遗传的细胞学基础医学知识

合集下载

医学遗传学(第3版)

医学遗传学(第3版)

非编码RNA通过调控基因表达参与多 种生物过程,其异常表达与多种疾病 的发生发展有关,如microRNA与癌 症的关系。
2024/1/26
34
表观遗传学在疾病诊断和治疗中的应用前景
表观遗传学在疾病诊断中的应用
通过分析特定表观遗传标记,可以实现疾病的早期诊断和预后评估,如利用DNA甲基
化谱对癌症进行分型和预测。
19世纪末至20世纪初,医学遗传学处于萌芽阶段,主要关 注一些明显的遗传性状和单基因遗传病。
中期医学遗传学
20世纪中期,随着DNA双螺旋结构的发现和遗传学理论 的不断完善,医学遗传学开始关注多基因遗传病和染色体 异常等领域。
现代医学遗传学
20世纪末至今,随着人类基因组计划的完成和高通量测序 技术的发展,医学遗传学进入了基因组医学时代,实现了 从单一遗传病研究向复杂疾病研究的转变。
29
线粒体DNA的突变与疾病关系
线粒体DNA突变的类型
线粒体DNA突变包括点突变、缺失、插入和重复等类型,其中点突变是最常见的突变类型。
2024/1/26
线粒体DNA突变与疾病的关系
线粒体DNA突变可导致多种疾病,如线粒体肌病、线粒体脑肌病、Leber遗传性视神经病变等。这些疾病通常具有母 系遗传的特点,且病情严重程度与突变类型及比例有关。
治疗手段
对症治疗、康复训练、心理支持等。 对于部分染色体异常遗传病,如唐氏 综合征和威廉姆斯综合征等,目前尚 无根治方法,但通过对症治疗、康复 训练和心理支持等手段,可以改善患 者的生活质量。同时,对于高危人群 进行遗传咨询和产前诊断是预防染色 体异常遗传病的有效措施。
2024/1/26
27
07
线粒体遗传与疾病
2024/1/26

《细胞遗传学》课件

《细胞遗传学》课件

基因克隆和测序技术
基因克隆
基因克隆是指将特定的DNA片段插入到 载体中,通过复制和表达获得目的基因 的过程。基因克隆是基因工程的核心技 术之一,为基因功能研究和基因治疗提 供了重要的手段。
VS
基因测序
基因测序是指对DNA分子进行测定的技 术,通过测定DNA的序列,可以了解基 因的结构和功能,为基因诊断和治疗提供 依据。目前常用的基因测序技术有第二代 测序技术和第三代测序技术。
针对性的治疗方案。例如,针对肿瘤细胞的基因突变,可以设计特定的
靶向药物。
03
干细胞治疗
通过对干细胞进行遗传修饰,可以用于治疗一些难以治愈的疾病,如
帕金森病、糖尿病等。细胞遗传学为干细胞治疗提供了理论基础和技术
支持。
细胞遗传学在农业中的应用
作物改良
通过基因工程手段,将优良性状基因导入农作物中,培育抗逆、 抗病、高产的转基因作物,提高农业生产效益。
基因表达调控是细胞对外部刺激和内部信号的响应,通过调 节转录和翻译过程来控制基因产物的合成。
突变和基因重组
突变是指基因序列的改变,可能导致 遗传信息的丢失或改变,影响基因表 达和蛋白质功能。
基因重组是生物体在DNA复制、修复 和细胞分裂过程中,染色体上基因的 重新排列组合过程。
03
细胞周期和染色体数目变异
20世纪50年代以后,随着DNA双螺 旋结构的发现和分子生物学技术的不 断发展,分子遗传学逐渐成为研究重 点。
20世纪初,科学家们发现了染色体和 基因的存在,并开始研究它们在遗传 中的作用。
细胞遗传学的研究领域和方向
染色体结构和功能
研究染色体的组成、结构、复 制、分裂和重组等过程,以及
染色体异常与疾病的关系。

遗传学中的细胞遗传与代谢遗传

遗传学中的细胞遗传与代谢遗传

遗传学中的细胞遗传与代谢遗传细胞遗传和代谢遗传是遗传学中两个重要的概念,它们在遗传信息传递和生物体代谢过程中起着关键的作用。

本文将详细介绍细胞遗传与代谢遗传的概念、原理和应用。

一、细胞遗传的概念与原理细胞遗传是指遗传信息在细胞间的传递过程。

在有性繁殖中,个体的遗传信息通过生殖细胞传递给后代。

这一过程涉及到细胞分裂、染色体的遗传物质DNA的复制和分离,以及遗传物质的组合和重新分配等一系列细胞遗传学中的基本概念。

细胞遗传的原理主要包括:1. 细胞分裂:细胞分裂是细胞遗传的基础,包括有丝分裂和减数分裂两种形式。

有丝分裂是指细胞的核分裂过程,保留了遗传物质DNA的完整性;减数分裂则是有丝分裂的前奏,两次分裂的结果是四个单倍体的细胞。

2. 遗传物质DNA的复制和分离:在有丝分裂中,DNA通过复制过程产生两条完全相同的染色体,然后分离到两个子细胞中。

而在减数分裂中,DNA只进行一次复制,之后进行两次分裂和分离,使得遗传信息得以组合和重组。

3. 遗传物质的组合和重新分配:减数分裂中的染色体在重新组合时,通过配子的结合形成新的个体。

这种重新组合和分配遗传物质的过程,保证了后代个体的多样性和遗传稳定性。

二、细胞遗传在生物学中的应用1. 遗传疾病的研究:细胞遗传学的研究有助于识别染色体变异和遗传突变与遗传疾病之间的关联。

通过对细胞遗传的分析,可以确定染色体、基因和DNA的异常情况,从而诊断和研究遗传病的发病机制和治疗方法。

2. 基因工程和转基因技术:细胞遗传学为基因工程和转基因技术提供了理论和实践基础。

通过改变细胞中的遗传物质,使其具备特定的性状或功能,可以用于农业、医学和工业等领域。

3. 个体鉴定和亲子鉴定:细胞遗传学提供了一种确定个体身份和亲子关系的方法,DNA指纹技术的应用使得鉴定结果更加可靠和准确。

三、代谢遗传的概念与原理代谢遗传是指遗传信息在个体的代谢过程中的传递和表达。

个体的代谢活动受到其遗传物质的影响,包括基因组中的所有基因以及其所编码的酶和调节蛋白。

医学遗传学知识点2024

医学遗传学知识点2024

1、医学遗传学是应用遗传学的理论和方法研究人类遗传性疾病和人类疾病发生的遗传学问题的一门综合性学科。

2、遗传病是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。

3、遗传病的类型:①单基因病;②多基因病(冠心病、高血压、生理性近视、消化性溃疡、精神分裂症、自闭症);③染色体病(唐氏综合征、猫叫综合征);④体细胞遗传病(肺癌、恶性肿瘤);(⑤线粒体遗传病:帕金森综合征)4、基因是合成一种有功能的多肽链或者RNA分子所必须的一段完整的DNA序列。

5、编码序列在DNA分子中是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,称为割裂基因。

6、割裂基因中内含子和外显子的关系不是完全固定不变的。

7、割裂基因结构中外显子-内含子的高度保守的接头形式叫做GT-AG法则。

8、侧翼序列是在第一个外显子和最末一个外显子外侧的一段非编码区,由前导区、尾部区和调控区组成。

均属于顺式作用元件。

9、启动子是RNA聚合酶结合并启动转录的特异DNA序列,位于基因转录起点上游的100bp 范围内。

TATA框或Hogness框:位于转录起始点上游-19~-27bp处,是高度保守的一段序列,与转录因子TF2结合,准确地识别转录的起始位置。

CAAT框:位于转录起始点上游-70~-80bp,也是一段保守序列,与转录因子CTF,其C端有激活转录的功能。

GC框:位于CAAT框两侧,顺序为GGCGGG,与转录因子SP1结合,N端有激活转录的作用。

10、增强子指能增强启动子转录活性的一段DNA序列。

作用特点:①通过启动子增强转录,明显提高转录效率;②具有远距离效应;③无明显方向性;④具有组织特异性。

增强子在任意位置有效。

11、终止子是给予RNA聚合酶转录终止信号的DNA保守序列。

大多真核生物为AATAAA,加上一段富含CG的回文序列。

12、DNA分子中发生单个碱基的改变,称为点突变。

一种嘌呤替换另一种嘌呤,或者一种嘌呤,或者一种嘧啶替换另一种嘧啶,叫做转换。

医学遗传学课件第二章遗传的细胞学基础

医学遗传学课件第二章遗传的细胞学基础
内10nm 组蛋白
外30nm
螺旋管是在组蛋白H1协助下,6个核小体 缠绕一圈形成的中空性管.
solenoid
3 .三级结构:超螺旋管 它是由螺旋管进一步盘曲而形成。将螺
旋管长度压缩了40倍。
4. 四级结构:染色单体, 超螺旋管进一步 折叠又被压缩了5倍。
(二) 染色体支架-放射环模型
前期I(双线期)
diplotene
前期I(终变期)
diakinesis
(2)中期I Metaphase I
equatorial plate
中期I
(3)后期I Anaphase I
1.同源染色体分离,四分体二分体 2.非同源染色体随机组合。
(4)末期 I Telophase I
metaphase I
(二) Y染色质
正常男性在间期细胞,用荧光染料 染色后,在核内出现一强荧光小体,直 径0.3um,称y染色质。
Y染色质
y染色体长臂远端部分为异染色质,被荧 光染料染色后发出荧光,女性中不存在, 细胞中y染色质数目与y染色体数目相同。
核性别:间期细胞核中染色质的性别差异。
第三节 人类性别决定的染 色体机制
anaphase I
telophase I interphase
2 . 第二次减数分裂 Meiosis II
1. 二分体单分体 2.非姐妹染色单体随机组合。
前期 II
中期 II
后期 II
末期 II
(一)、减数分裂 I
1.同源染色体配对 1.二价体四分体 1.联会复合体消失
联会
2.非姐妹染色单 2.同源染色体某
结构异染色质:在所有细胞 类型及各发育阶段中均处于 凝集状态。 兼性异染色质:是在某些类 型或阶段,原有的常染色质 凝聚并丧失转录活性后转变 而成的异染色质,可转化为 常染色质。

医学遗传学-细胞和分子基础

医学遗传学-细胞和分子基础
半保留复制
第四节 基因表达
DNA
加尾

戴帽

剪接
mRNA
翻 译
蛋白质
RNA编辑及意义
RNA编辑(RNA editing):一种与RNA剪接不同 的RNA加工形式,导致生成的mRNA分子在编码区 的核苷酸序列不同于其DNA模板序列的过程。
U的加入或删除 C→U、A→G或G→A的RNA碱基转换 C→G、G→C或U→A的RNA碱基颠换
回文序列(palindrome)
十字结构
1、高度重复序列
①卫星DNA(satellite DNA) ②小卫星DNA (minisatellite DNA)
微卫星DNA (microsatellite DNA) ③反向重复序列
2、中度重复序列
由长度300bp~7000bp的序列重复而成, 拷贝数102~105。
第五节 基因突变
一、基因突变的概念
基因突变(gene mutation):基因在结构上发生碱基 对组成或排列顺序的改变。
突变基因(mutant gene):基因突变后在原有基因座 上出现的新基因。
特点: 稀有性、重演性、可逆性、多向性、 有害性和有利性、突变的时期
二、基因突变的分子机制
1、碱基替换 指一个碱基对被另一个不同的 碱 基 对 所 替 换 , 为 DNA 分 子 中 单个碱基的改变,即点突变。
AATAAA
第三节 DNA复制
双向复制
复制叉(replication folk) 复制子(replicon)
第三节 DNA复制
半不连续复制
前导链(leading strand) 后随链(lagging strand)
冈崎片段(Okazaki fragment)

医学遗传学习知识情况总结

医学遗传学习知识情况总结

1.医学遗传学是用遗传学的理论和方法来研究人类病理性状的遗传规律及物质基础的学科2.遗传病的类型:单基因病多基因病染色体病体细胞遗传病线粒体遗传病3.遗传因素主导的遗传病单基因病和染色体病4.遗传和环境因素共同作用的疾病多基因病和体细胞遗传病5.环境因素主导的疾病非遗传性疾病6.遗传病由遗传因素参与引起的疾病,生殖细胞或受精卵的遗传物质(染色体或基因)异常所引起的疾病,具有垂直传递的特点7.染色质和染色体是同一物质在细胞周期不同时期的不同形态结构8.染色体的化学组成DNA 组蛋白RNA 非组蛋白9.染色体的基本结构单位是核小体10.染色质的类型:常染色质异染色质11.常染色质是间期核内纤维折叠盘曲程度小,分散度大,能活跃的进行转录的染色质特点是多位于细胞核中央,不易着色,折光性强12.异染色质是间期核内纤维折叠盘曲紧密,呈凝集状态,一般无转录活性的染色质特点:着色较深,位于细胞核边缘和核仁周围。

13.结构性异染色质是各类细胞的整个发育过程中都处于凝集状态的染色质14.兼性异染色质是特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝集状态的异染色质15.染色体的四级结构:一级结构:核小体;二级结构:螺线管;三级结构:超螺线管;四级结构:染色单体16.性别决定基因成为睾丸决定因子;Y染色体上有性别决定基因:SRY17.基因突变是指基因在结构上发生碱基对组成或排列顺序的改变18.点突变是基因(DNA链)中一个或一对碱基改变19.基因突变的分子机制:碱基替换移码突变动态突变20.碱基替换方式有两种:转换和颠换21.碱基替换可引起四种不同的效应:同义突变、错义突变、无义突变、终止密码突变22.移码突变:在DNA编码顺序中插入或缺失一个或几个碱基对从而使自插入或缺失的那一点以下的三联体密码的组合发生改变进而使其编码的氨基酸种类和序列发生改变23.整码突变:DNA链的密码子之间插入或缺失一个或几个密码子则合成肽链将增加或减少一个或几个氨基酸,但插入或丢失部位的前后氨基酸顺序不变动态突变:DNA分子中碱基重复序列或拷贝数发生扩增而导致的突变(脆性X综合症)24.系谱是指某种遗传病患者与家庭各成员相互关系的图解25.系谱分析法是通过对性状在家族后代的分离或传递方式来推断基因的性质和该性状向某些家系成员传递的概率26.先证者是指家系中被医生或研究者发现的第一个患病个体或具有某种性状的成员27.单基因遗传病:疾病的发生主要由一对等位基因控制,传递方式遵循孟德尔遗传率28.完全显性是指杂合子(Aa)患者表现出与显性纯合子(AA)患者完全相同的表型例如短指(趾)29.常染色体显性遗传病的典型系谱特点:①致病基因位于常染色体上,男女发病机会均等②连续几代都有患者(连续传代现象)③患者双亲必有一方是患者,但绝大多数为杂合子,患者的同胞中约有1/2患病④患者子女中,约有1/2患病5.双亲都无病时,儿女一般不患病,除了基因突变30.不完全显性也称半显性杂合子的表型介于显性纯合子与隐性纯合子的表型之间的遗传方式。

医学遗传学 重点总结

医学遗传学  重点总结

医学遗传学第一章绪论本章节重点:遗传病的概念、遗传病的类型一、医学遗传学的定义1、医学遗传学(medical genetics):是遗传学与医学相结合的一门学科,研究对象是与人类遗传有关的疾病,即遗传病(genetic disease)。

2、研究内容:遗传病的发生机理(Etiology)、传递方式(Passage)、诊断(Diagnosis)、治疗(Therapy)、预后(Prognosis)、再发风险(Recurrence)、预防方法(Preventive medicine),从而控制遗传病在一个家庭中的再发,降低在人群中的危害,增进人类的健康水平。

3、什么是遗传?Genetics is the study of genes, heredity, and variation in living organisms.二、遗传病的定义1、关于遗传病的一些误解:家族性疾病(familial disease)就是遗传病、先天性疾病(congenital disease)就是遗传病2、遗传病(genetic disease):遗传物质改变所导致的疾病。

包括单基因病、多基因病、染色体病、体细胞遗传病。

三、遗传病的类型1、单基因病(single gene disorder):如果一种遗传病的发病仅仅涉及一对基因,这个基因称为主基因(major gene),其导致的疾病称为单基因病。

常染色体显性(AD)遗传病、常染色体隐性(AR)遗传病、X 连锁显性(XD)遗传病、X连锁隐性(XR)遗传病、Y连锁遗传病、线粒体病2、多基因病(polygenic disease):一些常见的疾病或畸形有复杂的病因,既涉及遗传基础,又需要环境因素的作用才发病,也称为多因子病(multifactorial disease,MF)。

遗传基础不是一对基因,而是涉及到许多对基因,这些基因称为微效基因(minor gene)。

3、染色体病(chromosome disease):由于染色体数目或结构的改变而导致的疾病称为染色体病。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据着丝点所在的位置,可把 染色体分为以下几种:
第二节 染色体的 形态和数 目
一、染色 体的形态 特征
二 、染色体 的数目
◎中间着丝点染色体:着丝点位于 资料仅供参考,不当之处,请联系改正。 染色体中间,两臂相等。
◎近中着丝点染色体:着丝点较近 于染色体一端,两臂不等。
◎近端着丝点染色体:着丝点靠近 染色体末端(端粒)。
第二节 染色体的 形态和数 目
一、染色 体的形态 特征
二 、染色体 的数目
资料仅供参考,不当之处,请联系改正。
第二节 染色体的 形态和数 目
一、染色 体的形态 特征
二 、染色体 的数目
●形态结构资料仅供参考,不当之处,请联系改正。 ○着丝点 细胞分裂时,纺锺丝附着在着
丝粒区域。着丝点在特定的染色 体中其位置是恒定的。这个区域 又被称为主缢痕。因为着丝点染 色后不着色,使染色体在光镜下 就好象在着丝点部分中断了。
一、染色 体的形态 特征
二 、染色体 的数目
资料仅供参考,不当之处,请联系改正。
○核仁组织中心 次缢痕一般具有组成核仁的特殊 功能,在细胞分裂时,紧密联系着 一个球形的核仁,所以次缢痕又称 为核仁组织中心。
○随体(saellite)
某些染色体,次缢痕的末端所具 有的圆形或略呈长形的突出体。
第二节 染色体的 形态和数 目
资料仅供参考,不当之处,请联系改正。
•第一节 细胞的结构与功能 • 一、细胞壁 • 二、细胞膜 • 三、细胞质 • 四、细胞核
第一节 细 胞的结构与 功能
一、细胞壁 二、细胞膜 三、细胞质 四、细胞核

资料仅供参考,不当之处,请联系改正。
●动物细胞的组成:细胞膜、细胞质
和细胞核三部分组成
●植物细胞的组成:细胞壁、细胞膜、
◎端着丝点染色体:着丝点在染色 体末端。
第二节 染色体的 形态和数 目
一、染色 体的形态 特征
二 、染色体 的数目
资料仅供参考,不当之处,请联系改正。
○次缢痕 除主缢痕外,在某些染色体的一
个或两个臂上还常另外有缢缩部分, 其染色也较淡,这一部分称为次缢 痕。
其位置固定,通常在短臂的一端。
第二节 染色体的 形态和数 目
第一节 细 胞的结构与 功能
一、细胞壁 二、细胞膜 三、细胞质 四、细胞核
四、细胞核(nucleus) 资料仅供参考,不当之处,请联系改正。 1、原核细胞和真核细胞 ●原核细胞(prokaryotic cell) ○含有核物质,但没有核膜, 称“拟核” ○没有诸如线粒体、内质网、高 ○有真正的核(由核膜包裹 着遗传物质) ○各种由膜包裹的细胞器
资料仅供参考,不当之处,请联系改正。
第一节 细 ○染色质:是细胞处于分裂间期一种形
胞的结构与
态,它是核内由于碱性染料
功能 一、细胞壁
而染色较深的、纤细的网状 物。当细胞处于分裂时,染 色质卷缩形成具一定形态结
二、细胞膜
构的染色体。
三、细胞质 ○核仁:是核内染色最深通常圆球状 的结构。
四、细胞核 ○功能:主要的遗传物质所在地,所
以承担主要的遗传功能。
资料仅供参考,不当之处,请联系改正。
第二节 染色体的形态和数目 一、染色体的形态特征
第二节 染色体的 形态和数 目
资料仅供参考,不当之处,请联系改正。
•一、染色体(chromosome)的形 态特征
• ●基本组成
一、染色
体的形态
特征 二
、染色体 的数目
• 一个着丝粒和被着丝粒分开的2个 臂,两臂顶端各有一个特殊的结构 称为端粒。
一、染色 体的形态 特征
二 、染色体 的数目
资料仅供参考,不当之处,请联系改正。
第二节 染色体的 形态和数 目
一、染色 体的形态 特征
二 、染色体 的数目
资料仅供参考,不当之处,请联系改正。
●同源染色体和异源染色体
○同源染色体(homologous chr.) 各种生物染色体形态结构不仅是 相对稳定的,而且数目一般是成 对存在的,这种形态和结构相同 的一对染色体称为同源染色体.
一、细胞壁 二、细胞膜 三、细胞质 四、细胞核
二、细胞膜(plasma membrane)亦称质膜 资料仅供参考,不当之处,请联系改正。 ●在细胞壁内、细胞质外的薄膜 ●多种功能:物质运输、信息传递、能量转 换、代射调控、细胞识别等。
三、细胞质(cytoplasm) ●在质膜之内核之外呈胶体溶液的原生质。 ●内含多种物质(蛋白质、脂肪等);多种 细胞器。 ●主要细胞器有: ○线粒体:动力工厂和遗传物质载体 ○质体:叶绿体、有色体、白色体。光合 作用和遗传物质载体 ○核糖体:合成蛋白质场所 ○其他细胞器:内质网、高尔基体和液 泡等。
第一节 细 胞的结构与 功能
一、细胞壁 二、细胞膜 三、细胞质 四、细胞核
资料仅供参考,不当之处,请联系改正。
2.原核生物和真核生物
●原核生物
具有原核细胞的生物,如细菌和蓝 藻等
●真核生物
具有真核细胞的生物,所有

等动植物;单细胞藻类、真菌

原生动物等。
3.真核的组成及其功能 ●组成:由核膜和核液组成,核液 中含有核仁和染色质。
细胞质和细胞核四部分组成
一、细胞壁(cell wall)
●植物细胞特有结构 ●在细胞最外层 ●由纤维素和木质素等构成“坚硬”
结构 ●起保护和支架作用 ●壁上有使相邻两个细胞相通的
“胞间连丝”结构
资料仅供参考,不当之处,请联系改正。
资料仅供参考,不当之处,请联系改正。
第一节 细 胞的结构与 功能
第二节 染色体的 形态和数 目
一、染色 体的形态 特征
二 、染色体 的数目
资料仅供参考,不当之处,请联系改正。
○ 异 源 染 色 体 ( non-homologous chr.)
同一染色体群体中,形态结构不 同的染色体,称为异源染色体。
○染色体组型分析或称核型分析: 对生物核内全部染色体的形态特 征——包括染色体长度、着丝点位 置、臂比、随体有无等进行全面的 分析,并列表表示。
第二节 染色体的 形态和数 目
一、染色 体的形态 特征
二 、染色体 的数目
资料仅供参考,不当之处,请联系改正。
二、染色体的数目 1.染色体的数目特征 ●恒定性,同一种生物染色 体数目是恒定的。 ●在体细胞中是成对的,以 2n表示;在性细胞中总是 成单的,以n表示。 ●不同种染色体数目差异很 大,从最少1对至600多对 不等。
相关文档
最新文档