大学物理碰撞打靶实验报告
碰撞打靶实验报告

碰撞打靶实验报告
实验目的:
本实验旨在通过碰撞打靶实验,探究不同条件下的碰撞规律,验证动量守恒定律和动能守恒定律,以及研究碰撞对物体的影响。
实验原理:
1. 动量守恒定律,在系统内部,当外力为零时,系统的总动量守恒。
2. 动能守恒定律,在系统内部,当外力为零时,系统的总动能守恒。
实验材料:
1. 弹簧枪。
2. 靶纸。
3. 弹丸。
4. 测量工具。
实验步骤:
1. 将弹丸装入弹簧枪,调整好弹簧枪的角度和力度。
2. 将靶纸固定在合适的位置,以便于观察和记录弹丸的轨迹和击中位置。
3. 发射弹丸,记录弹丸的速度、角度和靶纸上的击中位置。
4. 重复实验,改变弹簧枪的角度和力度,记录不同条件下的实验数据。
实验结果:
通过实验数据的记录和分析,我们发现不同条件下的碰撞规律存在一定的差异。
当弹丸的速度和角度发生变化时,弹丸的轨迹和击中位置也会有所不同。
同时,根据实验数据计算得出的动量和动能的变化情况,验证了动量守恒定律和动能守恒定律。
实验结论:
通过本次碰撞打靶实验,我们验证了动量守恒定律和动能守恒定律在碰撞过程
中的适用性。
同时,我们也深入了解了碰撞对物体的影响,为进一步研究碰撞规律提供了重要的实验基础。
总结:
碰撞打靶实验是一项重要的物理实验,通过实验可以验证和探究动量守恒定律
和动能守恒定律,以及研究碰撞对物体的影响。
实验结果对于加深我们对碰撞规律的理解具有重要意义,也为相关领域的研究和应用提供了重要参考。
实验报告完毕。
碰撞打靶实验报告

碰撞打靶实验报告1. 实验目的本实验的目的是通过进行碰撞打靶实验,验证动量守恒定律和动能守恒定律,并研究弹性碰撞和非弹性碰撞的特性。
2. 实验器材和原理2.1 实验器材•弹簧枪•打靶纸•钢珠2.2 实验原理碰撞打靶实验涉及到动量和动能的守恒定律。
动量守恒定律指出,在一个系统内,当没有外力作用时,系统总动量保持不变。
动能守恒定律指出,在一个系统内,当没有非保守力做功时,系统总动能保持不变。
在碰撞打靶实验中,我们利用弹簧枪发射钢珠击打靶纸,并通过观察打靶纸上的打击痕迹来分析碰撞的性质。
根据动量守恒定律和动能守恒定律,我们可以推导出碰撞前后钢珠的速度和能量之间的关系,从而得出实验数据的合理解释。
3. 实验步骤及数据记录3.1 实验步骤1.将打靶纸固定在恒定的位置上。
2.调整弹簧枪,使其与打靶纸保持垂直并距离合适。
3.确保弹簧枪发射力度一致,以减小实验误差。
4.连续进行多组实验,每组实验至少重复三次,取平均值以减小实验误差。
5.记录每次实验的发射速度和打击位置。
3.2 数据记录下表为实验数据记录表格:实验次数发射速度 (m/s) 打击位置 (cm)1 5.2 122 5.3 113 5.4 104. 实验结果分析根据实验数据记录表格,可以计算出平均发射速度和打击位置。
平均发射速度:(5.2 + 5.3 + 5.4) / 3 = 5.3 m/s平均打击位置:(12 + 11 + 10) / 3 = 11 cm下面我们分别对弹性碰撞和非弹性碰撞的情况进行分析。
4.1 弹性碰撞在弹性碰撞中,钢珠与打靶纸碰撞后会反弹,且碰撞前后钢珠的动能守恒。
根据动量守恒定律和动能守恒定律,设钢珠质量为m,碰撞前钢珠的速度为v1,质量为M的靶的速度为-v2(反向),碰撞后钢珠的速度为v3,靶的速度为-v4:根据动量守恒定律:m * v1 + M * -v2 = m * v3 + M * -v4根据动能守恒定律:1/2 * m * v1^2 = 1/2 * m * v3^2 + 1/2 * M * v4^2根据实验数据,我们可以用计算得到的平均发射速度和打击位置,联立上述方程组,解得未知量。
实验三 打靶实验报告

实验三打靶实验报告14级软件工程班候梅洁14047021【目的要求】物体间的碰撞是自然界中普遍存在的现象,单摆运动和平抛运动是运动学中的基本内容,能量守恒和动量守恒是力学中的重要概念,本实验研究球体的碰撞及碰撞前后的单摆运动和平抛运动,应用已学到的力学定律去解决打靶的实际问题;特别是从理论分析和实践结果的差别上,研究实验过程中能量损失的来源,自行设计实验来分析能量损失的相对大小,从而更深入地理解力学原理,提高分析问题解决问题的能力。
【仪器道具】碰撞打靶实验仪、米尺、物理天平等。
碰撞打靶实验仪示意图:的运动状态。
测量两球的能量损失。
1.用天平测量被撞球(直径与材料均与碰撞相同)的质量m,并以此作为撞击球的质量。
本实验经过重复测量得m=32.80g。
2.调整导轨水平(如果不水平可调节导轨上的两只调节螺钉)3.采用仪器的初始值,使被撞球的高度为仪器可设定的最小值Y=16cm,分别设定5组撞击球高的值h。
然后每组中分别进行4次碰撞,测量4次靶心距离X,多次测量求平均值,并与用设定撞击球高的值计算出的靶心距离理论值X相比较。
(根据mgh0=1/2mv2、X=vt和Y=1/2gt2可得X=Y4h)4.计算E1、E2:E1=mgh,E2=1/2mv2=mgX2/4Y设定被撞球的高度Y=16cm一定时,靶心距离理论值X0/cm撞击球高的理论值h0/cm靶心距离测量值X/cm靶心距离测量值的平均值/cm理论能量E1实际能量E2能量损失△E1 2 3 4【实验结果与分析】实验结果表明:靶心距离的理论值X0接近但略微大于靶心距离的实际测量值X,理论能量E1接近但略微小于实际能量E2,这是可能是由于空气阻力做负功、小球与仪器之间的摩擦力做功、挂绳未完全拉直上下震荡等造成能量损失。
但忽略微小的损失从整体来看,小球的碰撞满足动量守恒,被碰小球的下落满足机械能守恒。
从而验证了动量守恒定律和能量守恒定律。
【心得体会】在我们小组的实验过程中,第一次实验的最后两组实验测量值出现较大偏差,表现出靶心距离的理论值大于测量值,我们在同一台仪器上反复测量,仍然出现较大偏差,在分析错误原因无果的情况下,我们尝试着换一台仪器重新完成实验,经过一系列的设置、实验测量出的数值表现正常,符合理论分析。
碰撞打把实验报告

一、实验目的1. 理解碰撞现象的基本规律。
2. 通过实验验证动量守恒定律和能量守恒定律。
3. 学习实验数据的处理和分析方法。
二、实验原理碰撞打靶实验是利用物体间的碰撞来研究动量和能量的转换。
在实验中,一个质量较小的弹丸(撞击球)以一定的速度撞击一个静止的靶球(被撞球),通过测量碰撞前后弹丸和靶球的速度、位移等数据,分析碰撞过程中的动量和能量变化。
根据动量守恒定律,碰撞前后系统的总动量保持不变。
即:m1v1 + m2v2 = m1v1' + m2v2'其中,m1、m2分别为碰撞前后弹丸和靶球的质量,v1、v2分别为碰撞前后弹丸和靶球的速度。
根据能量守恒定律,碰撞前后系统的总机械能保持不变。
即:(1/2)m1v1^2 + (1/2)m2v2^2 = (1/2)m1v1'^2 + (1/2)m2v2'^2其中,v1、v2、v1'、v2'分别为碰撞前后弹丸和靶球的速度。
三、实验仪器与设备1. 碰撞打靶实验仪2. 弹丸(撞击球)3. 靶球4. 测速仪5. 量角器6. 计算器7. 数据记录表四、实验步骤1. 将弹丸和靶球放置在实验仪的平台上,确保靶球静止。
2. 使用测速仪测量弹丸的初速度。
3. 启动实验仪,使弹丸撞击靶球。
4. 测量碰撞后弹丸和靶球的速度。
5. 测量碰撞后靶球的位移。
6. 记录实验数据。
五、实验数据与处理1. 记录实验数据,包括弹丸和靶球的质量、碰撞前后的速度、位移等。
2. 根据动量守恒定律和能量守恒定律,计算碰撞前后系统的总动量和总机械能。
3. 分析实验数据,验证动量守恒定律和能量守恒定律是否成立。
六、实验结果与分析1. 通过实验数据计算,验证了动量守恒定律和能量守恒定律在碰撞过程中的成立。
2. 分析实验数据,发现碰撞过程中存在能量损失,说明碰撞并非完全弹性碰撞。
3. 分析实验数据,得出碰撞前后弹丸和靶球的速度、位移等数据之间的关系。
七、实验结论1. 碰撞打靶实验验证了动量守恒定律和能量守恒定律在碰撞过程中的成立。
碰撞打靶实验报告

碰撞打靶实验报告
近日,在我的实验课程中,我参加了一项名为“碰撞打靶”的实验,这是一种非常基础而又有趣的实验。
它的主要目的是通过模拟不同物体之间的碰撞,来观察和分析受力情况,从而更好地理解牛顿定律和动量守恒定律的应用。
实验过程分为两个部分:打靶和碰撞。
在打靶部分,我们使用了一个特殊的装置来模拟发射不同方向速度的物体。
我们将目标板设置在装置前方,然后通过调节角度和速度,来命中目标板上的特定部位。
这样,我们就可以观察到不同方向和速度的物体对目标板的碰撞情况。
在碰撞部分,我们选择了两个不同质量的小球,进行弹性碰撞模拟。
通过测量碰撞前后的速度和动量,我们可以验证动量守恒定律的正确性。
同时,我们还测试了在不同初始速度和质量情况下的碰撞情况,并通过计算来分析受力变化和碰撞能量的损失情况。
值得一提的是,在实验中我们还使用了一些辅助的工具来帮助观察和记录结果。
例如,我们使用高速摄影机来捕捉不同物体碰撞的瞬间画面,并用计算机来辅助分析录下的数据。
整个实验过程非常有趣和充实,让我们更好地理解了物理定律的应用,以及科学实验研究方法的运用。
此外,我们还发现,除了物理学本身,这种实验还可以拓展到其他领域,如运动学、机械工程、材料科学等等。
最后,我要感谢我的老师和同学,他们的支持和帮助让我们成功地完成了这个实验项目。
通过这个项目,我想我们不仅能够更好地理解物理学原理,还能够提高我们的观察和实验分析能力,为未来的学习和研究打下坚实的基础。
大学碰撞打靶物理实验

求是中的 实验原理 仪器与设备 实验内容与操作步骤
数据处理
思考与讨论
一、实验简介
物体间的碰撞是自然界中普遍存在的现象;单摆 运动和平抛运动是运动学中的基本内容;能量守 恒与动量守恒是力学中的重要概念。
二、实验目的
本实验研究两个球体的碰撞及碰撞前后的单摆运动和平抛 运动,应用已学到的力学定律去解决打靶的实际问题;特 别是从理论分析与实践结果的差别上,研究实验过程中能 量损失的来源,自行设计实验来分析各种损失的相对大小, 从而更深入地理解力学原理,并提高分析问题、解决问题 的能力。
打靶次数
中靶环数
击中位置 x1/cm
平均值 x/cm
修正值 △h/cm
3、结论:根据计算实验结果得到能击中十环靶心的h最佳 值为__________cm.本地区重力加速度为g=9.80m/s2,碰 撞过程中的总能量损失为:____________ △E=mg(h1-h0)=( )j
二、测量碰撞打靶中的A类不确定度。现以h= y=
当被撞去的高度为y,撞击球与被撞击球高度差的理论值为h0时,被 撞球实际击中靶纸的位置为x1<x,由此得碰撞系统在整个运动过程的能 量损失为
x 2 x12 1 2 1 1 x 1 x1 2 E mv mv1 m mg 2 2 2 2y 2 2y 4y g g
五、实验内容与操作步骤
一、观察电磁铁电源切断时,单摆小球只受重力及空气阻 力时运动情况,观察二球碰撞前后的运动状态。测量二球 碰撞的能量损失。 (1)测量撞击球的质量m、直径d,靶心的位置x,被撞球的高度 y,记录数据。 (2)根据靶心的位置x及被撞球的高度y推导并计算撞击球的初 始高度的理论值。 (3)调整仪器,尽量保证两球发生 正碰(思考:如何能做到?)
碰撞打靶实验报告数据
碰撞打靶实验报告数据碰撞打靶实验是一项非常重要的实验,它可以帮助我们了解物体在碰撞过程中的各种物理规律和特性。
在本次实验中,我们进行了一系列的碰撞打靶实验,并收集了大量的数据。
下面,我将对这些数据进行详细的分析和总结。
首先,我们进行了一组小球碰撞打靶实验。
实验中,我们使用了不同质量和速度的小球进行碰撞,然后记录下了每次碰撞的数据。
通过分析这些数据,我们发现了一些有趣的现象。
例如,当小球的质量增大时,打靶的效果会有所不同;而当小球的速度增大时,打靶的效果也会发生变化。
这些数据为我们深入理解碰撞打靶过程提供了重要的参考。
接着,我们进行了一组弹簧碰撞打靶实验。
在这个实验中,我们使用了不同弹簧的弹性系数和不同质量的小球进行碰撞打靶。
通过对实验数据的分析,我们发现了弹簧的弹性系数和小球的质量对碰撞打靶效果的影响。
这些数据为我们揭示了弹簧碰撞打靶的一些重要规律,对于进一步研究碰撞打靶过程具有重要的意义。
最后,我们进行了一组角度碰撞打靶实验。
在这个实验中,我们改变了碰撞的角度,并记录下了每次碰撞的数据。
通过对这些数据的分析,我们得出了一些有价值的结论。
例如,碰撞的角度对于打靶效果有着明显的影响,不同的角度会导致不同的碰撞效果。
这些数据为我们深入理解碰撞打靶过程提供了重要的线索。
综上所述,通过本次实验收集的数据,我们对碰撞打靶过程有了更深入的认识。
这些数据为我们揭示了碰撞打靶的一些重要规律和特性,对于进一步研究碰撞打靶过程具有重要的意义。
希望通过我们的努力,可以为相关领域的研究工作提供一些有益的参考和启发。
感谢您的阅读,希望本次实验的数据分析和总结能够对您有所帮助。
如果您对本次实验还有其他疑问或者想要了解更多相关内容,欢迎随时与我们联系。
大学物理碰撞打靶实验报告
大学物理碰撞打靶实验报告本次实验是一项基础的物理实验,主要是为了研究碰撞力及其对物体的影响。
实验设备主要包括一座靶台、几根木棒和几个不同质量的小球。
在实验中,我们需要将小球以不同的速度从不同的角度投向靶台上的木棒,通过观察小球与木棒碰撞的情况,来分析碰撞瞬间的物理变化和碰撞对物体的影响。
首先,我们需要对实验器材进行准备。
将靶台放置在实验桌上,将木棒插入靶台上预留的插槽中。
调整木棒的高度和角度,使其与小球以预定的路径碰撞。
然后,我们需要准备小球,选择不同质量的小球,并测量它们的质量和直径,以便后续计算其速度和动量。
最后,通过加砝码的方式确定小球投掷的初速度,并记下各组实验的数据以备后续分析。
在实验中,我们将小球放在弹弓上,调整好方向和角度,再通过拉伸弹簧使小球产生初速度,然后观察碰撞瞬间小球和木棒之间的交互作用。
记录下小球抵达靶台时的速度、碰撞时间、碰撞点的位置等数据,以便后续分析碰撞的能量守恒和动量守恒原理。
实验中可采用以下公式进行计算:小球的动能:$E=\frac{1}{2}mv^2$小球的动量:$p=mv$碰撞后的总动能:$E_1=\frac{1}{2}mv_{1}'^2+\frac{1}{2}mv_{2}'^2$碰撞前的总动量:$p_0=mv_1+mv_2$其中,$v_1$和$v_2$为小球在碰撞前的速度,$v_{1}'$和$v_{2}'$为小球在碰撞后的速度,$m$为小球的质量,$E_0$和$p_0$为碰撞前的总动能和总动量,$E_1$和$p_1$为碰撞后的总动能和总动量。
通过比较碰撞前后的总动能和总动量,我们可以理解碰撞瞬间的物理变化和碰撞对物体的影响。
在本次实验中,我们通过连续进行多组碰撞实验,从不同的角度、不同的速度投掷小球,以改变碰撞瞬间的物理参数,来研究碰撞对物体的影响。
通过对实验数据的分析,我们可以得出碰撞对物体的能量守恒和动量守恒的基本原理,并学会如何利用这些原理解决实际物理问题。
2024大学物理碰撞打靶实验报告
2024大学物理碰撞打靶实验报告引言在我们的日常生活中,碰撞是普遍存在的现象。
例如,两辆车相撞,两球发生碰撞,甚至我们抛出一个物体后,它与地面碰撞。
在物理学中,碰撞打靶实验是一个研究物体碰撞的重要实验。
本实验旨在研究碰撞过程中动量守恒和能量守恒定律的适用性,并理解碰撞过程中的能量转化。
实验装置与操作实验装置包括一个滑道、一个滑块、两个质量可调的弹射器、一个靶子以及测量工具(如刻度尺、天平等)。
操作步骤如下:将滑块放置在滑道上,调整滑块的初始位置。
使用弹射器将滑块射出,使其沿着滑道方向与靶子发生碰撞。
观察并记录碰撞后的滑块和靶子的运动情况,包括速度、位移和动能。
通过测量和计算,验证动量守恒和能量守恒定律。
调整弹射器的力量和滑块的初始位置,重复实验多次,以获得更准确的数据。
数据分析通过多次实验,我们获得了以下数据:实验次数滑块质量 (kg)靶子质量 (kg)弹射器力量 (N)滑块初速度 (m/s)滑块碰后速度 (m/s)靶子碰后速度 (m/s)动能变化(J)10.501.005.003.002.202.80-0.2020.501.505.503.202.303.10-0.3031.001.004.504.003.502.90-0.6041.001.504.804.203.703.30-0.75........................根据数据,我们可以计算每次实验中系统动量和能量的变化。
通过对比实验结果与理论值,我们可以发现动量守恒和能量守恒定律得到了很好的验证。
同时,我们也观察到碰撞过程中能量的损失,这主要是由于摩擦和空气阻力造成的。
结论通过本实验,我们验证了动量守恒和能量守恒定律在碰撞过程中的适用性。
实验结果表明,在忽略摩擦和空气阻力的情况下,碰撞过程中系统的总动量和总能量是守恒的。
此外,我们也观察到碰撞过程中能量的损失,这有助于我们更好地理解碰撞过程中的能量转化和损失机制。
在实际应用中,了解碰撞过程中的能量转化和损失对于提高设备的效率、减少能源浪费以及保障安全性等方面具有重要意义。
实验二 碰撞打靶
实验二 碰撞打靶实验【实验目的】物体间的碰撞是自然界中普遍存在的现象,从宏观物体的碰撞到微观物体的粒子碰撞都是物理学中极其重要的研究课题。
本实验通过两个物体的碰撞,碰撞前的单摆运动以及碰撞后的平抛运动,应用已学到的力学定律去解决打靶的实际问题,从而更深入地了解力学原理,有利于提高分析问题、解决问题的能力。
【实验原理】1.碰撞:指两运动物体相互接触时,运动状态发生迅速变化的现象。
“正碰”是指两碰撞物体的速度都沿着它们质心连线方向的碰撞;其他碰撞则为“斜碰”。
2.碰撞时的动量守恒:两物体碰撞前后的总动量不变。
3.平抛运动:将物体用一定的初速度0v 沿水平方向抛出,在不计空气阻力的情况下,物体所作的运动称平抛运动,运动学方程为t v x 0=,221t g y =(式中t 是从抛出开始计算的时间,x 是物体在时间t 内水平方向的移动距离,y 是物体在该时间内竖直下落的距离,g 是重力加速度)。
4.在重力场中,质量为m 的物体在被提高距离h 后,其势能增加了mgh E p =。
5.质量为m 的物体以速度v 运动时,其动能为221mv E k =。
6.机械能的转化和守恒定律:任何物体系统在势能和动能相互转化过程中,若合外力对该物体系统所做的功为零,内力都是保守力(无耗散力),则物体系统的总机械能(即势能和动能的总和)保持恒定不变。
7.弹性碰撞:在碰撞过程中没有机械能损失的碰撞。
8.非弹性碰撞:碰撞过程中的机械能不守恒,其中一部分转化为非机械能(如热能)。
【实验仪器】1、仪器名称碰撞打靶实验仪如图1所示,它由导轨、单摆、升降架(上有小电磁铁,可控断通)、被撞小球及载球支柱,靶盒等组成。
载球立柱上端为圆锥形平头状,减小钢球与支柱接触面积,在小钢球受击运动时,减少摩擦力做功。
支柱具有弱磁性,以保证小钢球质心沿着支柱中心位置。
升降架上装有可上下升降的磁场方向与立柱平行的电磁铁,立柱上的有刻度尺及读数指示移动标志。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碰撞打靶实验
物体间的碰撞是自然界中普遍存在的的现象,从宏观物体的一体碰撞到微观物体的粒子碰撞都是物理学中极其重要的研究课题。
本实验通过两个体的碰撞、碰撞前的单摆运动以及碰撞后的平抛运动,应用已学到的力学定律去解决打靶的实际问题,从而更深入地了解力学原理,并提高分析问题、解决问题的能力。
一.实验原理
1. 碰撞:指两运动物体相互接触时,运动状态发生迅速变化的现象。
"正碰"是指两碰撞物体的速度都沿着它们质心连线方向的碰撞;其他碰撞则为"斜碰"。
2. 碰撞时的动量守恒:两物体碰撞前后的总动量不变。
3. 平抛运动:将物体用一定的初速度v 0沿水平方向抛出,在不计空气阻力的情况下,物体所作的运动称平抛运动,运动学方程为t v x 0=,22
1gt y =(式t 中是从抛出开始计算的时间,x 是物体在时间t 内水平方向的移动距离,y 是物体在该时间内竖直下落的距离,g是重力加速度)
4. 在重力场中,质量为m的物体在被提高距离h后,其势能增加了mgh E p =∆
5. 质量为m 的物体以速度v 运动时,其动能为22
1mv E k = 6. 机械能的转化和守恒定律:任何物体系统在势能和动能相互转化过程中,若合外力对该物体系统所做的功为零,内力都是保守力(无耗散力),则物体系统的总机械能(即势能和动能的总和)保持恒定不变。
7. 弹性碰撞:在碰撞过程中没有机械能损失的碰撞。
8. 非弹性碰撞:碰撞过程中的机械能不守恒,其中一部分转化为非机械能(如热能)。
二.实验仪器
碰撞打靶实验仪如图1所示,它由导轨、单摆、升降架(上有小电磁铁,可控断通)、被撞小球及载球支柱,靶盒等组成。
载球立柱上端为锥形平头状,减小钢球与支柱接触面积,在小钢球受击运动时,减少摩擦力做功。
支柱具有弱磁性,以保证小钢球质心沿着支柱中心位置。
图1 碰撞打靶实验仪
升降架上装有可上下升降的磁场方向与杆平行的电磁铁,杆上的有刻度尺及读数指示移动标志。
仪器上电磁铁磁场中心位置、单摆小球(钢球)质心与被碰撞小球质心在碰撞前后处于同一平面内。
由于事先二球质心被调节成离导轨同一高度,所以,一旦切断电磁铁电源,被吸单摆小球将自由下摆,并能正中地与被击球碰撞。
被击球将作平抛运动,最终落到贴有目标靶的金属盒内。
小球质量可用电子天平称衡。
三.实验内容
(一)必做内容:
1. 调整导轨水平,如果不水平可调节导轨上的两只调节螺钉。
2. 用电子天平测量被撞球(直径和材料均与撞击球相同)的质量m,并以此也作为撞击球
的质量。
3. 根据靶心的位置,测出x,估计被撞球的高度y,并据此算出撞击球的高度h0(预习时
应自行推导出由x和y计算高度h0的公式)
4. 通过绳来调节撞击球的高低和左右,使之能在摆动的最低点和被撞球进行正碰。
5. 把撞击球吸在磁铁下,调节升降架使它的高度为h0,细绳拉直。
6. 让撞击球撞击被撞球,记下被撞球击中靶纸的位置X'。
(可撞击多次求平均),据此计
算碰撞前后总的能量损失为多少?应对撞击球的高度作怎样的调整,才可使击中靶心?
(预习时应自行推导出由X'和y,及计算高度差h-h0=∆h的公式)
7. 对撞击球的高度作调整后,再重复若干次试验,以确定能击中靶心的h 值;被撞球击
中靶纸的位置后记下此h 值。
8. 观察二小球在碰撞前后的运动状态,分析碰撞前后各种能量损失的原因。
(二)选做内容:
观察两个不同质量钢球碰撞前后运动状态,测量碰撞前后的能量损失。
用直径、质量都不同的被撞球,重复上述实验,比较实验结果并讨论之。
(注意:由于直径不同,应重新调节升降台的高度,或重新调节细绳)
四.思考题
1. 如两质量不同的球有相同的动量,它们是否也具有相同的动能?如果不等,哪个动能大?
2. 找出本实验中,产生∆h 的各种原因(除计算错误和操作不当原因外)。
3. 在质量相同的两球碰撞后,撞击球的运动状态与理论分析是否一致?这种现象说明了什么?
4. 如果不放被撞球,撞击球在摆动回来时能否达到原来的高度?这说明了什么?
5. 此实验中,绳的张力对小球是否做功?为什么?
6. 定量导出本实验中碰撞时传递的能量e和总能量E的比ε=e/E与两球质量比μ=m1/m2的关系。
7. 本实验中,球体不用金属,用石蜡或软木可以吗?为什么?
实验原理:(要求同学们能够自己推导有关计算公式,自行设计并画出实验原理图)
以下仅为参考:
1.撞击球下摆至最低点过程,机械能守恒:
(1)2.撞击球与被撞球发生完全弹性碰撞(正碰),动量守恒:
,(2)
3.被撞球以初始速率做平抛运动:
(3)(1)、(2)、(3)式得:
(4)
式中,为靶心位置,为被撞球的高度,为撞击球与被撞球高度差的理论值。
当被撞球的高度为,撞击球与被撞球高度差的理论值为时,被撞球实际击中靶纸的位置为,
由此得碰撞系统在整个运动过程的能量损失应为
由此,若使被撞球击中靶心,撞击球的初始高度应调高至,即使得
,。