Playback) - 记录并重放分析运行的结果。
伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。
可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。
LCS - 与主体相关的局部坐标系。
LCS 是与主体中定义的第一个零件相关的缺省坐标系。
UCS - 用户坐标系。
WCS - 全局坐标系。
组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。
运动分析的定义在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。
运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。
因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。
运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。
如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。
使用运动分析可获得以下信息:几何图元和连接的位置、速度以及加速度元件间的干涉机构运动的轨迹曲线作为Pro/ENGINEER 零件捕获机构运动的运动包络运动分析工作流程创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接检查模型:拖动组件,检验所定义的连接是否能产生预期的运动加入运动分析图元:设定伺服电机准备分析:定义初始位置及其快照,创建测量分析模型:定义运动分析,运行结果获得:结果回放,干涉检查,查看测量结果,创建轨迹曲线,创建运动包络装入元件时的两种方式:机构连接与约束连接向组件中增加元件时,会弹出“元件放置”窗口,此窗口有三个页面:“放置”、“移动”、“连接”。
传统的装配元件方法是在“放置”页面给元件加入各种固定约束,将元件的自由度减少到0,因元件的位置被完全固定,这样装配的元件不能用于运动分析(基体除外)。
另一种装配元件的方法是在“连接”页面给元件加入各种组合约束,如“销钉”、“圆柱”、“刚体”、“球”、“6DOF”等等,使用这些组合约束装配的元件,因自由度没有完全消除(刚体、焊接、常规除外),元件可以自由移动或旋转,这样装配的元件可用于运动分析。
传统装配法可称为“约束连接”,后一种装配法可称为“机构连接”。
约束连接与机构连接的相同点:都使用PROE的约束来放置元件,组件与子组件的关系相同。
约束连接与机构连接的不同点:约束连接使用一个或多个单约束来完全消除元件的自由度,机构连接使用一个或多个组合约束来约束元件的位置。
约束连接装配的目的是消除所有自由度,元件被完整定位,机构连接装配的目的是获得特定的运动,元件通常还具有一个或多个自由度。
“元件放置”窗口:机构连接的类型机构连接所用的约束都是能实现特定运动(含固定)的组合约束,包括:销钉、圆柱、滑动杆、轴承、平面、球、6DOF、常规、刚性、焊接、槽,共11种。
销钉:由一个轴对齐约束和一个与轴垂直的平移约束组成。
元件可以绕轴旋转,具有1个旋转自由度,总自由度为1。
轴对齐约束可选择直边或轴线或圆柱面,可反向;平移约束可以是两个点对齐,也可以是两个平面的对齐/配对,平面对齐/配对时,可以设置偏移量。
圆柱:由一个轴对齐约束组成。
比销钉约束少了一个平移约束,因此元件可绕轴旋转同时可沿轴向平移,具有1个旋转自由度和1个平移自由度,总自由度为2。
轴对齐约束可选择直边或轴线或圆柱面,可反向。
滑动杆:即滑块,由一个轴对齐约束和一个旋转约束(实际上就是一个与轴平行的平移约束)组成。
元件可滑轴平移,具有1个平移自由度,总自由度为1。
轴对齐约束可选择直边或轴线或圆柱面,可反向。
旋转约束选择两个平面,偏移量根据元件所处位置自动计算,可反向。
轴承:由一个点对齐约束组成。
它与机械上的“轴承”不同,它是元件(或组件)上的一个点对齐到组件(或元件)上的一条直边或轴线上,因此元件可沿轴线平移并任意方向旋转,具有1个平移自由度和3个旋转自由度,总自由度为4。
平面:由一个平面约束组成,也就是确定了元件上某平面与组件上某平面之间的距离(或重合)。
元件可绕垂直于平面的轴旋转并在平行于平面的两个方向上平移,具有1个旋转自由度和2个平移自由度,总自由度为3。
可指定偏移量,可反向。
球:由一个点对齐约束组成。
元件上的一个点对齐到组件上的一个点,比轴承连接小了一个平移自由度,可以绕着对齐点任意旋转,具有3个入旋转自由度,总自由度为3。
6DOF:即6自由度,也就是对元件不作任何约束,仅用一个元件坐标系和一个组件坐标系重合来使元件与组件发生关联。
元件可任意旋转和平移,具有3个旋转自由度和3个平移自由度,总自由度为6。
刚性:使用一个或多个基本约束,将元件与组件连接到一起。
连接后,元件与组件成为一个主体,相互之间不再有自由度,如果刚性连接没有将自由度完全消除,则元件将在当前位置被“粘”在组件上。
如果将一个子组件与组件用刚性连接,子组件内各零件也将一起被“粘”住,其原有自由度不起作用。
总自由度为0。
焊接:两个坐标系对齐,元件自由度被完全消除。
连接后,元件与组件成为一个主体,相互之间不再有自由度。
如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标系发按其原有自由度的作用。
总自由度为0。
槽:是两个主体之间的一个点----曲线连接。
从动件上的一个点,始终在主动件上的一根曲线(3D)上运动。
槽连接只使两个主体按所指定的要求运动,不检查两个主体之间是否干涉,点和曲线甚至可以是零件实体以外的基准点和基准曲线,当然也可以在实体内部。
机构连接类型:约束连接:常规:也就是自定义组合约束,可根据需要指定一个或多个基本约束来形成一个新的组合约束,其自由度的多少因所用的基本约束种类及数量不同而不同。
可用的基本约束有:匹配、对齐、插入、坐标系、线上点、曲面上的点、曲面上的边,共7种。
在定义的时候,可根据需要选择一种,也可先不选取类型,直接选取要使用的对象,此时在类型那里开始显示为“自动”,然后根据所选择的对象系统自动确定一个合适的基本约束类型。
常规—匹配/对齐:对齐)。
单一的“匹配/对齐”构成的自定义组合约束转换为约束连接后,变为只有一个“匹配/对齐”约束的不完整约束,再转换为机构约束后变为“平面”连接。
这两个约束用来确定两个平面的相对位置,可设定偏距值,也可反向。
定义完后,在不修改对象的情况下可更改类型(匹配常规—插入:选取对象为两个柱面。
单一的“插入”构成的自定义组合约束转换为约束连接后,变为只有一个“插入”约束的不完整约束,再转换为机构约束后变为“圆柱”连接。
常规—坐标系:选取对象为两个坐标系,与6DOF的坐标系约束不同,此坐标系将元件完全定位,消除了所有自由度。
单一的“坐标系”构成的自定义组合约束转换为约束连接后,变为只有一个“坐标系”约束的完整约束,再转换为机构约束后变为“焊接”连接。
常规—线上点:选取对象为一个点和一条直线或轴线。
与“轴承”等效。
单一的“线上点”构成的自定义组合约束转换为约束连接后,变为只有一个“线上点”约束的不完整约束,再转换为机构约束后变为“轴承”连接。
常规—曲面上的点:选取对象为一个平面和一个点。
单一的“曲面上的点”构成的自定义组合约束转换为约束连接后,变为只有一个“曲面上的点”约束的不完整约束,再转换为机构约束后仍为单一的“曲面上的点”构成的自定义组合约束。
常规—曲面上的边:选取对象为一个平面/柱面和一条直边。
单一的“曲面上的点”构成的自定义组合约束不能转换为约束连接。
自由度与冗余约束自由度(DOF)是描述或确定一个系统(主体)的运动或状态(如位置)所必需的独立参变量(或坐标数)。
一个不受任何约束的自由主体,在空间运动时,具有6个独立运动参数(自由度),即沿XYZ三个轴的独立移动和绕XYZ三个轴的独立转动,在平面运动时,则只具有3个独立运动参数(自由度),即沿XYZ三个轴的独立移动。
主体受到约束后,某些独立运动参数不再存在,相对应的,这些自由度也就被消除。
当6个自由度都被消除后,主体就被完全定位并且不可能再发生任何运动。
如使用销钉连接后,主体沿XYZ三个轴的平移运动被限制,这三个平移自由度被消除,主体只能绕指定轴(如X轴)旋转,不能绕另两个轴(YZ轴)旋转,绕这两个轴旋转的自由度被消除,结果只留下一个旋转自由度。
冗余约束指过多的约束。
在空间里,要完全约束住一个主体,需要将三个独立移动和三个独立转动分别约束住,如果把一个主体的这六个自由度都约束住了,再另加一个约束去限制它沿X轴的平移,这个约束就是冗余约束。
合理的冗余约束可用来分摊主体各部份受到的力,使主体受力均匀或减少磨擦、补偿误差,延长设备使用寿命。
冗余约束对主体的力状态产生影响,对主体的对运动没有影响。
因运动分析只分析主体的运动状况,不分析主体的力状态,在运动分析时,可不考虑冗余约束的作用,而在涉及力状态的分析里,必须要适当的处理好冗余约束,以得到正确的分析结果。
系统在每次运行分析时,都会对自由度进行计算。
并可创建一个测量来计算机构有多少自由度、多少冗余。