第八章-分子设计育种..

合集下载

分子设计育种

分子设计育种

分子设计育种欢迎学习分子设计育种!一、分子设计育种简介1、什么是分子设计育种分子设计育种是一种技术手段,利用先进的模拟计算技术,在分子水平上对作物进行基因的设计,以期获得良好的育种效果。

它结合模拟计算及传统育种方法,以期在传统育种中节省时间,提高作物的优良性状,更高效地获得改良品种。

2、分子设计育种的作用分子设计育种能够更加有效地改良和研发作物,使品种基因多样性增加,从而满足作物对环境的不同适应性,降低病虫草害威胁,提高品种品质,缩短作物新品种研发周期,节省资源。

二、分子设计育种技术1、数据采集方面在分子设计育种中,将采用大量种子数据和通过实验测序技术采集的数据来对作物的基因进行调查和分析,以搜集分析优良品种的数据,作为设计育种的前提;2、设计通过采集的数据,模拟计算技术和算法,设计出优良品种的理论模型,通过不断尝试错误,进而实现新品种的精英培育;3、实验检测借助对各种条件下的植物体的实测,减少设计中的干预时间,尽可能快速地找到最佳解决方案;4、检测结果验证通过实验检测反馈的结果,及时地发现和修正设计中的错误,从而有效地重新定位在结合育种条件的情况下找到最佳方案;5、品种扩散最终形成一个经验品种,通过品系延续和设计品系将新品种分布到各个地区,满足当地栽培作物需求。

三、分子设计育种的优势1、能充分发挥作物的遗传潜力分子设计育种可以更直接地以具体的基因选择来提高作物的性状,扩大作物自身的基因多样性,充分发挥作物自身的遗传潜力,从而达到目标性状;2、缩短育种时间分子设计育种技术能够减少设计过程,加快复合性状的优化,缩短育种时间,大大提高了育种效率;3、提高育种选择精度针对单个等位基因,能够提高育种选择精度,准确的定位目标性状的基因型,从而大大提高新品种的质量;4、增加作物的环境适应性通过模拟设计和传统育种相结合,可以提高作物在不同环境条件下的适应性,减少病虫害破坏,提高农作物的优势性状,更好地适应生态环境。

分子设计育种

分子设计育种
• 你认为种植转基因作物是否会对生态环境造成影响? • 你认为食用转基因食品安全吗? • 谈一谈转基因育种的发展趋势? • 如何利用生物技术加快育种进程?
• 影响常规作物育种效率有哪些因素?如何应用现代生物技 术提高常规作物育种效率?
1.能提高效率,能够定向育种
与常规育种方法相比,作物分子设计育种首 先在计算机上模拟实施,考虑的因素更多、 更周全,因而所选用的亲本组合、选择途径 等更有效,更能满足育种的需要,能够极大 地提高育种效率。
2.是一个结合多学科的系统工程
• 分子设计育种在以后实施过程中将是一 个结合分子生物学、生物信息学、计算机 学、作物遗传学、育种学、栽培学、植物 保护、生物统计学、土壤学、生态学等多 学科的系统工程。
【五】必须清楚的情况??
必须清楚计算机模拟分子育种技术必须和常规育 种方法结合起来,才能出成果。
当前的努力方向应该是逐步提高分子技术在分子 标记辅助育种中的技术含量,从而实现真正的分 子育种,实现作物育种由“经验+艺术+机遇”向科 学转变。
值得思考的问题??
• 如何利用生物技术在作物遗传改良中创造遗传变异? • 转基因育种能否代替常规作物育种? • 生物技术在现代作物育种中有哪些方面的应用? • 简述分子标记辅助选择育种? • 简述植物转基因的要紧方法有那些?
三是预见性差,一般很难预测杂交后代的表现,有时 即使成功,也不明白其中的真正缘故。
例如:传统育种技术要培育抗病品种,通常是用
抗病品种做亲本,与具有其他优良目标性状(比 如抗倒伏)的品种杂交,从产生的后代中进行选 择,如此的选择要进行5-6代。但假如选择时田间 没有发病,就无法确定后代是否具有抗病性,如 此通过多年选育出的材料最后可能发现是感病的, 结果就前功尽弃。

第八章-微生物的遗传变异与育种答案

第八章-微生物的遗传变异与育种答案

第七章习题答案一、名词解释1.转座因子:具有转座作用得一段DNA序列、2.普遍转导:通过极少数完全缺陷噬菌体对供体菌基因组上任何小片段DNA进行“误包”,而将其遗传性状传递给受体菌得现象称为普遍转导。

3.准性生殖:就是一种类似于有性生殖,但比它更为原始得两性生殖方式,这就是一种在同种而不同菌株得体细胞间发生得融合,它可不借减数分裂而导致低频率基因重组并产生重组子、4.艾姆氏试验:就是一种利用细菌营养缺陷型得回复突变来检测环境或食品中就是否存在化学致癌剂得简便有效方法5.局限转导:通过部分缺陷得温与噬菌体把供体得少数特定基因携带到受体菌中,并与后者得基因整合,重合,形成转导子得现象、6.移码突变:诱变剂使DNA序列中得一个或几个核苷酸发生增添或缺失,从而使该处后面得全部遗传密码得阅读框架发生改变、7、感受态:受体细胞最易接受外源DNA片段并能实现转化得一种生理状态、8、高频重组菌株:该细胞得F质粒已从游离态转变为整合态,当与F菌株相接合时,发生基因重组得频率非常高、9、基因工程:通过人工方法将目得基因与载体DNA分子连接起来,然后导入受体细胞,从而使受体细胞获得新得遗传性状得一种育种措施称基因工程。

10、限制性内切酶:就是一类能够识别双链DNA分子得特定序列,并能在识别位点内部或附近进行切割得内切酶。

11.基因治疗:就是指向靶细胞中引入具有正常功能得基因,以纠正或补偿基因得缺陷,从而达到治疗得目得。

12.克隆:作为名词,也称为克隆子,它就是指带有相同DNA序列得一个群体可以就是质粒,也可以就是基因组相同得细菌细胞群体。

作为动词,克隆就是指利用DNA体外重组技术,将一个特定得基因或DNA序列插入一个载体DNA分子上,进行扩增。

二、填空1.微生物修复因UV而受损DNA得作用有光复活作用与切除修复、2.基因组就是指一种生物得全套基因。

3.基因工程中取得目得基因得途径有 _____3_____条。

4.基因突变可分为点突变与染色体突变两种类型。

《作物分子设计育种》课件

《作物分子设计育种》课件
作物适应性提升
利用分子设计育种技术提高作物对环境适应的能 力,增强其抗逆性。
作物遗传多样性保护
利用分子设计育种技术保护作物自然遗传多样性。
未来展望
分子设计育种有望在粮食安全、生态环境保护和 可持续农业发展方面发挥重要作用。
实践案例分享
水稻分子设计育种
利用分子设计育种技术改良水稻 的产量和抗逆性,为粮食安全做 出贡献。
玉米分子设计育种
通过分子设计育种技术提高玉米 的品质和耐旱性,满足不同地区 的种植需求。
小麦分子设计育种
利用分子设计育种技术改良小麦 的抗病性和适应性,提高产量和 品质。
总结
• 分子设计育种的优势是可以针对性地改良作物的特性,提高产量和适应性。 • 分子设计育种的挑战是技术的复杂性、道德伦理的问题以及公众对基因编辑的质疑。 • 分子设计育种有着广阔的应用前景,可以为粮食安全和农业发展做出重要贡献。
《作物分子设计育种》PPT课 件
探索作物分子设计育种的原理、方法和应用,以及未来的发展前景。
简介
作物分子设计育种是一种利用基因编辑技术、基因质量控制技术、基因组学 与表观遗传学技术和分子标记辅助选择技术等手段来改良作物的育种方法。
原理与方法
1
基因编辑技术
利用CRISPR/Cas9等工具精确编辑作物
基因质量控制技术
2
基因,实现目标性状的改良。
通过筛选、鉴定和优化基因变异体,提
高作物的遗传质量。
3
基因组学与表观遗传学技术
研究作物基因组和表观遗传调控机制,
分子标记辅助选择技术
4
为作物育种提供理论基础。

利用分子标记鉴定和选择具有优良特性 的作物品种。
应用与前景

通过分子设计育种实现作物产量的提高

通过分子设计育种实现作物产量的提高

通过分子设计育种实现作物产量的提高在农业领域中,作物产量的提高一直是人们关注的焦点。

为了满足全球不断增长的人口需求,传统的农业方法已经无法满足全球粮食安全的需求。

因此,寻求一种新的育种方法是至关重要的。

分子设计育种作为一种新兴的育种方法,具有巨大的潜力来改善作物产量。

分子设计育种是利用分子生物学和基因工程技术来调控作物的遗传特性以实现产量的提高。

通过对作物基因组的分析,我们可以了解作物的遗传信息,进而进行精确的基因编辑和调整。

下面将讨论一些常见的分子设计育种方法来实现作物产量的提高。

首先,基因编辑技术是分子设计育种的重要工具之一。

利用CRISPR-Cas9系统,研究人员可以通过对特定基因的编辑来改变作物的性状。

例如,通过抑制一个抑制生长的基因,我们可以促进作物的生长并提高产量。

此外,通过编辑抗虫基因或提高作物抗病能力的基因,还可以减少作物遭受虫害和病害的损失,进一步提高产量。

其次,利用转基因技术来改善作物产量也是分子设计育种的重要手段之一。

通过向作物中引入外源基因,可以增加作物对营养物质的吸收能力或提高作物的抗逆能力。

例如,将一种能够增强作物对氮素利用效率的基因转移到作物中,可以有效提高作物在氮限制条件下的产量。

此外,转基因技术还可以用于提高作物的耐盐性、耐寒性和耐旱性等,以应对不同的环境压力。

另外,利用分子标记辅助选择的方法也可以实现作物产量的提高。

这种方法通过分子标记来筛选具有优良性状的作物个体,并进行后代选择。

分子标记可以帮助育种者更准确地选择具有所需性状的杂交个体,减少繁杂的传统育种过程中的资源和时间浪费。

通过这种方法,可以加快作物育种的速度和效率,从而更快地实现作物产量的提高。

此外,利用基因组学和生物信息学技术可以帮助鉴定和利用与作物产量相关的基因。

通过对作物基因组的广泛测序和分析,可以发现与产量相关的基因和调控因子。

进一步的研究可以揭示这些基因的功能和调控网络,为快速改良作物品种提供理论基础和指导。

第八章 分子设计育种

第八章 分子设计育种

高效率,能够实现从“经验育种”到“精确育种”的转 化。
相关背景
在我国人口、资源、环境等刚性条件约束下,培育高产、优质、高效作物 新品种是确保我国粮食安全、促进农业可持续发展的重要途径之一。 作物分子(设计)育种成为国家相关战略规划确定的优先发展方向并得到 了国家科技计划的重点支持。 2006年发布的《国家中长期科学和技术发展规划纲要(2006—2020年) 》将动植物品种与药物分子设计技术确定为前沿技术。
Δ Gramene
http: ///
禾本科作物比较基因组学的重要网站。提供水稻、玉米、大 麦、小麦、高粱、拟南芥的序列信息, 特点是重视水稻与其 他作物的比较。该网站搜罗了禾本科各作物的重要遗传标记 连锁图, 提供各种类型的分子标记, 水稻、玉米、小麦种质资 源等位基因SNP 和SSR变异的信息和水稻各种代谢途径图。
国家自然科学基金项目 — 2008年,“利用计算机模拟探索抗胞囊线虫大豆品种分子设计育种方法” 。
— 2009年,“基于单片段代换系(SSSL)的水稻分子设计育种技术体系的 建立”。
2008年,中国科学院启动了“小麦、水稻重要农艺性状的分子设计及新品 种培育推广”重大项目,最终目的是建立和完善多基因组装分子设计育种 的理论和技术体系,实现传统遗传改良向品种分子设计的跨越。
II. 在基因/QTL 定位和各种遗传研究的基础上 ,利用已经鉴 定出的各种重要育种性状基因的信息 , 包括基因在染色 体上的位置、遗传效应、基因之间的互作、基因与背景 亲本和环境之间的互作等,模拟预测各种可能基因型的 表现型,从中选择符合特定育种目标的基因型。 III. 分析达到目标基因型的途径,制定生产品种的育种方案, 利用设计育种方案开展育种工作,培育优良品种。

分子设计育种 国家自然科学一等奖

分子设计育种 国家自然科学一等奖

分子设计育种国家自然科学一等奖1. 概述分子设计育种是一种结合了生物技术和传统育种方法的新颖育种方式。

它不仅可以加快育种过程,提高作物的产量和抗病性,还可以减少对化学农药和化肥的依赖,从而减少对环境的污染。

近年来,我国在分子设计育种领域取得了突破性的进展,为此,国家自然科学基金委员会授予了“分子设计育种国家自然科学一等奖”。

2. 研究内容(1)分子设计育种的理论基础分子设计育种是基于对植物基因组的深入研究,通过对作物基因的分析和编辑,可以实现对植物性状的精准调控。

研究者在对作物基因组进行高通量测序和功能分析的基础上,利用CRISPR/Cas9等基因编辑技术,实现了对植物抗逆性、产量、品质等性状的精准改良。

(2)分子设计育种的应用在水稻、小麦、玉米等重要农作物的育种中,分子设计育种已经取得了显著成果。

通过精准编辑关键基因,研究者培育出了抗旱、抗病、高产、优质的新品种,这些品种在实际生产中表现出了良好的应用价值,为农业生产提供了有力支持。

3. 突破性贡献(1)精准基因编辑技术利用CRISPR/Cas9等基因编辑技术,研究者可以直接对植物基因进行编辑,实现对植物性状的精准调控。

这一技术的出现极大地加快了作物育种的速度,大大提高了育种的成功率。

(2)遗传多样性的利用研究者在进行分子设计育种时,重视利用作物中的遗传多样性,通过对不同基因型的杂交和选择,培育出了适应不同环境条件的新品种。

这为丰富我国作物品种资源、增加作物耐逆性提供了重要的理论和实践支持。

4. 社会意义分子设计育种的成功应用,不仅可以提高我国农业生产的产量和质量,还可以减少对化学农药和化肥的使用,降低农业对环境的负面影响。

新品种的应用还可以减轻农民的劳动强度,提高农产品的市场竞争力,为农业现代化做出了重要贡献。

5. 结语分子设计育种的引入和应用,为我国农业的可持续发展提供了新的思路和途径。

通过不断的研究和创新,我国在分子设计育种领域必将取得更多的成就,为实现农业现代化和农产品的高质量供给做出更大的贡献。

中国作物分子设计育种

中国作物分子设计育种

作物学报ACTA AGRONOMICA SINICA 2011, 37(2): 191 201/zwxb/ ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z1B1)资助。

*通讯作者(Corresponding author):万建民, E-mail: wanjm@, Tel: 010-******** 第一作者联系方式: E-mail: wangjk@, Tel: 010-********Received(收稿日期): 2010-11-19; Accepted(接受日期): 2010-12-16.DOI: 10.3724/SP.J.1006.2011.00191中国作物分子设计育种王建康李慧慧张学才尹长斌黎裕马有志李新海邱丽娟万建民*中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京100081摘要: 分子设计育种通过多种技术的集成与整合, 对育种程序中的诸多因素进行模拟、筛选和优化, 提出最佳的符合育种目标的基因型以及实现目标基因型的亲本选配和后代选择策略, 以提高作物育种中的预见性和育种效率, 实现从传统的“经验育种”到定向、高效的“精确育种”的转化。

分子设计育种主要包含以下3个步骤: (1)研究目标性状基因以及基因间的相互关系, 即找基因(或生产品种的原材料), 这一步骤包括构建遗传群体、筛选多态性标记、构建遗传连锁图谱、数量性状表型鉴定和遗传分析等内容; (2)根据不同生态环境条件下的育种目标设计目标基因型, 即找目标(或设计品种原型), 这一步骤利用已经鉴定出的各种重要育种性状的基因信息, 包括基因在染色体上的位置、遗传效应、基因到性状的生化网络和表达途径、基因之间的互作、基因与遗传背景和环境之间的互作等, 模拟预测各种可能基因型的表现型, 从中选择符合特定育种目标的基因型; (3)选育目标基因型的途径分析, 即找途径(或制定生产品种的育种方案)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体位置、相关参考文献、各种类型的水稻品种资源、
三、分子设计育种的步骤
发掘控制育种性状的基因、明确不同等位基 因的表型效应、明确基因与基因以及基因 与环境之间的相互关系。
在基因 定位和各种遗传研究的基础上,利用已 经鉴定出的各种重要育种性状基因的信息, 包括基因在染色体上的位置、遗传效应、 基因之间的互作、基因与背景亲本和环境 之间的互作等,模拟预测各种可能基因型 的表现型,从中选择符合特定育种目标的 基因型。
v水稻生物信息库
Δ( ) Δ: Δ 日本的水稻基因组计划的网址, 是整个国际水稻基因组测序 计划的重要网站之一。 该网站目前主要是免费发布粳稻“日本 晴”全基因组、 序列的测序信息。 Δ( ) Δ Δ 美国国立生物技术信息中心,国际上几个重要分子生物信息 网站之一,含籼稻93- 11 基因组序列数据库。
Δ
Δ: Δ 禾本科作物比较基因组学的重要网站。提供水稻、
玉米、大麦、小麦、高粱、拟南芥的序列信息, 特点 是重视水稻与其他作物的比较。该网站搜罗了禾本 科各作物的重要遗传标记连锁图, 提供各种类型的分 子标记, 水稻、玉米、小麦种质资源等位基因 和变 异的信息和水稻各种代谢途径图。
Δ
Δ: Δ 收集水稻各方面的资源信息。水稻基因及其染色
∆ 分子设计育种 ∆— 以生物信息学为平台,以基因组学和蛋白 组学等数据库为基础,综合作物育种学流程中 的作物遗传、生理、生化、栽培、生物统计等 所有学科的有用信息,根据具体作物的育种目 标和生长环境,在计算机上设计最佳方案,然 后开展作物育种试验的分子育种方法。 ∆—与传统育种技术相比,分子设计育种更为精 确、更加高效率,能够实现从“经验育种”到 “精确育种”的转化。
第八章 分子设计育种
一、概念的提出:
国外:
设计育种( ), 和 (2003)。 在基因定位的基础上, 构建近等基因系, 利 用分子标记聚合有利等位基因, 实现育种目标。 基因组学辅助育种( ), ( 2005)。 在获得全 基因组序列的基础上,根据事先进行的虚拟 基因组设计方案,通过一系列的育种手段和 过程,培育聚集大量有利基因、基因组组配 合理、基因互作网络协调、基因组结构最为
❖ 2007年,我国863计划现代农业技术领域启动了“动植物品种 分子设计”专题。
❖ —以主要植物(水稻、小麦、玉米、大豆、棉花等)、动物 (猪、牛、鸡等)为研究对象。
❖ —重点研究:重要性状的分子构成解析;转基因技术;优异 性状多基因聚合;品种分子设计的信息系统;品种分子设计 工程;品种分子设计的技术体系与验证。
❖ 相关背景
❖ 在我国人口、资源、环境等刚性条件约束下,培育高产、优 质、高效作物新品种是确保我国粮食安全、促进农业可持续 发展的重要途径之一。
❖ 作物分子(设计)育种成为国家相关战略规划确定的优先发 展方向并得到了国家科技计划的重点支持。
❖ 2006年发布的《国家中长期科学和技术发展规划纲要( 2006—2020年)》将动植物品种与药物分子设计技术确定为 前沿技术。
2、育种模拟工具日益成熟并在育种中应用 目标基因型的预测、育种方法的优化须借助适当的 模拟工具。
—,用于不同育种方法的比较、研究显性和上位性选 择效应、利用已知基因信息预测杂交后代的表型以 及分子标记辅助选择过程的优化。
—,用于杂交种育种策略的模拟和优化、不同杂交种 育种方案的比较。
—,用于轮回选择与标记辅助选择的方案优化。 育种模拟工具可以克服田间试验耗时长、难以重复 的局限性, 通过大量模拟试验全面比较不同育种方 法的育种成效
二、开展分子设计育种的基本条件 1、高密度分子遗传图谱和高效的分子标记检测技术 2、重要基因的定位及其功能 大规模定位控制目标作物各种性状的重要基因,明确其功 能。 掌握这些关键基因的等位变异及其对表型的效应。 充分的了解基因间互作(包括基因与基因之间的互作以及基 因与环境的互作等) 3、建立并完善可供分子设计育种利用的遗传信息数据库。 4、构建可用于设计育种的种质资源与育种中间材料。
➢ 国家自然科学基金项目 ➢ — 2008年,“利用计算机模拟探索抗胞囊线虫大豆品种分子设计育种方法
”。
➢ — 2009年,“基于单片段代换系()的水稻分子设计育种技术体系的建立 ”。
➢ 2008年,中国科学院启动了“小麦、水稻重要农艺性状的分子设计及新品 种培育推广”重大项目,最终目的是建立和完善多基因组装分子设计育种 的理论和技术体系,实现传统遗传改良向品种分子设计的跨越。
分析达到目标基因型的途径,制定生产品种
万建民,2007年。
王健康和万建民,2011年。
四、分子设计育种的研究现状 (一)我国的研究现状 1、水稻遗传研究材料更加丰富多样、重要性状的 遗传研究日趋深入。 ——已创制出类型多样的水稻遗传研究群体, 对大 多数育种性状已开展 定位、基因精细定位和克隆 研究。 ——我国已建立了水稻多套染色体片段置换系(导 入系)群体,大量的突变体和近等基因系群体,这 些群体可用于基因的精细定位、克隆和功能验证、 基因间的互作、基因聚合等研究。 ——我国在定位和分子标记辅助育种领域的基础研 究方面力量较强,论文数量位居世界第二,在论文 数量排名前10位机构中,我国的大学和研究机构 共占据5个席位。
3、开展分子设计育种、建立设计育种技术体系
万建民和等利用粳稻品种为背景、籼稻品种24 为供 体的65个染色体片段置换系()开展水稻粒长和粒宽 性状的 分析, 根据 分析结果设计出大粒目标基因 型, 并提出实现目标基因型的最佳育种方案; 随后 开展分子设计育种, 于2008年选育出携带籼稻基 因组片段的大粒( 长× 宽 > 8.5 × 3.2 ) 粳稻材料。
➢ 2008年,973计划在农业领域设立了作物分子设计项目“主要作物高产、 优质品种设计和选育的基础研究”。
➢ — 研究主要作物(小麦、玉米、大豆等)高产和优质性状的遗传机理,鉴 定出具有重要实用价值的分子靶点;通过常规和分子育种手段的结合,创 制在产量、品质等目标性状上表现突出的育种材料;建立多基因组装育种 的理论和方法体系。
相关文档
最新文档