一元一次不等式优秀教案
9.3《一元一次不等式组及其解法》教案

这三个方面的核心素养目标与新教材的要求相符,旨在帮助学生全面提升数学学科素养,为今后的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
-理解一元一次不等式组的定义及其基本性质,这是本节课的核心内容。教师应着重讲解一元一次不等式组的概念,通过具体实例使学生明确其构成要素。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次不等式组的基本概念、解法以及在实际问题中的应用。通过实践活动和小组讨论,我们加深了对一元一次不等式组的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次不等式组在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
9.3《一元一次不等式组及其解法》教案
一、教学内容
本节课选自九年级数学教材第9章第3节《一元一次不等式组及其解法》。教学内容主要包括以下两部分:
1.一元一次不等式组的定义及基本性质:了解一元一次不等式组的构成,掌握其基本性质,如同加同减、同乘同除等。
2.一元一次不等式组的解法:掌握解一元一次不等式组的方法,包括口算法则、图像解法以及列举法等。重点讲解如何求解具有两个不等式的简单一元一次不等式组,并通过实例让学生掌握求解步骤。
人教版七年级数学下册《一元一次不等式》PPT优质教学课件

(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.
一次函数与一元一次不等式教案

一次函数与一元一次不等式经典教案第一章:一次函数的概念与性质1.1 函数的定义与性质介绍函数的概念,引导学生理解函数的输入输出关系。
讲解函数的性质,如单调性、连续性等。
1.2 一次函数的定义与表达式引入一次函数的概念,解释一次函数的表达式。
举例说明一次函数的图像特点,如直线等。
1.3 一次函数的斜率与截距讲解一次函数的斜率与截距的定义。
引导学生通过斜率和截距理解一次函数的图像。
第二章:一次函数的图像与性质2.1 一次函数的图像讲解一次函数图像的形状和特点。
引导学生通过图像理解一次函数的单调性、增减性等性质。
2.2 一次函数的单调性解释一次函数的单调性概念。
引导学生通过斜率判断一次函数的单调性。
2.3 一次函数的截距讲解一次函数截距的性质和影响因素。
引导学生通过截距理解一次函数与y轴的交点。
第三章:一元一次不等式的概念与性质3.1 不等式的定义与性质介绍不等式的概念,解释不等式的基本性质。
讲解不等式的符号和运算规则。
3.2 一元一次不等式的定义与表达式引入一元一次不等式的概念,解释一元一次不等式的表达式。
举例说明一元一次不等式的解法。
3.3 一元一次不等式的解法讲解一元一次不等式的解法步骤。
引导学生通过图像和解法理解一元一次不等式的解集。
第四章:一元一次不等式的图像与性质4.1 一元一次不等式的图像讲解一元一次不等式的图像特点。
引导学生通过图像理解一元一次不等式的解集。
4.2 一元一次不等式的单调性解释一元一次不等式的单调性概念。
引导学生通过斜率判断一元一次不等式的单调性。
4.3 一元一次不等式的解集讲解一元一次不等式的解集的性质和表示方法。
引导学生通过解集理解一元一次不等式的解的意义。
第五章:一次函数与一元一次不等式的综合应用5.1 一次函数与一元一次不等式的关系讲解一次函数与一元一次不等式的联系。
引导学生通过一次函数的图像解决一元一次不等式的问题。
5.2 一次函数与一元一次不等式的综合应用实例提供综合应用实例,引导学生运用一次函数和一元一次不等式的知识解决问题。
一元一次不等式与一次函数教案 北师大版(优秀教案)

《一元一次不等式与一次函数》教案教学目标(一)知识认知要求.一元一次不等式与一次函数的关系..会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.(二)能力训练要求.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识..训练大家能利用数学知识去解决实际问题的能力.(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.教学重点了解一元一次不等式与一次函数之间的关系.教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.教学过程一、创设问题情境,引入新课上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?.二、新课讲授.一元一次不等式与一次函数之间的关系.大家还记得一次函数吗?请举例给出它的一般形式.在一次函数-中,当时,有方程-;当>时,有不等式->;当<时,有不等式-<.由此可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于时即为方程,当函数值大于或小于时即为不等式.下面我们来探讨一下一元一次不等式与一次函数的图象之间的关系..做一做作出函数-的图象,观察图象回答下列问题.()取哪些值时,-?()取哪些值时,->?()取哪些值时,-<?()取哪些值时,->?请大家讨论后回答:()当时,-, ∴25, ∴当25时,-. ()要找->的的值,也就是函数值大于时所对应的的值,从图象上可知,>时,图象在轴上方,图象上任一点所对应的值都满足条件,当时,则有-,解得25.当>25时,由-可知 >.因此当>25时,->; ()同理可知,当<25时,有-<; ()要使->,也就是-中的大于,那么过纵坐标为的点作一条直线平行于轴,这条直线与-相交于一点(,),则当>时,有->..试一试如果--,那么当取何值时,>?由刚才的讨论,大家应该很轻松地完成任务了吧.请大家试一试.首先要画出函数--的图象,如图:从图象上可知,图象在轴上方时,图象上每一点所对应的的值都大于,而每一个的值所对应的的值都在点的左侧,即为小于-的数,由--,得-,所以当取小于-的值时,>..议一议兄弟俩赛跑,哥哥先让弟弟跑,然后自己才开始跑,已知弟弟每秒跑,哥哥每秒跑,列出函数关系式,画出函数图象,观察图象回答下列问题:()何时弟弟跑在哥哥前面?()何时哥哥跑在弟弟前面?()谁先跑过?谁先跑过?()你是怎样求解的?与同伴交流.大家应先画出图象,然后讨论回答:[解]设兄弟俩赛跑的时间为秒.哥哥跑过的路程为,弟弟跑过的路程为,根据题意,得函数图象如图:从图象上来看:()当<<时,弟弟跑在哥哥前面;()当>时,哥哥跑在弟弟前面;()弟弟先跑过20m ,哥哥先跑过100m;()从图象上直接可以观察出()、()小题,在回答第()题时,过 轴上这一点作轴的平行线,它与分别有两个交点,每一交点都对应一个值,哪个的值小,说明用的时间就短.同理可知谁先跑过.三、课堂练习.已知--,当取何值时,>?你是怎样做的?与同伴交流.解:如图所示:当取小于47的值时,有>. 四、课时小结本节课讨论了一元一次不等式与一次函数的关系,并且能根据一次函数的图象求解不等式.五、课后作业习题六、活动与探究作出函数-与-的图象,并观察图象回答下列问题:()取何值时,->?()取何值时,->?()取何值时,->与->同时成立?()你能求出函数-,-的图象与轴所围成的三角形的面积吗?并写出过程.解:图象如下:分析:要使->成立,就是-的图象在轴上方的所有点的横坐标的集合,同理使->成立的,即为函数-的图象在轴上方的所有点的横坐标的集合,要使它们同时成立,即求这两个集合中公共的,根据函数图象与轴交点的坐标可求出三角形的底边长,由两函数的交点坐标可求出底边上的高,从而求出三角形的面积.[解]()当>时,->;()当<时,->;()当<<时,->与->同时成立.()由-,得;由-,得所以-由⎩⎨⎧+-=-=8242x y x y 得交点(,)所以三角形中边上的高为. 所以21××.。
第8章《一元一次不等式》单元教案

第8章一元一次不等式8.1认识不等式1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”等数学术语.3.理解不等式的解的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.重点理解并会用不等式表达数学量之间的关系,知道不等式的解的意义.难点不等号的准确应用;不等式的解.一、创设情境,问题引入问题:世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元.某班有27名少先队员去世纪公园进行活动.当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票.但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?那么,究竟李敏的提议对不对呢?是不是真的“浪费”呢?二、探索问题,引入新知同学们的探索过程如下:买27张票,付款:5×27=135(元);买30张票,付款:4×30=120(元).显然 120<135.这就是说,买30张票比买27张票付款要少,表面上看是“浪费”了3张票,而实际上节省了.思考:(1)我们只用120元就买了30张票,买30张票,我们不仅省钱,而且多买了票,那么剩下的3张票如何处理呢?(2)买30张票比买27张票付的款还要少,这是不是说任何情况下都是多买票反而花钱少?(3)至少要有多少人去参观,多买票反而合算呢?能否用数学知识来解决?设有x人要进世纪公园,如果x≥30,显然按实际人数买票,每张票只要付4元.如果x<30,那么:按实际人数买票x张,要付款5x(元),买30张票,要付款4×30=120(元),如果买30张票合算,那么应有120<5x.现在的问题就是:x取哪些数值时,上式成立?前面已经算过,当x=27时,上式成立.让我们再取一些值试一试,将结果填入课本P51页的表格中.由上表可见,当x=________时,不等式120<5x成立.也就是说,少于30人时,至少要有________人进公园时,买30张票反而合算.像上面出现的120<135,x<30,120<5x那样用不等号“<”或“>”表示不等关系的式子,叫做不等式.不等式120<5x中含有未知数x.能使不等式成立的未知数的值,叫做不等式的解.【例1】判断下列各式哪些是等式,哪些是不等式.(1)4<5;(2)x2+1>0;(3)x<2x-5;(4)x=2x+3;(5)3a2+a;(6)a2+2a≥4a-2.分析:根据不等式的定义对各小题进行逐一判断即可.解:(1)4<5是不等式;(2)x2+1>0是不等式;(3)x<2x-5是不等式;(4)x=2x+3是方程;(5)3a2+a是代数式;(6)a2+2a≥4a-2是不等式.故(1),(2),(3),(6)是不等式.点评:熟知用不等号连结的式子叫不等式是解答此题的关键.【例2】 用适当的符号表示下列关系: (1)x 的13与x 的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.分析:(1)非正数用“≤0”表示;(2),(4)不小于就是大于等于,用“≥”来表示;(3)不高于就是等于或低于,用“≤”表示;(5)不比小刚轻,就是与小刚一样重或者比小刚重.用“≥”表示. 解:(1)13x +2x≤0; (2)设炮弹的杀伤半径为r ,则应有r≥300;(3)设每件上衣为a 元,每条长裤是b 元,应有3a +4b≤268;(4)用P 表示明天下雨的可能性,则有P≥70%;(5)设小明的体重为a 千克,小刚的体重为b 千克,则应有a≥b. 点评:一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠.三、巩固练习1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2≤3,其中不等式有( )A .2个B .3个C .4个D .5个2.学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x +30y≥500”表示的实际意义是( )A .两种客车总的载客量不少于500人B .两种客车总的载客量不超过500人C .两种客车总的载客量不足500人D .两种客车总的载客量恰好等于500人3.x 与y 的平方和一定是非负数,用不等式表示为________.4.下列各数:0,-3,3,4,-0.5,-20 ,-0.4中,________是方程x +3=0的解;________是不等式x +3>0的解;________是不等式2x +3<x 的解.5.用不等式表示. (1)x 的23与5的差小于1; (2)x 与6的和大于9;(3)8与y 的2倍的和是正数;(4)a 的3倍与7的差是负数; (5)x 的3倍大于或等于1;(6)x 与5的和不小于0.四、小结与作业小结通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?作业1.教材第52页“习题8.1”中第1,2 题.2.完成练习册中本课时练习.本节教学过程中,始终通过师生互动,鼓励学生积极思考,努力探索,合作交流,关注学生能否发现问题,提出问题,能否敢于发表自己的见解,吸取正确的见解;关注学生学习过程中表现的学习习惯、个性品质、情感态度等. 通过游戏、分组竞赛等激发学生的积极性,培养团队精神.通过例题和闯关游戏,检测学生学习情况,及时反馈调节;通过不同层次的变式题,评价各层学生的学习效果,增强学习信心.留给学生思考、探究的时间和空间.对学生回答是否正确、全面都给予及时的肯定和鼓励,时刻注意激发学习内驱力,确保学生学得更多、更快、更好!总之,本节教学既贴近生活,又超越生活,既努力从生活中来,又努力到生活中去,实现了:生活世界、数学世界、教学世界的融会贯通!8.2 解一元一次不等式8.2.1 不等式的解集1.使学生掌握不等式的解集的概念,以及什么是解不等式.2.使学生能够借助数轴将不等式的解集直观地表示出来,初步理解数形结合的思想.重点1.认识不等式的解集的概念.2.将不等式的解集表示在数轴上.难点不等式的解集的概念.一、创设情境,问题引入问题1:已知有理数m,n的位置在数轴上如图所示,用不等号填空.(1)n-m______0;(2)m+n______0;(3)m-n______0; (4)n+1______0;(5)m·n______0; (6)m+1______0.问题2:下列各数中,哪些是不等式x+2>5的解?哪些不是?-3,-2,-1,0,1.5,3,3.5,5,7二、探索问题,引入新知在上面问题2中,我们发现3.5,5,7都是不等式x+2>5的解.由此可以看出,不等式x+2>5有许多个解.进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解.由此可见,不等式x+2>5的解有无限多个,它们组成一个集合,称为不等式x+2>5的解集.结论:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集的过程,叫做解不等式.不等式x+2>5的解集,可以表示成x>3,它也可以在数轴上直观地表示出来,如图所示.同样,如果某个不等式的解集为x≤-2,也可以在数轴上直观地表示出来,如图所示.观察讨论:这两条折线所指的方向为什么不同?它们有什么规律吗?数轴上空心的圆点和实心的圆点是什么意义?结论:不等式的解集在数轴上可直观地表示出来,但应注意不等号的类型,小于在左边,大于在右边.当不等号为“>”“<”时用空心圆圈,当不等号为“≥”“≤”时用实心圆圈.【例1】在数轴上表示下列不等式的解集:(1)x<-2;(2)x≥1;分析:(1)在-2处用空心圆点,折线向左即可;(2)在1处用实心圆点,折线向右即可.解:(1)如图所示:(2)如图所示:点评:熟知实心圆点与空心圆点的区别是解答此题的关键.【例2】在数轴上表示不等式-4≤x<1的解集,并写出其整数解.分析:根据“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线,可得答案.解:在数轴上表示不等式-4≤x<1的解集,如图:整数解为:-4,-3,-2,-1,0.点评:不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.三、巩固练习1.方程3x=6的解有________个,不等式3x<6的解有________个.2.在数轴上表示下列不等式的解集.(1)x>-4;(2)x≤3.5;(3)-2.5<x≤4.3.请用不等式表示如图的解集.(1)(2)(3)(4)(5)四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第2,3题.2.完成练习册中本课时练习.本节课属于一节概念课,按照“情境诱导—学生自学—展示归纳—巩固练习”的步骤进行.但从教学中来看,部分学生不会自学,个别学生不积极参与到小组活动之中.通过本节课的教学让我深深认识到,作为一名数学教师,要想让自己的学生出类拔萃,一定要在平时培养学生的自学习惯,自学能力,表达能力,教师要舍得时间,不能急躁.8.2.2不等式的简单变形1.通过本节的学习让学生在自主探索的基础上,联系方程的基本变形得到不等式的基本性质.2.掌握一次不等式的变形求解一元一次不等式基本方法.3.体会一元一次不等式和方程的区别与联系.重点掌握不等式的三条基本性质.难点正确应用不等式的三条基本性质进行不等式变形.一、创设情境、复习引入复习等式的基本性质一:在等式的两边都________或________同一个________或________,等式仍然成立.等式的基本性质二:在等式的两边都________或________同一个________,等式仍然成立.不等式有哪些基本性质?解一元一次方程有哪些基本步骤呢?一元一次不等式的解与方程的解是不是步骤类似呢?二、探索问题,引入新知在解一元一次方程时,我们主要是对方程进行变形.在研究解不等式时,我们同样应先探究不等式的变形规律.如图,一个倾斜的天平两边分别放有重物,其质量分别为a和b(显然a>b),如果在两边盘内分别加上等量的砝码c,那么盘子仍然像原来那样倾斜(即a+c>b+c).结论:不等式的性质1:如果a>b,那么a+c>b+c,a-c>b-c.这就是说,不等式的两边都加上(或减去)同一个数或同一个整式,不等式的方向不变.思考:不等式的两边都乘以(或除以)同一个不为零的数,不等号的方向是否也不变呢?试一试:将不等式7>4两边都乘以同一个数,比较所得的数的大小,用“<”,“>”或“=”填空:7×3________4×3,7×2________4×2,7×1________4×1,7×0________4×0,7×(-1)________4×(-1),7×(-2)________4×(-2),7×(-3)________4×(-3),……从中你能发现什么?结论:不等式的性质2:如果a>b ,并且c>0,那么ac>bc.不等式的性质3:如果a>b ,并且c<0,那么ac<bc.这就是说,不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式两边都乘以(或除以)同一个负数,不等号的方向改变.与解方程一样,解不等式的过程,就是要将不等式变形成x>a 或x<a 的形式.【例1】 根据不等式的基本性质,把下列不等式化成“x>a”或“x <a”的形式:(1)4x >3x +5;(2)-2x <17.分析:(1)根据不等式的性质1:两边都减3x ,可得答案;(2)根据不等式的性质3:不等式的两边都除以-2,可得答案. 解:(1)两边都减3x ,得x >5; (2)两边都除以-2,得x >-172. 点评:不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.【例2】 根据不等式性质解下列不等式.(1)x +3>5; (2)-23x <50; (3)5x +5<3x -2.分析:根据不等式的基本性质对各不等式进行逐一分析解答即可. 解:(1)根据不等式性质1,不等式两边都减3,不等号的方向不变,得x +3-3>5-3,即x >2; (2)根据不等式性质2,不等式两边都乘以-32,不等号的方向改变,得-23x×(-32)>50×(-32),即x >-75; (3)根据不等式性质1,2,不等式两边同时减去(5+3x),然后除以2,不等号的方向不变,得(5x +5-5-3x)÷2<(3x -2-5-3x)÷2,即x <-72. 点评:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.三、巩固练习1.已知实数a ,b 满足a +1>b +1,则下列选项错误的是( ) A .a >b B .a +2>b +2C .-a <-bD .2a >3b2.若3x >-3y ,则下列不等式中一定成立的是( )A .x +y >0B .x -y >0C .x +y <0D .x -y <0 3.如果a <b ,则12-3a________12-3b(用“>”或“<”填空). 4.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b -3a <0,则b <3a ;________(2)如果-5x >20,那么x >-4;________(3)若a >b ,则 ac 2>bc 2;________(4)若ac 2>bc 2,则a >b ;________(5)若a >b ,则 a(c 2+1)>b(c 2+1); (6)若a >b >0,则1a <1b .________ 5.指出下列各式成立的条件: (1)由mx <n ,得x >n m ; (2)由a <b ,得m 2a <m 2b ;(3)由a >-2,得a 2≤-2a.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第58页“练习”.2.完成练习册中本课时练习.让学生参与知识的形成过程的学习,有利于培养学生动手实践,积极探索的科学学习方法,有利于培养学生的良好学习习惯和严谨的学习态度,有利于发展学生的直觉思维、形象思维和逻辑思维能力,有利于培养学生的独立钻研、相互交流和共同协作的科学态度,符合新课标的思想.8.2.3 解一元一次不等式第1课时 一元一次不等式的解法1.掌握一元一次不等式的概念.2.体会解不等式的步骤,体会数学学习中比较和转化的作用.3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握.重点掌握一元一次不等式的解法.难点掌握一元一次不等式的解法.一、创设情境、复习引入1.不等式的三条基本性质是什么?2.一个方程是一元一次方程的三个条件是什么?3.解一元一次方程的一般步骤是什么?二、探索问题,引入新知让同学们观察下列不等式: ①x-7≥2;②3x<2x +1;③13x≤5;④-4x >8.它们有什么共同点?你能借鉴一元一次方程给它下个定义吗? 结论:只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.我们再来解一些一元一次不等式. 【例1】 下列各式:(1)-x≥5;(2)y -3x <0;(3)x π+5<0;(4)x 2+x≠3;(5)3x +3≤3x;(6)x +2<0是一元一次不等式的有哪些? 分析:利用一元一次不等式的定义判断即可. 解:(1)-x≥5,是;(2)y -3x <0,不是;(3)x π+5<0,是;(4)x 2+x≠3,不是;(5)3x +3≤3x,不是;(6)x +2<0,是.如何来解一元一次不等式呢?【例2】 解不等式,并把解集在数轴上表示出来:(1)2(5x +3)≤x-3(1-2x); (2)1+x 3>5-x -22. 分析:(1)先去括号,然后通过移项、合并同类项,化未知数系数为1解不等式;(2)先去分母,然后通过移项、合并同类项,化未知数系数为1解不等式.解:(1)去括号,得:10x +6≤x-3+6x ,移项、合并同类项,得:3x≤-9,系数化为1,得:x≤-3;表示在数轴上为:(2)去分母,得:6+2x >30-3x +6,移项、合并同类项,得:5x >30,系数化为1,得:x >6.表示在数轴上为:点评:需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.结论:解一元一次不等式的步骤:1.去括号,去分母;2.利用不等式的性质移项;3.合并同类项;4.系数化为1.三、巩固练习1.下列各式中,一元一次不等式是( ) A .x ≥5x B .2x >1-x 2 C .x +2y <1 D .2x +1≤3x2.不等式x +1≥2的解集在数轴上表示正确的是( )3.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =________.4.不等式组m(x -5)>2m -10的解集是x >m ,则m 的值是________.5.解不等式2(x +6)≥3x-18,并将其解集在数轴上表示出来.6.解不等式2x +13-5x -12≥-1,并把它的解集在数轴上表示出来. 四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1教材第61页“习题8.2”中第1,4 题.2.完成练习册中本课时练习.在教学过程中,由于通过简单的类比解方程,学生很快掌握了解不等式的方法,而且对比起方程,不等式题目的形式较简单,计算量不大,所以能引起学生的兴趣.但是部分学生在作业中存在以下问题:由于没有结合不等式的性质,认真分析解方程与解不等式的区别:在两边同时乘以或者除以负数时,不等号忘记改变方向.第2课时 列一元一次不等式解决实际问题1.会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题.2.通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系.重点寻找实际问题中的不等关系,建立数学模型.难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式.一、创设情境,问题引入在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛.育才中学有25名学生通过了预选赛,通过者至少答对了多少道题?有哪些可能的情形.二、探索问题,引入新知讨论:(1)试解决这个问题(不限定方法).你是用什么方法解决的?有没有其他方法?与你的同伴讨论和交流一下.(2)如果利用不等式的知识解决这个问题,在得到不等式的解集以后,如何给出原问题的答案?应该如何表述?分析:如果用不等式,必须找出不等关系.根据题意可知,答对题的得分减去答错题的扣分大于或等于80分.所以这个问题的关键是表示出答对的题数和答错或不答的题数.解:设通过者答对了x道题,答错或不答的题有(20-x)道,根据题意可得,10x-5(20-x)≥80,解得:x≥12,所以,通过者至少要答对12道题.你能类比列一元一次方程解决实际问题的方法,总结出列不等式解决实际问题的步骤吗?结论:用一元一次不等式解决实际问题的步骤:(1)审题,找出不等关系; (2)设未知数;(3)列出不等式;(4)求出不等式的解集; (5)找出符合题意的值; (6)作答.【例1】学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?分析:先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x ≤70040,x ≤1712.答:最多还能买词典17本. 【例2】 某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?分析:(1)设甲队胜了x 场,则负了(10-x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a 场,根据积分超过15分才能获得参赛资格,进而得出答案.解:(1)设甲队胜了x 场,则负了(10-x)场,根据题意可得:2x +10-x =18,解得:x =8,则10-x =2.答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a 场,根据题意可得:2a +(10-a)>15,解得:a >5.答:乙队在初赛阶段至少要胜6场.点评:正确表示出球队的得分是解题关键.三、巩固练习1.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个2.甲、乙两人从相距24 km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8 km /hB .大于8 km /hC .小于4 km /hD .大于4 km /h3.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.4.某工人计划在15天内加工408个零件,最初三天中每天加工24个.问以后每天至少加工多少个零件,才能在规定的时间内超额完成任务?四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第6 ,7 题.2.完成练习册中本课时练习.本节课是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题.这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径.通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题.经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程.促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用.同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法.8.3一元一次不等式组第1课时解一元一次不等式组1.了解一元一次不等式组及其解集的概念.2.探索不等式组的解法及其步骤.重点1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况.2.一元一次不等式组的解法.难点一元一次不等式组的解法.一、创设情境,问题引入1.解下列不等式,并把解集在数轴上表示出来.(1)3x>1-x ;(2)6x -7<2-4x.2.问题:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,那么需要多少时间能将污水抽完?二、探索问题,引入新知对问题2的分析:设需要x 分钟能将污水抽完,那么总的抽水量为30x 吨,由题意可知30x≥1200,并且30x≤1500.在这个实际问题中,未知量x 应同时满足这两个不等式,我们把这两个一元一次不等式合在一起,就得到一个一元一次不等式组:⎩⎪⎨⎪⎧30x≥1200 ①,30x ≤1500 ②,分别求这两个不等式的解集,得⎩⎪⎨⎪⎧x≥40x≤50 在同一数轴上表示出这两个不等式的解集,可知其公共部分是40和50之间的数(包括40和50),记作40≤x≤50.这就是所列不等式组的解集.所以,需要40到50分钟能将污水抽完.结论:不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集.解一元一次不等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分,利用数轴可以帮我们得到一元一次不等式组的解集.探究:设a ,b 是已知实数,且a >b ,在数轴上表示下列不等式组的解集. (1)⎩⎪⎨⎪⎧x>a ,x>b ;(2)⎩⎪⎨⎪⎧x<a ,x<b ;(3)⎩⎪⎨⎪⎧x<a ,x>b ;(4)⎩⎪⎨⎪⎧x>a ,x<b. 解:(1)解集为:x>a (2)解集为:x<b (3)解集为:b<x<a (4)无解结论:皆大取大,皆小取小,大小小大取中间,大大小小是无解. 【例1】 下列不等式组:①⎩⎪⎨⎪⎧x>-2,x<3;②⎩⎪⎨⎪⎧x>0,x +2>4;③⎩⎪⎨⎪⎧x 2+1<x ,x 2+2>4;④⎩⎪⎨⎪⎧x +3>0,x<-7;⑤⎩⎪⎨⎪⎧x +1>0,y -1<0.其中是一元一次不等组的有哪些? 分析:根据一元一次不等式组的定义,只含一个未知数且有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.【例2】 解不等式组,并把解集在数轴上表示出来. (1)⎩⎪⎨⎪⎧1-3x≤5-x ,4-5x>-x ; (2)⎩⎪⎨⎪⎧3(x -2)≥x -4,2x +13>x -1. 分析:先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可. 解:(1)⎩⎪⎨⎪⎧1-3x≤5-x ①,4-5x>-x ②, 由①得:x≥-2,由②得:x <1,∴不等式组的解集为:-2≤x<1.如图,在数轴上表示为:(2)∵解不等式3(x -2)≥x-4得:x≥1,解不等式2x +13>x -1得:x <4,∴不等式组的解集是1≤x <4,在数轴上表示不等式组的解集是:. 【例3】 若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -a>0,1-x>x -1无解,求a 的取值范围.分析:先求出各不等式的解集,再与已知解集相比较求出a 的取值范围. 解:由x -a >0得,x >a ;由1-x >x -1得,x <1,∵此不等式组的解集是空集,∴a ≥1.故答案为:a≥1.点评:熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、巩固练习1.将不等式组⎩⎪⎨⎪⎧2x -6≤0,x +4>0的解集表示在数轴上,下面表示正确的是( )2.解集如图所示的不等式组为( )A .⎩⎨⎪⎧x>-1x≤2B .⎩⎪⎨⎪⎧x≥-1x>2C .⎩⎪⎨⎪⎧x≤-1x<2D .⎩⎪⎨⎪⎧x>-1x<2 3.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( ) A .m ≥5 B .m >5C .m ≤5D .m <5 4.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是________. 5.解不等式组,并把解集表示在数轴上. (1)⎩⎪⎨⎪⎧x -23+3<x -1,1-3(x +1)≥6-x ; (2)⎩⎪⎨⎪⎧2x -1≥0,3x +1>0,3x -2<0.四、小结与作业小结 先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第65页“习题8.3”中第1,2 题.2.完成练习册中本课时练习.教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法.用“皆大取大,皆小取小,大小小大取中间,大大小小是无解”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力.在教学中我要求学生在解不等式(组)时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想.第2课时 列一元一次不等式组解决实际问题。
八年级数学下册《列一元一次不等式解应用题》教案、教学设计

4.针对学生在讨论中遇到的问题,教师进行讲解,帮助学生掌握解题方法。
(四)课堂练习,500字
1.教师出示几道典型题目,涵盖一元一次不等式的各种题型。
2.学生独立完成练习,教师巡回指导,关注学生解题过程中的困惑。
3.学生互相交流解题方法,分享心得体会。
4.教师针对练习中出现的问题,进行讲解,强化学生对知识点的掌握。
八年级数学下册《列一元一次不等式解应用题》教案、教学设计
一、教学目标
(一)知识与技能
1.熟练掌握一元一次不等式的性质,如乘除同号得正、乘除异号得负等;
2.学会根据实际问题抽象出一元一次不等式,并能正确列出不等式;
3.掌握一元一次不等式的解法,如移项、合并同类项、化简等;
4.能够将一元一次不等式的解应用于解决实际问题,如优化问题、范围问题等。
4.注重激发学生的学习兴趣,鼓励他们积极参与课堂讨论,提高学习积极性。
三、教学重难点和教学设想
(一)教学重难点
1.重点:使学生掌握一元一次不等式的性质及解法,并能应用于解决实际问题。
难点:在实际问题中发现不等关系,正确列出不等式,并熟练运用性质进行求解。
2.重点:培养学生分析问题、解决问题的能力,提高数学思维品质。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结一元一次不等式的性质、解法以及应用。
2.学生分享学习心得,交流在解题过程中遇到的困难和解决方法。
3.教师强调本节课的重点,提醒学生注意不等式与方程的区别与联系。
4.提出课后思考题,激发学生继续探索的兴趣。
5.鼓励学生在生活中发现不等关系,将所学知识应用于实际问题的解决。
(三)情感态度与价值观
一元一次不等式(一)教案

一元一次不等式(一)教案一、教学目标:1. 让学生理解一元一次不等式的概念,掌握一元一次不等式的解法。
2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 一元一次不等式的定义及表示方法。
2. 一元一次不等式的解法及步骤。
3. 实际问题中的一元一次不等式应用。
三、教学重点与难点:1. 重点:一元一次不等式的定义,解法及应用。
2. 难点:一元一次不等式的解法,特别是含参不等式的解法。
四、教学方法:1. 采用问题驱动法,引导学生主动探究一元一次不等式的解法。
2. 利用案例分析法,让学生通过解决实际问题,掌握一元一次不等式的应用。
3. 采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
五、教学过程:1. 导入:通过生活实例引入一元一次不等式,激发学生的学习兴趣。
2. 新课导入:讲解一元一次不等式的定义及表示方法。
3. 案例分析:分析实际问题中的一元一次不等式,引导学生运用所学知识解决问题。
4. 方法讲解:讲解一元一次不等式的解法及步骤。
5. 练习巩固:布置练习题,让学生巩固所学知识。
6. 课堂小结:总结本节课所学内容,强调重点和难点。
7. 课后作业:布置课后作业,巩固所学知识。
8. 拓展延伸:引导学生思考一元一次不等式在实际生活中的应用,激发学生的学习兴趣。
9. 课堂反馈:了解学生对本节课所学知识的理解程度,为下一步教学做好准备。
10. 教学反思:总结本节课的教学效果,针对学生掌握情况调整教学策略。
六、教学评价:1. 通过课堂提问、练习和小测验,评估学生对一元一次不等式的定义、解法和应用的掌握程度。
2. 观察学生在解决实际问题时是否能正确运用一元一次不等式,以及他们是否能有效地沟通和合作。
3. 根据学生的作业和课后练习,检查他们对概念的理解深度和应用能力。
4. 通过学生的自我评价和同伴评价,了解他们在学习过程中的参与度和进步。
七、教学资源:1. PPT演示文稿,包含一元一次不等式的定义、解法步骤和实例。
一元一次不等式(组)的复习教案

一元一次不等式(组)的复习教案一、教学目标1. 复习和巩固一元一次不等式及其性质。
2. 掌握一元一次不等式组的解法和应用。
3. 提高学生解决实际问题的能力。
二、教学内容1. 一元一次不等式的概念及其性质。
2. 一元一次不等式组的解法及规律。
3. 一元一次不等式在实际问题中的应用。
三、教学重点与难点1. 教学重点:一元一次不等式的解法,不等式组的解法及应用。
2. 教学难点:不等式组的解法,实际问题中的不等式求解。
四、教学方法与手段1. 采用问题驱动法,引导学生自主探究。
2. 利用多媒体课件,展示概念、性质和例题。
3. 课堂练习与讨论,提高学生对不等式的理解和应用能力。
五、教学过程1. 导入新课:通过复习一元一次不等式的基本概念和性质,引导学生回顾已学知识。
2. 讲解不等式组的解法:介绍解不等式组的基本步骤,结合例题讲解解题方法。
3. 应用练习:给出实际问题,让学生运用不等式组的知识解决问题,巩固所学内容。
4. 课堂讨论:组织学生进行小组讨论,分享解题心得和经验,提高学生的合作能力。
5. 总结与评价:对本节课的内容进行总结,强调重点知识,对学生的学习情况进行评价。
6. 布置作业:布置适量作业,让学生巩固所学知识,提高解题能力。
教学反思:本节课通过问题驱动法和多媒体课件,帮助学生复习和巩固了一元一次不等式及其性质。
在讲解不等式组的解法时,注重引导学生自主探究,提高了学生的解题能力。
通过实际问题的解决,使学生更好地理解了一元一次不等式在实际中的应用。
课堂讨论环节,培养了学生的合作能力。
总体来说,本节课达到了预期的教学目标,学生对一元一次不等式(组)的知识有了更深入的了解。
在今后的教学中,将继续关注学生的学习情况,调整教学方法,提高教学效果。
六、教学案例分析案例1:已知不等式x 2 > 3,求解该不等式。
案例2:已知不等式组x 2 > 3 和2x 5 ≤1,求解该不等式组。
通过分析这两个案例,使学生了解一元一次不等式及其性质的应用,掌握一元一次不等式组的解法及规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式【课时安排】3课时【第一课时】【教学目标】1.理解一元一次不等式、不等式的解、不等式的解集、解不等式等概念。
2.会解一元一次不等式,并会在数轴上表示不等式的解集。
3.通过类比一元一次方程的有关概念、解法来学习一元一次不等式的有关概念及解法,发展学生的类比推理能力。
【教学重点】一元一次不等式的解法和用数轴表示不等式的解集。
【教学难点】准确求一元一次不等式的解集。
【教学过程】一、复习不等式的基本性质二、引例问题:某公司的统计资料表明,科研经费每增加1万元,年利润就增加1.8万元。
如果该公司原来的年利润为200万元,要使年利润超过245万元,那么增加的科研经费应高于多少万元?分析:设该公司增加的科研经费为x万元,根据题意,得:200>+x8.1245三、新授课含有一个未知数,未知数的次数为1,且不等号两边都是整式的不等式叫做一元一次不等式。
(一)问题:请你找出一个数,使得上述不等式成立。
一般地,能够使不等式成立的未知数的值,叫做这个不等式的解。
所有这些解的全体成为这个不等式的解集。
求不等式解集的过程,叫做解不等式。
(二)提示:不等式的解集与不等式的解的区别:解集是使不等式成立的未知数的取值范围,是所有解的集合。
而不等式的解是使不等式成立的未知数的值,二者的关系是解集包含解,所有的解组成解集。
(三)回顾:解一元一次方程的过程 1.去分母(等式基本性质2) 2.去括号(去括号法则)3.移项(移项法则、等式基本性质1) 4.合并同类项(整式加减) 5.系数化为1(等式基本性质2)(四)类比一元一次方程的解法来研究一元一次不等式如何解。
例1:1.解方程:)2(752x x -=+ 2.解不等式:)2(752x x -≤+(五)总结:解一元一次不等式的过程。
(六)将不等式的解集在数轴上表示出来。
(七)注意1.空心点和实心点的使用,注意它们在表示不等式解集时的差别; 2.小于(小于或等于)时向左,大于(大于或等于)时向右。
(八)练习1.(2010年邵阳中考)如图,数轴上表示的关于x 的一元一次不等式的解集为( ) A .x≤1 B .x≥1 C .x<1 D .x>12.例2:解不等式:)32(3312-≥-x x答案:827≤x将例1的第二题和例2的最后一步(系数化为1)进行对比,强调不等式的两边同时乘以-2 -1 0 12(或除以)一个数时,要先判断这个数的正负,再考虑运用不等式基本性质2或性质3。
3.练习(课本练习1、练习2(1))4.解不等式1)1(2+<-x x ,并求它的非负整数解。
5.(2010年荷泽中考)若关于x 的不等式3m-2x<5的解集是x>2,则实数m 的值为______。
变式练习:已知不等式)2(2+≥+x a x 的解集如图所示,求不等式a ax 35>+的解集。
6.如果不等式03≤-m x 的正整数解是1、2、3,则m 的取值范围是( ) A .9≤m <12 B .9<m<12 C .m<12 D .m≥9变式练习:如果不等式03<-m x 的正整数解是1、2、3、4,则m 的取值范围是______。
7.已知关于x 的方程4152435-=-m m x 的解是非负数,求m 的取值范围。
四、总结(一)什么是一元一次不等式、不等式的解、不等式的解集、解不等式? (二)解一元一次不等式与解一元一次方程有哪些相同和不同的地方? (三)不等式的解集如何在数轴上表示出来?【第二课时】 【教学目标】会解含分母的一元一次不等式,并会在数轴上表示其解集。
【教学重点】含分母的一元一次不等式的解法。
【教学难点】在数轴上表示不等式的解集。
【教学过程】(一)复习1.一元一次不等式、不等式的解、不等式的解集、解不等式。
-4 -3 -2 -1 012.不等式的解集如何在数轴上表示出来。
3.解一元一次不等式的步骤。
(二)新授课例1:解不等式:2134xx <-+,并把它的解集表示在数轴上。
1.同步练习(课本习题7.2第2题)解下列不等式,并把它们的解集在数轴上表示出来:(1)23)14(21<--x x ; (2)3)1(4124+≥++x x 。
例2:解不等式:331512->-+x x 。
注意:方程两边可以同时乘以15,去掉分母。
也可以同时乘以-15,此时要注意不等号方向改变。
2.同步练习解不等式:15145)1(2-+---x x >1 3.交流解一元一次方程与解一元一次不等式有哪些相同和不同的地方?为什么?不等式的解法与方程的解法基本一样,只是最后一步“系数化为1”时,要注意不等式基本性质3的应用。
例3:若代数式5)53(2+y 的值不大于代数式2315-+y 的值,求y 的取值范围。
变式练习x 取哪些正整数时,代数式413--x 的值不小于代数式8)2(3+x 的值?答案:不等式的解集为4≤x ,x 取1、2、3、4。
例4:解不等式:7.75.01.02.03.0<++-x x例5:已知关于x 的不等式22>-m x 与不等式x->-3231的解集相同,求m 的值。
4.变式练习已知不等式(3)314k x x +>+与不等式211x x ->+的解相同,求251k k -+的值。
(三)选用练习1.(2010江苏南通)关于x 的方程12mx x -=的解为正实数,则m 的取值范围是( ) A .m≥2 B .m≤2 C .m>2 D .m<22.如果不等式ax+4<0的解集在数轴上表示如图,那么a 的值是( )A .a>0B .a<0C .a=-2D .a=2 3.已知)1(645)25(3+-<++x x x ,化简:xx 3113--+。
4.当x 为何值时,114x --的值不小于3(1)8x +的值。
5.求不等式1215312≤+--x x 的非正整数解,并在数轴上表示出来。
(四)总结1.含分母的一元一次不等式的解法步骤有哪些?2.解一元一次方程与解一元一次不等式有哪些相同和不同的地方? 3.本节课有哪些需要注意的问题? (五)思想方法:类比思想【第三课时】 【教学目标】1.会从实际问题中抽象出数学模型,会用一元一次不等式解决实际。
2.通过观察、实践、讨论等活动,经历从实际问题中抽象出数学模型的过程,积累利用一元一次不等式解决问题的经验,感知方程与不等式的内在联系。
3.在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
【教学重点】寻找实际问题中的不等关系,建立数学模型。
【教学难点】弄清列不等式解决实际问题的思想方法。
【教学过程】(一)回顾复习 解下列不等式:1.72121xx +<- 2.1352213++≤--x x答案:1.3<x ;2.1-≥x 。
(学生板演,师生共同点评) (二)新授课例1:松山公园梅花展个人票每张10元,20人以上(含20人)的团体票8折优惠。
当人数不足20人时,试问有多少人时买20人的团体票比买个人票要便宜?分析:题目中的数量关系是:购买团体票的钱少于购买个人票的钱。
根据上述关系列出不等式求解。
注意:可先假设为相等关系列方程,再改为不等关系列不等式。
注意体会列不等式解决问题和列方程解决问题的关联和区别。
例2:学校举行环保知识竞赛,共有20个问题,答对一题得5分,不答或答错一题扣3分。
王林希望自己的得分不低于80分,那么他至少答对多少题?分析:设王林答对了x 题,则:80)20(35≥--x x5.17≥x注意:受实际问题的限制,最后结果要取整数,所以王林至少答对了18题。
例3:一水果商某次按每千克4元购进一批苹果,销售过程中有20%的苹果正常损耗。
问该商家把售价定为多少时可以避免亏本?分析:设商家的售价为x 元/千克,且设商家进货m 千克,则:m x m 4%)201(≥-5≥x所以定价不低于5元/千克可以不亏本。
注意:根据进货总价和销售总价的关系可以列不等式求解。
列式过程中需要引入购进苹果的重量,不妨设重量为参数m ,在解不等式的过程中,两边同时除以m ,从而消去参量m ,求出x 的值。
同步练习:课本练习第1、2、3题。
例4:为了保护环境,某企业决定购买10台污水处理设备,现有A 、B 两种型号设备,经预算:该企业购买设备的资金不高于130万元。
(1)请你设计该企业的几种购买方案;(2)若企业每月产生的污水量为2260吨,为了节约资金,应该选哪种购买方案? 分析:(1)设购买A 中型号设备x 台,则购买B 型号设备)10(x -台,根据题意,得130)10(1215≤-+x x310≤x由于x 为正整数,x 只能取1、2、3。
因此购买方案有三种:①购买A 型号设备1台,B 型号设备9台; ②购买A 型号设备2台,B 型号设备8台; ③购买A 型号设备3台,B 型号设备7台。
(2)第①种方案:购买资金为123万元,处理污水量为2230吨。
第②种方案:购买资金为126万元,处理污水量为2260吨。
第③种方案:购买资金为129万元,处理污水量为2290吨。
由以上计算知,应选第②种方案。
例5:某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元。
相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%。
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗? (3)若要使这批鱼苗的成活率不低于93%,应如何选购鱼苗? 分析:设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾, (1)由题意得:0.50.8(6000)3600x x +-=解这个方程,得:4000x = ∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾。
(2)由题意得:0.50.8(6000)4200x x +-≤ 解这个不等式,得: 2000x ≥ 即购买甲种鱼苗应不少于2000尾。
(3)由题意得:909593(6000)6000100100100x x +-≥⨯解得:2400x ≤即购买甲种鱼苗应不超过2400尾。
注意:比较问题(1)和问题(2)的过程,再次体会列方程解决问题和列不等式解决问题的联系。
(三)总结根据实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案。