山东省泰安市2020-2021学年高一上学期期末考试数学试题(含答案)

合集下载

2023-2024学年山东省泰安市新泰市新泰市第一中学高一上学期10月月考数学试题

2023-2024学年山东省泰安市新泰市新泰市第一中学高一上学期10月月考数学试题

2023-2024学年山东省泰安市新泰市新泰市第一中学高一上学期10月月考数学试题1.已知集合,则()A.B.C.D.2.已知集合,,且,则的所有取值组成的集合为()A.B.C.D.3.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.不等式的解集为,则函数的图像大致为()A.B.C.D.5.已知函数,若,则实数的值等于()A.B.C.1 D.36.函数的定义域为()A.[1,2)∪(2,+∞)B.(1,2)∪(2,+∞)C.(1,+∞)D.[1,+∞)7.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1 C.D.8.一元二次不等式对一切实数都成立,则实数的取值范围为()A.B.C.D.9.已知集合,则下列式子表示正确的有()A.B.C.D.10.下列各组中表示同一函数的是()A.B.C.D.11.下列说法正确..的是()A.若,,则B.若,,,则“ ”是“ ”的充分不必要条件C.“ ”是“ ”的充要条件D.若,,则12.下列命题中,真命题的是()A.,都有B.,使得 .C.任意非零实数,都有D.函数的最小值为213.命题“,”的否定是__________________.14.已知,且,则的取值范围是______.15.不等式的解集为________.16.某年级先后举办了数学、历史、音乐讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座,则听讲座人数为__________.17.已知全集,集合,或.(1)求;(2)求.18.已知,且.(1)求的最小值;(2)若恒成立,求实数m的取值范围.19.已知,,.(1)若,有且只有一个为真命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.20.已知集合.(1)当时,求实数的值;(2)若时,求实数的取值范围.21.已知函数.(1)若,解不等式;(2)解关于x的不等式.22.某企业研发部原有名技术人员,年人均投入万元,现将这名技术人员分成两部分:技术人员和研发人员,其中技术人员名,调整后研发人员的年人均投入增加,技术人员的年人均投入调整为万元(1)要使这名研发人员的年总投入不低于调整前的名技术人员的年总投入,求调整后的技术人员的人数最多为多少人(2)若技术人员在已知范围内调整后,必须研发人员的年总投入始终不低于技术人员的年总投入,求出正整数的最大值.。

山东省泰安市第一中学2020-2021学年高一上学期期中考试——数学试题

山东省泰安市第一中学2020-2021学年高一上学期期中考试——数学试题

高一质量调研试题数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟. 注意事项:1. 答卷前,考生务必将自己的班级、姓名、准考证号、考试科目及试卷类型用中性笔和2B 铅笔分别涂写在答题卡上;2. 将所有试题答案及解答过程一律填写在答题卡上.试题不交,只交答题卡.第I 卷(选择题共52分)一、选择题:(一)单项选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}0,1,2,3I =,集合{}0,1,2A =,集合{}2,3B =,则I A ∪I B 等于 A .{0} B .{0,1} C .{0,1,3}D .{0,1,2,3} 2.已知 ,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件 3.已知命题“0R x ∃∈,20040x ax a +-<”为假命题,则实数a 的取值范围为A. (4,0)-B. (16,0)-C. [4,0]-D. [16,0]-4.设集合{}2|A x x x =≤,1|1B x x ⎧⎫=≥⎨⎬⎩⎭,则A. (0,1]B. [0,1]C. (,1]-∞D. (,0)(0,1]-∞ 5.下列函数中,既是偶函数,又在区间(,0)-∞上为减函数的为A .1y x =B .2y x =-C .||y x =-D .||1y x =+6.幂函数的图象经过点1(,2)2,若01a b <<<,则下列各式正确的是 A. 11()()()()f a f b f f b a <<< B. 11()()()()f f f b f a a b<<< C. 11()()()()f a f b f f a b <<< D. 11()()()()f f a f f b a b<<< 7.设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.当(2,3]x ∈时,函数()f x 的值域是A. 1[,0]4-B. 1[,0]2-C. [1,0]-D. (,0]-∞ 8.设2:2310p x x -+≤,2:(21)(1)0q x a x a a -+++≤,若p ⌝是q ⌝的必要不充分条件,则实数a 的取值范围是 A. 1[0,]2B. 1(0,]2C.1(,0)[,)2-∞+∞D. 1(,0)(,)2-∞+∞ 9.已知95241()(1)m m f x m m x--=--是幂函数,对任意的12,(0,]x x ∈+∞,且12x x ≠,满足1212()()0f x f x x x ->-,若,R a b ∈,且0a b +>,0ab <,则()()f a f b +的值 A. 恒大于 B. 恒小于 C. 等于 D. 无法判断 10.李冶(),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部正中有一个圆形水池,其中水池的边缘与方田四边之间的面积为亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注: 平方步为 亩,圆周率按 近似计算)A.步、步B.步、步C.步、步D.步、步(二)多项选择题:本大题共3小题,每小题4分,共12分.在每小题给出的四个选项中,有两项或多项是符合题目要求的,全部选对得4分,部分选对得2分,错选得0分. 11.给出下列四个条件:①22xt yt >;②xt yt >;③22x y >;④110x y <<.其中能成为x y >的充分条件的是A. ①B. ②C. ③D. ④ 12.关于x 的方程2||0ax x a -+=有四个不同的实数解,则实数a 的值可能是A.12 B. 13 C. 14D. 16 13.若0a >,0b >,且4a b +=,则下列不等式恒成立的是 A. 228a b +≥ B. 114ab ≥ C.D.第II 卷(非选择题 共98分)二、填空题:本大题共4小题,每小题4分,共16分.把正确答案填在答题纸给定的横线上.14.已知集合{}2|120A x x x =--≤,{}|211B x m x m =-<<+,且 A B B =,则实数m 的取值范围是 .15.若“R x ∀∈,(2)10a x -+>”是真命题,则实数a 的取值集合是 .16.已知关于实数x 的不等式22520(0)x ax a a -+<>的解集为12(,)x x ,则1212a x x x x ++⋅的最小值是 . 17.某辆汽车以/xkm h 的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60120x ≤≤)时,每小时的油耗(所需要的汽油量)为14500()5x k L x-+,其中k 为常数.若汽车以120/km h 的速度行驶时,每小时的油耗为11.5L ,则k =_____,欲使每小时的油耗不超过...9L ,则速度x 的取值范围为____ _______.三、解答题:本大题共6小题,共82分,解答应写出文字说明、证明过程18.(本小题满分12分)已知集合{}|3,5M x x x =<->或 ,{}|()(8)0P x x a x =-⋅-≤.(1)求{}|58M P x x =<≤的充要条件;(2)求实数a 的一个值,使它成为{}|58MP x x =<≤的一个充分但不必要条件. 19.(本小题满分14分)定义:若函数()f x 对于其定义域内的某一数0x ,有00()f x x =,则称0x 是()f x 的一个不动点.已知函数2()(1)1f x ax b x b =+++- (0)a ≠.(1)当1a =,2b =- 时,求函数()f x 的不动点;(2)若对任意的实数b ,函数()f x 恒有两个不动点,求实数a 的取值范围.20.(本小题满分14分)已知不等式250ax x b -+> 的解是 {}|32x x -<<,设{}2|50A x bx x a =-+>,3|51B x x ⎧⎫=≥⎨⎬+⎩⎭. (1)求a ,b 的值;(2)求A B 和U A B .21.(本小题满分14分)已知函数22()2()f x x x a =+-(1)讨论()f x 的奇偶性,并说明理由;(2)若()2f x >对任意实数x 恒成立,求实数a 的取值范围;(3)若()f x 在[]0,1上有最大值9,求实数a 的值.22.(本小题满分14分)某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日 115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (单位:元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (单位:元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).(1)求函数()y f x =的解析式及其定义域.(2)当每辆自行车的日租金为多少元时,才能使一日的净收入最多?23.(本小题满分14分)关于x 的方程2220x ax --= 的两根为α,β()αβ<,函数24()1x a f x x -=+. (1)证明()f x 在区间(,)αβ上是增函数.(2)当a 为何值时,()f x 在[,]αβ上的最大值与最小值之差最小.高一质量调研试题数学试题参考答案 2019. 11一、选择题: CAAAD BCAAB 11. AD 12. BCD 13.AB二、填空题:本大题共4小题,每小题4分,共16分.15.{2}17. 100, [60,100] 三、解答题:本大题共6小题,共82分.18. 解:(1)当8a =时,{}8P =,{}8MP =,不合题意;…………2分 当8a >时,{}|8P x x a =≤≤,{}|8M P x x a =≤≤,不合题意;…4分当8a < 时,{}|8P x a x =≤≤,由{}|58MP x x =<≤,…6分 得 35a -≤≤.综上所述,{}|58M P x x =<≤的充要条件是35a -≤≤.………8分(2) 求实数a 的一个值,使它成为 {}|58MP x x =<≤的一个充分但不必要条件,就是在集合{}|35a a -≤≤中取一个值,如取0a =,此时必有{}|58MP x x =<≤; ...........................10分 反之,{}|58M P x x =<≤ 未必有0a =, (11)故0a = 是{}|58M P x x =<≤的一个充分不必要条件.………12分19. 解:(1)当1a =,2b =-时2()3f x x x =--,由23x x x --=,…………2分解得3x = 或1x =-所求的不动点为或 . …………………6分 (2)令2(1)1ax b x b x +++-=,则 210ax bx b ++-=,……① ……………8分由题意,方程①恒有两个不等实根,所以24(1)0b a b ∆=-->, ……12分即2440b ab a -+> 恒成立,则216160a a '∆=-<,故01a << ………………………14分20.解:(1)根据题意知, 3.2x =- 是方程250ax x b -+=的两实数根;…2分 所以由韦达定理得,532,32q q a⎧=-+⎪⎪⎨⎪=-⨯⎪⎩, ………………………4分解得5a =-,30b = ………………………6分(2) 由上面,5a =-,30b =;所以{}211|30550|32A x x x x x x ⎧⎫=-->=<->⎨⎬⎩⎭或,且 2|15B x x ⎧⎫=-<≤-⎨⎬⎩⎭; ………………………8分 所以2|15A B x x ⎧⎫=-<≤-⎨⎬⎩, ………………………10分 ;………………………12分所以 .………………………14分21.解:(1)当0a =时,()f x 为偶函数;当0a ≠时,()f x 为非奇非偶函数;…1分当0a =时,222()2(0)3f x x x x =+-=,满足()()=f x f x --,所以为偶函数; ………………………2分当0a ≠时,222222()2()2()2()f x x x a x x a x x a -=+--=++≠+-,即()()f x f x -≠,同样()()f x f x -≠-,所以为非奇非偶函数. ………………3分(2)22()32f x x ax a =-+>2对任意实数x 恒成立,即223220x ax a -+->对任意实数x恒成立, ………………………4分所以只需()2241220a a ∆=--<,解得a <a >…………6分 (3)22()32f x x ax a =-+,对称轴为3a x =, …………………7分 ①当132a ≤,即32a ≤时,2max ()(1)239f x f a a ==-+=, ……………9分 解得1a =1a =, ………………………11分②当132a >,即32a >时,2max ()(0)9f x f a ===,………………………12分 解得3a =或3a =-(舍去)综上:1a =-3a =. ………………………………………………14分 22. 解:(1)当6x ≤时,50115y x =-,令501150x ->,解得 2.3x >.∵*N x ∈,∴ 3x ≥,∴ 36x ≤≤,*N x ∈.………………………………2分 当6x > 时,[503(6)115y x x =---,令[503(6)1150x x --->,得23681150x x -+<,上述不等式的整数解为 220x ≤≤(*N x ∈),…………………………………6分 所以620x <≤(*N x ∈),所以*2*50115,36,N 368115,620,Nx x x y x x x x ⎧-≤≤∈⎪=⎨-+-<≤∈⎪⎩. ……………………………8分 (2) 对于50115y x =-(36x ≤≤,*N x ∈),显然当6x = 时,max 185y =(元), …………………………………………10分 对于22348113681153()33y x x x =-+=--+(620x <≤,*N x ∈), 当11x = 时,max 270y =(元). …………………………………………13分 因为270185>,所以当每辆自行车的日租金定在11元时,一日的净收入最多. ……………14分 23. 解:(1) 任取 12x x αβ<<<,则1212221244()()11x a x a f x f x x x ---=-++ 2212212212(4)(1)(4)(1)(1)(1)x a x x a x x x -+--+=++ 2112122212()[4()4](1)(1)x x x x a x x x x --+-=++,…………………………………………3分 方程2220x ax --= 的两根为α,β()αβ<,12x x αβ<<<∴211220x ax --<,222220x ax --<,………………………………………5分 两式相加得2212122()()40x x a x x +-+-<,∵2212122x x x x +>,∴12124()40x x a x x -+-<,∴12()()f x f x <,∴()f x 在区间 (,)αβ上是增函数. …………………………………………7分 (2)∵()f x 在区间 (,)αβ上是增函数,∴max ()()f x f β=,min ()()f x f α=, …………………………………………8分 ∵2220x ax --= 的两根为α,β,∴,12a αβαβ+==-, …………………………………………10分 ∴ max min ()()()()f x f x f f αβ-=-224411a a βαβα--=-++ 22()[4()4](1)(1)a αβαβαβαβ--+-=++2()4βα=-=≥.…………………13分 所以当0a =时,max min ()()f x f x - 取最小值4.………………………………14分 ∴11,2m n ==. …………………………………………………………12分如何学好数学高中学生不仅仅要“想学”,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。

2020-2021学年山东省泰安市高一上学期期末考试生物试题

2020-2021学年山东省泰安市高一上学期期末考试生物试题
A.图中的五种有机物质中最可能含有S的是酶
B.图中五种有机物质中属于单糖的是果糖、葡萄糖
C.每个月采集苹果制备样液,用斐林试剂检测,则10月的样液砖红色最深
D.图中的酶最有可能是淀粉酶,在该酶的作用下,苹果细胞液浓度逐渐变小
4.已知抗利尿激素和催产素均是由9个氨基酸构成的多肽类激素;如图为催产素的结构简式(图中—S—S—为二硫键,是由两个—SH失去2个H后形成的),若将其中异亮氨酸(Ile)和亮氨酸(Leu)分别替换为苯丙氨酸(Phe)和精氨酸(Arg),就是抗利尿激素的结构简式。则下列相关说法正确的是()
C.在线粒体内膜上有催化利用NADH的酶
D.缺氧情况下,阶段C受抑制,阶段A、B不受抑制
15.中国女科学家屠呦呦因分离出青蒿素获2015年诺贝尔生理学或医学奖,临床应用青蒿素治疗疟疾取得了巨大成功,但其抗疟机制尚未完全明了,因此科学家进行了如下表实验。下列说法错误的是()
组别
实验材料
实验处理
实验结果(线粒体膜电位的相对值)
C.载体蛋白介导的运输速率会受到载体蛋白数量的限制
D.载体蛋白和通道蛋白均具有一定的特异性
17.某同学在“探究植物细胞的吸水与失水”的实验过程中,得到如下图像a、b。将形状、大小相同的萝卜条A和萝卜条B均分成5组,每组10段,记录初始质量数据,然后分别放在不同浓度的蔗糖溶液(甲~戊)的小烧杯中,达到平衡后,取出称重、记录并取平均值,结果如图c所示。下列说法正确的是()
C.用过氧化氢酶探究pH对酶活性的影响,要排除温度和其他因素对实验结果的干扰
D.有丝分裂临时装片只用低倍镜观察就可以观察到细胞各时期的变化过程
10.用相同的培养液培养水稻和番茄,一段时间后,测定培养液中离子的浓度,结果如图所示。下列说法错误的是()

2022-2023学年山东省泰安市高一数学第一学期期末教学质量检测试题含解析

2022-2023学年山东省泰安市高一数学第一学期期末教学质量检测试题含解析
2022-2023学年高一上数学期末模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
(3)若函数 满足性质P(T),求证:函数 存在零点.
20.已知函数 是R上的奇函数.
(1)求a的值,并判断 的单调性;
(2)若存在 ,使不等式 成立,求实数b的取值范围.
21.刘先生购买了一部手机,欲使用某通讯网络最近推出的全年免流量费用的套餐,经调查收费标准如下表:
套餐
月租
本地话费
长途话费
套餐甲
2、A
【解析】由题可得分针需要顺时针方向旋转 .
【详解】分针需要顺时针方向旋转 ,即弧度数为 .
故选:A.
3、C
【解析】由集合 , ,结合图形即可写出阴影部分表示的集合
【详解】解:根据条件及图形,即可得出阴影部分表示的集合为 ,
故选 .
【点睛】考查列举法的定义,以及 图表示集合的方法,属于基础题.
4、D
C.3D.2
7.已知命题 : , ,则 为()
A. , B. ,
C. , D. ,
8.已知a=log23+log2 ,b=log29-log2 ,c=log32,则a,b,c的大小关系是()
A.a=b<cB.a=b>c
C.a<b<cD.a>b>c
9.已知点 是第三象限的点,则 的终边位于()
A.第一象限B.第二象限
20、(1) , 为 上的增函数;

山东省泰安市2019-2020学年高一上学期期末数学答案

山东省泰安市2019-2020学年高一上学期期末数学答案

62
3
20.解:(1) f x 在 , 0 上单调递减,
4
Egg Math
证明: x1, x2 , 0 ,且 x1 x2

f
x1
f
x2
2
2
x1
x1
1
m
2
2
x2
x2
1
m
2x2 2x1
2x1 1 2x2 1
x1 x2 0 ,
0 2x1 2x2 1
2x2 2x1 0 , 2x1 1 0 , 2x2 1 0
2
21.解:(1)当 0 x 30 时,
y 500x 10x2 100x 2500 10x2 400x 2500 ;
当 x 30 时,
y
500x
501x
10000 x
4500
2500
2000
x
10000 x

10x2 400x 2500, 0 x 30
y
2000
x
10000 x
Egg Math
一、单项选择题:
高一数学试题参考答案及评分标准 2020.1
题号
1
2
3
4
5
6
答案
C
B
C
A
A
B
二、多项选择题:
题号
9
10
11
答案
AB
ACD
CD
三、填空题:
13.0
14. x R , x2 x 1 0
15.3
16.1,
2 3
k
9
,
2 3
k
2 9
k
Z
四、解答题:
17.解:(1)由 2x2 5x 12 0 解得

山东省泰安市中学2020-2021学年高三数学理上学期期末试卷含解析

山东省泰安市中学2020-2021学年高三数学理上学期期末试卷含解析

山东省泰安市中学2020-2021学年高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中,sinA>sinB是A>B的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:C略2. 已知是虚数单位,则()A.B.C.D.参考答案:B略3. 已知函数的部分图象如图所示,其中点A坐标为,点B 的坐标为,点C的坐标为(3,-1),则f(x)的递增区间为A. B.C. D.参考答案:A由、的坐标可知,函数的图象有对称轴,,故,可得函数的一个单调递增区间为,则的递增区间为,. 故选A. 4. 已知集合A=,B=,则A∩B=A.{1,2} B.{0,1,2} C.{0,1,2,3} D.参考答案:B解析:因为,故选B.5.棱长为3的正四面体内切球的表面积为()A.27 B.3C.12D.48参考答案:答案:B6. 已知的终边在第一象限,则“”是“”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分与不必要条件参考答案:D略7. 若z=f(x,y)称为二元函数,已知f(x,y)=ax+by,,则z=f(﹣1,1)的最大值等于()A.2 B.﹣2 C.3 D.﹣3参考答案:B【考点】函数的最值及其几何意义.【分析】根据条件列出约束条件,作出平面区域,转化为线性规划问题求解.【解答】解:∵,∴,作出平面区域如图所示:由z=f(﹣1,1)=﹣a+b,得b=a+z,由图象可知当直线b=a+z经过点A时,截距最大,即z取得最大值.解方程组得A(3,1),∴z的最大值为﹣3+1=﹣2.故选B.8. 设集合,,则中元素的个数()A.0 B.1 C.2 D.3参考答案:D9. 设为全集,是的三个非空子集,且,则下面论断正确的是()A BC D.参考答案:C 由文氏图可得结论(C)10. 定义在(0,)上的函数是它的导函数,且恒有成立,则()A. B. C. D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 一个由棱锥和半球体组成的几何体,其三视图如图所示,则该几何体的体积为.参考答案:由三视图可得,该几何体是一个组合体,其上半部分是一个四棱锥,四棱锥的底面是一个对角线长度为2的菱形,高为2,其体积为:,下半部分是半个球,球的半径,其体积为据此可得,该几何体的体积为.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.12. 设实数满足约束条件,若目标函数的最大值为8,则的最小值为参考答案: 413. (文科)集合,,则集合的所有元素之和为参考答案:22514. 设是空间中给定的个不同的点,则使成立的点的个数有_________个.参考答案:1【知识点】平面向量坐标运算解:设 设,则因为,所以,所以因此,存在唯一的点M ,使成立。

2020-2021学年山东省泰安市泰山中学高一化学期末试题含解析

2020-2021学年山东省泰安市泰山中学高一化学期末试题含解析

2020-2021学年山东省泰安市泰山中学高一化学期末试题含解析一、单选题(本大题共15个小题,每小题4分。

在每小题给出的四个选项中,只有一项符合题目要求,共60分。

)1. 近年来在中国汽车的销量大幅增长的同时也带来了严重的空气污染。

汽车尾气处理装置中,气体在催化剂表面吸附与解吸的过程如右图所示,下列说法正确的是A. 反应中NO为氧化剂,N2为氧化产物B. 汽车尾气的主要污染成分包括CO、NO和N2C. NO和O2必须在催化剂表面才能反应D. 催化转化的总反应为2NO +O2+4CO4CO2+N2参考答案:D试题分析:A.一氧化氮与一氧化碳反应生成氮气和二氧化碳,依据反应中氮元素化合价变化判断;B.汽车尾气的主要污染成分是CO、NO、NO2等;C.NO和O2在常温下就会发生反应;D.尾气处理净化的目的是把有毒的污染气体在催化剂作用下转化为空气中的无毒成分.解:A.一氧化氮与一氧化碳反应生成氮气和二氧化碳,氮元素从+2价降为0价,化合价降低,所以一氧化氮做氧化剂,氮气为还原产物,故A错误;B.汽车尾气的主要污染成分是CO、NO、NO2等,氮气为空气成分,不是空气污染物,故B错误;C.NO和O2在常温下就会发生反应生成二氧化氮,故C错误;D.尾气处理净化的目的是把有毒的污染气体在催化剂作用下转化为空气中的无毒成分:反应方程式2NO+O2+4CO4CO2+N2正好是过程图中的变化,故D正确;故选:D.2. 下列实验能达到预期目的的是A. 制溴苯B. 从a 处移到b 处,观察到铜丝由黑变红C. 检验无水乙醇中是否有水D. 分离含碘的四氯化碳液体,最终在锥形瓶中可获得碘参考答案:B【分析】A、苯与浓溴水不反应;B、氧化铜在加热条件下与乙醇蒸气反应生成红色的铜、乙醛和水;C、乙醇和水均与金属钠反应生成氢气;D、碘的沸点高于四氯化碳。

【详解】A项、苯与浓溴水不反应,应用苯、液溴、溴化铁或铁粉混合制溴苯,故A错误;B项、铜丝在外焰a处受热与氧气反应生成黑色的氧化铜,移到内焰b处时,黑色氧化铜在加热条件下与乙醇蒸气反应生成红色的铜、乙醛和水,故B正确;C项、乙醇和水均与金属钠反应生成氢气,无法检验无水乙醇中是否有水,应选用无水硫酸铜检验,故C错误;D项、碘的沸点高于四氯化碳,蒸馏分离含碘的四氯化碳液体,最终在蒸馏烧瓶中获得碘,锥形瓶中可获得四氯化碳,故D错误;故选B。

浙江省台州市2023-2024学年高一上学期期中数学试题含解析

浙江省台州市2023-2024学年高一上学期期中数学试题含解析

2023年学年第一学期期中考试试卷高一数学(答案在最后)总分:150分考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集U =R ,集合{}1,0,1,2A =-,{}|210B x x =->,则()A B ⋂R ð等于()A.{}1,0- B.{}1,2C.{}1,0,1- D.{}0,1,2【答案】A 【解析】【分析】先求B R ð,然后由交集运算可得.【详解】因为{}1|210|2B x x x x ⎧⎫=->=>⎨⎬⎩⎭,所以1|2B x x ⎧⎫=≤⎨⎬⎩⎭R ð,所以(){}1,0A B ⋂=-R ð.故选:A2.命题“2000,10x x x ∃∈++<R ”的否定为()A.2000,10x x x ∃∈++≥R B.2000,10x x x ∃∈++>R C.2,10x x x ∀∈++≥R D.2,10x x x ∀∈++>R 【答案】C 【解析】【分析】在写命题的否定中要把存在变任意,任意变存在.【详解】因为特称命题的否定为全称命题,所以2000,10x x x ∃∈++<R 的否定即为2,10x x x ∀∈++≥R .故选:C.3.设x ∈R ,则“220x x -<”是“12x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式,再判断不等式解集的包含关系即可.【详解】由220x x -<得()0,2x ∈,由12x -<得()1,3x ∈-,故“220x x -<”是“12x -<”的充分不必要条件.故选:A.4.已知关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,则下列说法错误的是()A.0a >B.不等式0bx c +>的解集是{}6x x <C.0a b c ++< D.不等式20cx bx a -+<的解集是1|3x x ⎧<-⎨⎩或12x ⎫>⎬⎭【答案】B 【解析】【分析】先求得,,a b c 的关系式,然后对选项进行分析,所以确定正确答案.【详解】由于关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,所以0a >(A 选项正确),且2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,整理得,6b a c a =-=-,由0bx c +>得60,6ax a x --><-,所以不等式0bx c +>的解集是{}6x x <-,所以B 选项错误.660a b c a a a a ++=--=-<,所以C 选项正确.()()22260,6121310cx bx a ax ax a x x x x -+=-++<--=-+<,解得13x <-或12x >,所以D 选项正确.故选:B5.已知函数()y f x =的定义域为{}|06x x ≤≤,则函数()()22f xg x x =-的定义域为()A.{|02x x ≤<或}23x <≤B.{|02x x ≤<或}26x <≤C.{|02x x ≤<或}212x <≤ D.{}|2x x ≠【答案】A 【解析】【分析】由已知列出不等式组,求解即可得出答案.【详解】由已知可得,02620x x ≤≤⎧⎨-≠⎩,解得,02x ≤<或23x <≤.故选:A .6.已知函数5(2),22(),2a x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩是R 上的减函数,则实数a 的取值范围是()A.()0,2 B.()1,2 C.[)1,2 D.(]0,1【答案】C 【解析】【分析】由题可得函数在2x ≤及2x >时,单调递减,且52(2)22aa -+≥,进而即得.【详解】由题意可知:ay x=在()2,+∞上单调递减,即0a >;5(2)2y a x =-+在(],2-∞上也单调递减,即20a -<;又()f x 是R 上的减函数,则52(2)22aa -+≥,∴02052(2)22a a a a ⎧⎪>⎪-<⎨⎪⎪-+≥⎩,解得12a ≤<.故选:C .7.已知函数()y f x =的定义域为R ,()f x 为偶函数,且对任意12,(,0]x x ∈-∞都有2121()()0f x f x x x ->-,若(6)1f =,则不等式2()1f x x ->的解为()A.()(),23,-∞-⋃+∞ B.()2,3- C.()0,1 D.()()2,01,3-⋃【答案】B 【解析】【分析】由2121()()0f x f x x x ->-知,在(,0]-∞上单调递增,结合偶函数,知其在在[0,)+∞上单调递减即可解.【详解】对120x x ∀<≤,满足()()21210f x f x x x ->-,等价于函数()f x 在(,0]-∞上单调递增,又因为函数()f x 关于直线0x =对称,所以函数()f x 在[0,)+∞上单调递减.则()21f x x ->可化为26x x -<,解得23x -<<.故选:B.8.函数()f x x =,()22g x x x =-+.若存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,则n 的最大值是()A.8B.11C.14D.18【答案】C 【解析】【分析】令()222h x x x =-+,原方程可化为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n h x h x h x h x -++⋅⋅⋅+=,算出左侧的取值范围和右侧的取值范围后可得n 的最大值.【详解】因为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,故2221111222222n n n n x x x x x x ---+++-+=-+ .令()222h x x x =-+,90,2x ⎡⎤∈⎢⎥⎣⎦,则()5314h x ≤≤,故()221111531222214n n n x x x x n ---≤-+++-+≤- ,因为()5314n h x ≤≤故5314n -≤,故max 14n =.故选:C.【点睛】本题考查二次函数的最值,注意根据解析式的特征把原方程合理整合,再根据方程有解得到n 满足的条件,本题属于较难题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对实数a ,b ,c ,d ,下列命题中正确的是()A.若a b <,则22ac bc <B.若a b >,c d <,则a c b d ->-C.若14a ≤≤,21b -≤≤,则06a b ≤-≤D.a b >是22a b >的充要条件【答案】BC 【解析】【分析】利用不等式的性质一一判定即可.【详解】对于A ,若0c =,则22ac bc =,故A 错误;对于B ,c d c d <⇒->-,由不等式的同向可加性可得a c b d ->-,故B 正确;对于C ,2121b b -≤≤⇒≥-≥-,由不等式的同向可加性可得06a b ≤-≤,故C 正确;对于D ,若102a b =>>=-,明显22a b <,a b >不能得出22a b >,充分性不成立,故D 错误.故选:BC10.已知函数()42f x x =-,则()A.()f x 的定义域为{}±2x x ≠ B.()f x 的图象关于直线=2x 对称C.()()56ff -=- D.()f x 的值域是()(),00,-∞+∞ 【答案】AC 【解析】【分析】根据解析式可得函数的定义域可判断A ,利用特值可判断,直接求函数值可判断C ,根据定义域及不等式的性质求函数的值域可判断D.【详解】由20x -≠,可得2x ≠±,所以()f x 的定义域为{}±2x x ≠,则A 正确;因为()14f =-,()34f =,所以()()13f f ≠,所以()f x 的图象不关于直线=2x 对称,则B 错误;因为()453f -=,所以()()56f f -=-,则C 正确;因为2x ≠±,所以0x ≥,且2x ≠,所以22x -≥-,且20x -≠,当220x -≤-<时,422x ≤--,即()2f x ≤-,当20x ->时,402x >-,即()0f x >,所以()f x 的值域是(](),20,-∞-+∞ ,故D 错误.故选:AC.11.高斯是德国著名的数学家,近代数学奠基之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为七界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是()A.x ∀∈R ,[][]22x x =B.x ∀∈R ,[][]122x x x ⎡⎤++=⎢⎥⎣⎦C.x ∀,R y ∈,若[][]x y =,则有1x y ->-D.方程[]231x x =+的解集为【答案】BCD 【解析】【分析】对于A :取12x =,不成立;对于B :设[]x x a =-,[0,1)a ∈,讨论10,2a ⎡⎫∈⎪⎢⎣⎭与1,1)2a ⎡∈⎢⎣求解;对于C :,01x m t t =+≤<,,01y m s s =+≤<,由||x y -=||1t s -<得证;对于D :先确定0x ≥,将[]231x x =+代入不等式[][]()2221x x x ≤<+得到[]x 的范围,再求得x 值.【详解】对于A :取12x =,[][][]1211,2220x x ⎡⎤==⎢⎥⎣⎦==,故A 错误;对于B :设11[],[0,1),[][][]22x x a a x x x x a ⎡⎤⎡⎤=-∈∴++=+++⎢⎥⎢⎥⎣⎦⎣⎦12[]2x a ⎡⎤=++⎢⎥⎣⎦,[2][2[]2]2[][2]x x a x a =+=+,当10,2a ⎡⎫∈⎪⎢⎣⎭时,11,122a ⎡⎫+∈⎪⎢⎣⎭,2[0,1)a ∈,则102a ⎡⎤+=⎢⎥⎣⎦,[2]0a =则1[]2[]2x x x ⎡⎤++=⎢⎣⎦,[2]2[]x x =,故当10,2a ⎡⎫∈⎪⎢⎣⎭时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.当1,1)2a ⎡∈⎢⎣时,131,22a ⎡⎫+∈⎪⎢⎣⎭,2[1,,)2a ∈则112a ⎡⎤+=⎢⎥⎣⎦,[2]1a =则1[]2[]1[2]],2[12x x x x x ⎡⎤++=+=+⎢⎣⎦,故当1,1)2a ⎡∈⎢⎣时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.综上B 正确.对于C :设[][]x y m ==,则,01x m t t =+≤<,,01y m s s =+≤<,则|||()x y m t -=+-()|||1m s t s +=-<,因此1x y ->-,故C 正确;对于D :由[]231x x =+知,2x 一定为整数且[]310x +≥,所以[]13x ≥-,所以[]0x ≥,所以0x ≥,由[][]()2221x x x ≤<+得[][][]()22311x x x ≤+<+,由[][]231x x ≤+解得[]33 3.322x +≤≤≈,只能取[]03x ≤≤,由[][]()2311x x +<+解得[]1x >或[]0x <(舍),故[]23x ≤≤,所以[]2x =或[]3x =,当[]2x =时x =[]3x =时x =,所以方程[]231x x =+的解集为,故选:BCD.【点睛】高斯函数常见处理策略:(1)高斯函数本质是分段函数,分段讨论是处理此函数的常用方法.(2)由x 求[]x 时直接按高斯函数的定义求即可.由[]x 求x 时因为x 不是一个确定的实数,可设[]x x a =-,[0,1)a ∈处理.(3)求由[]x 构成的方程时先求出[]x 的范围,再求x 的取值范围.(4)求由[]x 与x 混合构成的方程时,可用[][]1x x x ≤<+放缩为只有[]x 构成的不等式求解.12.函数()1f x a x a =+--,()21g x ax x =-+,其中0a >.记{},max ,,m m n m n n m n ≥⎧=⎨<⎩,设()()(){}max ,h x f x g x =,若不等式()12h x ≤恒有解,则实数a 的值可以是()A.1B.12 C.13 D.14【答案】CD 【解析】【分析】将问题转化为()min 12h x ≥;分别在a ≥和0a <<的情况下,得到()f x 与()g x 的大致图象,由此可得确定()h x 的解析式和单调性,进而确定()min h x ,由()min 12h x ≤可确定a 的取值范围,由此可得结论.【详解】由题意可知:若不等式()12h x ≤恒有解,只需()min 12h x ≥即可.()1,21,x x af x a x x a +≤⎧=⎨+-≥⎩,∴令211ax x x -+=+,解得:0x =或2x a=;令2121ax x a x -+=+-,解得:x =或x =;①当2a a≤,即a ≥时,则()f x 与()g x大致图象如下图所示,()()()(),02,02,g x x h x f x x a g x x a ⎧⎪≤⎪⎪∴=<<⎨⎪⎪≥⎪⎩,()h x ∴在(],0-∞上单调递减,在[)0,∞+上单调递增,()()()min 001h x h g ∴===,不合题意;②当2a a>,即0a <<时,则()f x 与()g x大致图象如下图所示,()()()(),0,0,g x x h x f x x g x x ⎧≤⎪∴=<<⎨⎪≥⎩()h x ∴在(],0-∞,a ⎡⎣上单调递减,[]0,a,)+∞上单调递增;又()()001h g ==,21hg a ==,∴若()min 12h x ≥,则需()min h x h =,即1212a ≤,解得:14a -≤;综上所述:实数a的取值集合10,4M ⎛⎤-= ⎥ ⎝⎦,1M ∉ ,12M ∉,13M ∈,14M ∈,∴AB 错误,CD 正确.故选:CD.【点睛】关键点点睛:本题考查函数不等式能成立问题的求解,解题关键是将问题转化为函数最值的求解问题,通过分类讨论的方式,确定()f x 与()g x 图象的相对位置,从而得到()h x 的单调性,结合单调性来确定最值.三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是__________.【答案】312⎡⎫⎪⎢⎣⎭,【解析】【分析】利用待定系数法求出幂函数()f x 的解析式,再利用函数定义域和单调性求不等式的解集.【详解】设幂函数()y f x x α==,其图像过点()42,,则42α=,解得12α=;∴()12f x x ==,函数定义域为[)0,∞+,在[)0,∞+上单调递增,不等式()()21f a f a ->-等价于210a a ->-≥,解得312a ≤<;则实数a 的取值范围是31,2⎡⎫⎪⎢⎣⎭.故答案为:31,2⎡⎫⎪⎢⎣⎭14.已知0a >,0b >,且41a b +=,则22ab +的最小值是______.【答案】18【解析】【分析】利用基本不等式“1”的妙用求解最小值.【详解】由题意可得24282221018b a b ab a b a ab +=++=⎛⎫⎛⎫ ⎪⎪⎝⎭⎝++≥⎭,当且仅当13a =,6b =时,等号成立.故答案为:1815.若函数()()22()1,,=-++∈f x x xax b a b R 的图象关于直线2x =对称,则=a b +_______.【答案】7【解析】【分析】由对称性得()(4)f x f x =-,取特殊值(0)(4)(1)(3)f f f f =⎧⎨=⎩求得,a b ,再检验满足()(4)f x f x =-即可得,【详解】由题意(2)(2)f x f x +=-,即()(4)f x f x =-,所以(0)(4)(1)(3)f f f f =⎧⎨=⎩,即15(164)08(93)b a b a b =-++⎧⎨=-++⎩,解得815a b =-⎧⎨=⎩,此时22432()(1)(815)814815f x x x x x x x x =--+=-+--+,432(4)(4)8(4)14(4)8(4)15f x x x x x -=--+-----+432232(1696256256)8(644812)14(168)32815x x x x x x x x x x =--+-++-+---+-++432814815x x x x =-+--+()f x =,满足题意.所以8,15a b =-=,7a b +=.故答案为:7.16.设函数()24,()2,ax x a f x x x a-+<⎧⎪=⎨-≥⎪⎩存在最小值,则a 的取值范围是________.【答案】[0,2]【解析】【分析】根据题意分a<0,0a =,02a <≤和2a >四种情况结合二次函数的性质讨论即可》【详解】①当a<0时,0a ->,故函数()f x 在(),a -∞上单调递增,因此()f x 不存在最小值;②当0a =时,()24,0()2,0x f x x x <⎧⎪=⎨-≥⎪⎩,当0x ≥时,min ()(2)04f x f ==<,故函数()f x 存在最小值;③当02a <≤时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,2()(2)(2)0f x x f =-≥=.若240a -+<,则()f x 不存在最小值,故240a -+≥,解得22a -≤≤.此时02a <≤满足题设;④当2a >时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,22()(2)()(2)f x x f a a =-≥=-.因为222(2)(4)242(2)0a a a a a a ---+=-=->,所以22(2)4a a ->-+,因此()f x 不存在最小值.综上,a 的取值范围是02a ≤≤.故答案为:[0,2]【点睛】关键点点睛:此题考查含参数的分段函数求最值,考查二次函数的性质,解题的关键是结合二次函数的性质求函数的最小值,考查分类讨论思想,属于较难题.四、解答题:本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{|13}A x x =<<,集合{|21}B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数m 的取值范围.【答案】(1)[)0,∞+(2)(],2-∞-【解析】【分析】(1)根据B 是否为空集进行分类讨论,由此列不等式来求得m 的取值范围.(2)根据p 是q 的充分条件列不等式,由此求得m 的取值范围.【小问1详解】由于A B ⋂=∅,①当B =∅时,21m m ³-,解得13m ≥,②当B ≠∅时,2111m m m <-⎧⎨-≤⎩或2123m mm <-⎧⎨≥⎩,解得103m ≤<.综上所述,实数m 的取值范围为[)0,∞+.【小问2详解】命题:p x A ∈,命题:q x B ∈,若p 是q 的充分条件,故A B ⊆,所以2113m m ≤⎧⎨-≥⎩,解得2m ≤-;所以实数m 的取值范围为(],2-∞-.18.2018年8月31日,全国人大会议通过了个人所得税法的修订办法,将每年个税免征额由42000元提高到60000元.2019年1月1日起实施新年征收个税.个人所得税税率表(2019年1月1日起执行)级数全年应纳税所得额所在区间(对应免征额为60000)税率(%)速算扣除数1[]0,36000302(]36000,1440001025203(]144000,30000020X 4(]300000,42000025319205(]420000,66000030529206(]660000,96000035859207()960000,+∞45181920有一种速算个税的办法:个税税额=应纳税所得额×税率-速算扣除数.(1)请计算表中的数X ;(2)假若某人2021年税后所得为200000元时,请按照这一算法计算他的税前全年应纳税所得额.【答案】(1)16920X =(2)153850元.【解析】【分析】(1)根据公式“个税税额=应纳税所得额×税率-速算扣除数”计算,其中个税税额按正常计税方法计算;(2)先判断他的全年应纳税所参照的级数,是级数2还是级数3,然后再根据计税公式求解.【小问1详解】按照表格,假设个人全年应纳税所得额为x 元(144000300000x ≤≤),可得:()()20%14400020%1440003600010%360003%x X x -=-⨯+-⨯+⨯,16920X =.【小问2详解】按照表格,级数3,()30000030000020%16920256920-⨯-=;按照级数2,()14400014400010%2520132120-⨯-=;显然1321206000019212020000031692025692060000+=<<=+,所以应该参照“级数3”计算.假设他的全年应纳税所得额为t 元,所以此时()20%1692020000060000t t -⨯-=-,解得153850t =,即他的税前全年应纳税所得额为153850元.19.已知定义在R 上的函数()f x 满足()()()2f x y f x f y +=++,且当0x >时,()2f x >-.(1)求()0f 的值,并证明()2f x +为奇函数;(2)求证()f x 在R 上是增函数;(3)若()12f =,解关于x 的不等式()()2128f x x f x ++->.【答案】(1)(0)2f =-,证明见解析(2)证明见解析(3){1x x <-或}2x >【解析】【分析】(1)赋值法;(2)结合增函数的定义,构造[]1122()()f x f x x x =-+即可;(3)运用题干的等式,求出(3)10f =,结合(2)的单调性即可.【小问1详解】令0x y ==,得(0)2f =-.()2()2(0)20f x f x f ++-+=+=,所以函数()2f x +为奇函数;【小问2详解】证明:在R 上任取12x x >,则120x x ->,所以12()2f x x ->-.又[]11221222()()()()2()f x f x x x f x x f x f x =-+=-++>,所以函数()f x 在R 上是增函数.【小问3详解】由(1)2f =,得(2)(11)(1)(1)26f f f f =+=++=,(3)(12)(1)(2)210f f f f =+=++=.由2()(12)8f x x f x ++->得2(1)(3)f x x f -+>.因为函数()f x 在R 上是增函数,所以213x x -+>,解得1x <-或2x >.故原不等式的解集为{1x x <-或}2x >.20.已知函数()2,R f x x x k x k =-+∈.(1)讨论函数()f x 的奇偶性(写出结论,不需要证明);(2)如果当[]0,2x ∈时,()f x 的最大值是6,求k 的值.【答案】(1)答案见解析(2)1或3【解析】【分析】(1)对k 进行分类讨论,结合函数奇偶性的知识确定正确答案.(2)将()f x 表示为分段函数的形式,对k 进行分类讨论,结合二次函数的性质、函数的单调性求得k 的值.【小问1详解】当0k =时,()f x =||2x x x +,则()f x -=||2x x x --=()f x -,即()f x 为奇函数,当0k ≠时,(1)f =|1|2k -+,(1)|1|2f k -=-+-,(1)(1)|1|2|1|2|1||1|0f f k k k k +-=-+-+-=--+≠,则()f x 不是奇函数,(1)(1)|1|2|1|2|1||1|40f f k k k k --=-++++=-+++≠,则()f x 不是偶函数,∴当0k =时()f x 是奇函数,当0k ≠时,()f x 是非奇非偶函数.【小问2详解】由题设,()f x ()()222,2,x k x x k x k x x k ⎧+-≥⎪=⎨-++<⎪⎩,函数()22y x k x =+-的开口向上,对称轴为2122k kx -=-=-;函数()22y x k x =-++的开口向下,对称轴为2122k k x +=-=+-.1、当1122k k k -<+<,即2k >时,()f x 在(,1)2k-∞+上是增函数,∵122k+>,∴()f x 在[]0,2上是增函数;2、当1122k k k <-<+,即2k <-时,()f x 在1,2k ⎛⎫-+∞ ⎪⎝⎭上是增函数,∵102k-<1,∴()f x 在[]0,2上是增函数;∴2k >或2k <-,在[]0,2x ∈上()f x 的最大值是(2)2|2|46f k =-+=,解得1k =(舍去)或3k =;3、当1122k kk -≤≤+,即22k -≤≤时,()f x 在[]0,2上为增函数,令2246k -+=,解得1k =或3k =(舍去).综上,k 的值是1或3.【点睛】研究函数的奇偶性的题目,如果要判断函数的奇偶性,可以利用奇偶函数的定义()()f x f x -=或()()f x f x -=-来求解.也可以利用特殊值来判断函数不满足奇偶性的定义.对于含有绝对值的函数的最值的研究,可将函数写为分段函数的形式,再对参数进行分类讨论来求解.21.已知函数()2f x x =-,()()224g x x mx m =-+∈R .(1)若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,求m 的取值范围;(2)若1m =-,对任意n ∈R ,总存在[]02,2x ∈-,使得不等式()200g x x n k -+≥成立,求实数k 的取值范围.【答案】(1)54m ⎡∈⎢⎣(2)(],4∞-【解析】【分析】(1)将题目条件转化为()1g x 的值域包含于()2f x 的值域,再根据[]11,2x ∈的两端点的函数值()()1,2g g 得到()y g x =对称轴为[]1,2x m =∈,从而得到()()min g x g m =,进而求出m 的取值范围;(2)将不等式()200g x x n k -+≥化简得不等式024x n k ++≥成立,再构造函数()0024h x x n =++,从而得到()0max h x k ≥,再构造函数()(){}0max max ,8n h x n n ϕ==+,求出()min n ϕ即可求解.【小问1详解】设当[]11,2x ∈,()1g x 的值域为D ,当[]24,5x ∈,()2f x 的值域为[]2,3,由题意得[]2,3D ⊆,∴()()211243224443g m g m ⎧≤=-+≤⎪⎨≤=-+≤⎪⎩,得5342m ≤≤,此时()y g x =对称轴为[]1,2x m =∈,故()()[]min 2,3g x g m =∈,即()222243g m m m =-+≤≤得1m ≤≤1m ≤≤-,综上可得54m ⎡∈⎢⎣.【小问2详解】由题意得对任意n ∈R ,总存在[]02,2x ∈-,使得不等式024x n k ++≥成立,令()0024h x x n =++,由题意得()0max h x k ≥,而()()(){}{}0max max 2,2max ,8h x h h n n =-=+,设(){}max ,8n n n ϕ=+,则()min n k ϕ≥,而(){},4max ,88,4n n n n n n n ϕ⎧<-⎪=+=⎨+≥-⎪⎩,易得()()min 44n k ϕϕ=-=≥,故4k ≤.即实数k 的取值范围为(],4∞-.22.已知函数()()01ax g x a x =≠+在区间1,15⎡⎤⎢⎥⎣⎦上的最大值为1.(1)求实数a 的值;(2)若函数()()()()()210x b f x b b g x +=-+>,是否存在正实数b ,对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在以()()f g r 、()()f g s 、()()f g t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)2a =(2)存在,15153b <<【解析】【分析】(1)由题意()1a g x a x =-+,1,15x ⎡⎤∈⎢⎥⎣⎦,然后分a<0,0a >两种情况讨论函数()g x 的单调性,即可得出结果;(2)由题意()()0bf x x b x=+>,可证得()f x 在(为减函数,在)+∞为增函数,设()u g x =,1,13u ⎡⎤∈⎢⎥⎣⎦,则()()()()0b f g x f u u b u ==+>,从而把问题转化为:1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max2f u f u >时,求实数b 的取值范围.结合()bf u u u=+的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意()11ax a g x a x x ==-++,1,15x ⎡⎤∈⎢⎥⎣⎦①当a<0时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递减,所以()max 151566a ag x g a ⎛⎫==-== ⎪⎝⎭,得6a =(舍去).②当0a >时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,所以()()max 1122a ag x g a ==-==,得2a =.综上所述,2a =.【小问2详解】由题意()22211x g x x x ==-++,又115x ≤≤,由(1)知函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,∴()()115g g x g ⎛⎫≤≤ ⎪⎝⎭,即()113g x ≤≤,所以函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.又因为()()()()()()()()()2211111x b x x b x b x b f x b b b g x x x++++++=-+=-+=-+,∴()()20x b bf x x b x x+==+>,令120x x <<,则()()()12121212121b b b f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当1x ,(2x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12f x f x >,()f x 为减函数;当1x ,)2x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12f x f x <,()f x 为增函数;∴()f x 在(为减函数,在)+∞为增函数,设()u g x =,由(1)知1,13u ⎡⎤∈⎢⎥⎣⎦,∴()()()()0bf g x f u u b u==+>;所以,在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在()()f g r 、()()f g s 、()()f g t 为边长的三角形,等价于1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max 2f u f u >.①当109b <≤时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()min 133f u b =+,()max 1f u b =+,由()()min max 2f u f u >,得115b >,从而11159b <≤.②当1193b <≤时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u =,()max 1f u b =+,由()()min max 2f u f u >得77b -<<+1193b <≤.③当113b <<时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u ==,()max 133f u b =+,由()()min max 2f u f u >得74374399b -+<<,从而113b <<.④当1b ≥时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()min 1f u b =+,()max 133f u b =+,由()()min max 2f u f u >得53b <,从而513b ≤<.综上,15153b <<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学试题第页(共4页)试卷类型:A数学试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={}1,3,5,B={}3,4,则A⋂B=A.{}5B.{}3C.{}1,3,4,5 D.{}2,4,52.s in330°=A.B. C.-12D.123.已知命题p:∀x>0,2x>log2x,则命题p的否定为A.∀x>0,2x≤l og2xB.∃x0>0,2x0≤l og2x0C.∃x0>0,2x0<l og2x0D.∃x0≤0,2x0≤l og2x04.二十四节气是中华民族上古农耕文明的产物,是中国农历中表示季节变迁的24个特定节令.现行的二十四节气是根据地球在黄道(即地球绕太阳公转的轨道)上的位置变化而制定的.每个节气对应地球在黄道上运动15°所到达的一个位置.根据上述描述,从冬至到雨水对应地球在黄道上运动的弧度数为2021.1 1山东省泰安市2020-2021学年高一上学期期末考试高一数学试题第页(共4页)A.-π3 B.-5π12 C.5π12 D.π35.已知角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(-2,a ),若α=120°,则a 的值为A.-23 B.±23 C.23 D.36.若a =log 54,b =log 20.5,c =60.7A.a <b <c B.c <a <b C.a <c <b D.b <a <c7.科学研究已经证实,人的智力、情绪和体力分别以33天、28天和23天为周期,按y =sin (ωx +φ)进行变化,记智力曲线为I ,情绪曲线为E ,体力曲线为P ,且现在三条曲线都处于x 轴的同一点处,那么第322天时A.智力曲线I 处于最低点B.情绪曲线E 与体力曲线P 都处于上升期C.智力曲线I 与情绪曲线E 相交D.情绪曲线E 与体力曲线P 都关于(322,0)对称8.已知定义域为[-7,7]的函数f (x )的图象是一条连续不断的曲线,且满足f (-x )+f (x )=0.若∀x 1,x 2∈(0,7],当x 1<x 2时,总有f (x 2)x 1>f (x 1)x 2,则满足(2m -1)f (2m -1)≤(m +4)f (m +4)的实数m 的取值范围为A.[-1,3]B.[-1,5]C.[-3,5]D.[-3,3]二、多项选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得3分。

9.下列结论正确的是A.若a ,b 为正实数,a ≠b ,则a 3+b 3>a 2b +ab 2B.若a ,b ,m 为正实数,a <b ,则a +m b +m <ab C.若a ,b ∈R ,则“a >b >0”是“1a <1b”的充分不必要条件D.当x ∈(0,π2)时,sin x +2sin x的最小值是2210.若α为第二象限角,则下列结论正确的是A.sin α>cos αB.sin α>tan αC.sin α+cos α>0D.cos α+tan α<011.函数f (x )=2x +a2x(a ∈R )的图象可能为212.已知函数f(x)的定义域为R,且f(π2)=0,f(0)≠0.若∀x,y∈R,f(x)+f(y)= 2f(x+y2)f(x-y2),则下列说法正确的是A.f(0)=1B.f(-x)=-f(x)C.f(2π+x)=f(x)D.f(2x)=2f2(x)-1三、填空题:本题共4小题,每小题5分,共20分。

13.已知弧长为π3cm的弧所对圆心角为π6,则这条弧所在圆的半径为cm.14.已知函数f(x)=ìíî2x+2,x≤1log a(x-1),x>1,若f[]f(0)=2,则实数a的值为.15.若函数f(x)=log a x(a>0,且a≠1)在[12,4]上的最大值为2,最小值为m,函数g(x)= (3+2m)x在[0,+∞)上是增函数,则a+m的值是.16.若函数f(x)=sin(x+φ)+cos x(0<φ<π)的最大值为2,则常数φ的值为.四、解答题:本题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(10分)设函数f(x)=lg(x-2m)的定义域为集合A,函数g(x)=4-x2+1x的定义域为集合B.(1)若B⊆A,求实数m的取值范围;(2)若A⋂B=∅,求实数m的取值范围.18.(12分)在下列三个条件中任选一个,补充在下面问题中,并作答.①f(x)的最小正周期为π,且f(x)是偶函数②f(x)图象上相邻两个最高点之间的距离为π,且f(π4)=0③x=0与x=π2是f(x)图象上相邻的两条对称轴,且f(0)=2问题:已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π),若.(1)求ω,φ的值;(2)将函数y=f(x)的图象向右平移π6个单位长度后,再将得到的函数图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,π]上的单调递减区间.注:如果选择多个条件分别解答,按第一个解答计分.3高一数学试题第页(共4页)高一数学试题第页(共4页)19.(12分)已知cos α=-45,且π2<α<π.(1)求5sin (π+α)-4tan (3π-α)的值;(2)若0<β<π2,cos (β-α)=求sin (π2+2β)的值.20.(12分)已知函数f (x )=ln2-mx2+x,m >0,且f (1)+f (-1)=0.(1)证明:f (x )在定义域上是减函数;(2)若f (x )+ln 9<f (-x ),求x 的取值集合.21.(12分)北京时间2020年11月24日,我国探月工程嫦娥五号探测器在海南文昌航天发射场发射升空,并进入地月转移轨道.探测器实施2次轨道修正,2次近月制动后,顺利进入环月圆轨道,于12月1日在月球正面预选区域着陆,并开展采样工作.12月17日1时59分,嫦娥五号返回器在内蒙古四子王旗预定区域成功着陆,标志着我国首次地外天体采样返回任务圆满完成.某同学为祖国的航天事业取得的成就感到无比自豪,同时对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,单级火箭的最大速度V (单位:千米/秒)满足V =W lnm +MM,其中,W (单位:千米/秒)表示它的发动机的喷射速度,m (单位:吨)表示它装载的燃料质量,M (单位:吨)表示它自身的质量(不包括燃料质量).(1)某单级火箭自身的质量为50吨,发动机的喷射速度为3千米/秒.当它装载100吨燃料时,求该单级火箭的最大速度(精确到0.1);(2)根据现在的科学水平,通常单级火箭装载的燃料质量与它自身质量的比值不超过9.如果某单级火箭的发动机的喷射速度为2千米/秒,判断该单级火箭的最大速度能否超过7.9千米/秒,请说明理由.(参考数据:无理数e=2.71828…,ln 3≈1.10)22.(12分)已知函数f (x )=2x -2-x ,g (x )=log 2x +sinπx 4.(1)若∀x ∈[0,1],f (x )>g (k )-sink π4恒成立,求实数k 的取值范围;(2)证明:g (x )有且只有一个零点x 0,且f (sin πx 04)<56.4高一数学试题参考答案第页(共5页)数学试题参考答案及评分标准一、单项选择题:题号答案1B 2C 3B 4D 5C 6D 7D 8A 二、多项选择题:题号答案9AC 10ABD 11ABD 12ACD三、填空题:13.214.215.116.π2四、解答题:17.(10分)解:由题知A ={x |x >2m },…………………………………………………………2分B ={x |0<x ≤2}.…………………………………………………………………4分(1)若B ⊆A ,则2m ≤0,即m ≤0,∴实数m 的取值范围是(-∞,0].…………………………………………………7分(2)若A ⋂B =∅,则2m ≥2,即m ≥1,∴实数m 的取值范围是[1,+∞).………………………………………………10分18.(12分)解:(1)方案一:选条件①∵f (x )的最小正周期为π,∴T =2πω=π,∴ω=2.………………………………………………………………………2分又f (x )是偶函数,∴sin (2x +φ)=sin (-2x +φ)恒成立,∴sin (2x )cos φ=0恒成立.…………………………………………………4分∴cos φ=0,∴φ=k π+π2,k ∈Z .又0<φ<π,∴φ=π2.……………………………………………………………………6分2021.11山东省泰安市2020-2021学年高一上学期期末考试(2)由(1)知,f(x)=2sin(2x+π2)=2cos2x.将y=f(x)的图象向右平移π6个单位长度后,得到y=2cos(2x-π3)的图象,……………………………………………………………………………………8分再将横坐标伸长到原来的4倍,纵坐标不变,得到g(x)=2cos(x2-π3)的图象.由2kπ≤x2-π3≤2kπ+π,k∈Z,解得4kπ+2π3≤x≤4kπ+8π3,k∈Z.……………………………………………10分当k=0时,2π3≤x≤8π3∵0≤x≤π∴2π3≤x≤π∴g(x)在[0,π]上的单调递减区间是[2π3,π].………………………………12分方案二:选条件②(1)∵函数f(x)图象上相邻两个最高点之间的距离为π,∴T=2πω=π,∴ω=2.…………………………………………………………………………2分又f(π4)=0,∴sin(2×π4+φ)=0,即cosφ=0…………………………………………………4分∴φ=kπ+π2,k∈Z.又0<φ<π,∴φ=π2.……………………………………………………………………………6分(2)同方案一(2).方案三:选条件③(1)∵x=0与x=π2是f(x)图象上相邻的两条对称轴,∴T2=π2,即T=2πω=π,2高一数学试题参考答案第页(共5页)高一数学试题参考答案第页(共5页)∴ω=2.…………………………………………………………………………2分又f (0)=2sin φ=2,……………………………………………………………4分∴sin φ=1,∴φ=2k π+π2,k ∈Z .又0<φ<π,∴φ=π2.…………………………………………………………………………6分(2)同方案一(2).19.(12分)解:∵cos α=-45,π2<α<π,∴sin α=35,tan α=-34.…………………………………………………………3分(1)5sin (π+α)-4tan (3π-α)=-5sin α+4tan α=-5×35+4×(-34)=-6.…………………………………………………………………………………6分(2)∵0<β<π2,π2<α<π∴-π<β-α<又cos (β-α)=∴sin(β-α)=-255,………………………………………………………8分∴cos β=cos](β-α)+α=cos (β-α)cos α-sin (β-α)sin α×(-45)-(-255)×35=2525……………………………10分∴sin (π2+2β)=cos 2β=2cos 2β-1=2×(2525)2-1=-117125.………12分20.(12分)解:(1)∵f (1)+f (-1)=0,∴ln 2-m 3+ln (2+m )=ln 4-m 23=0,∴m 2=1.又m >0,∴m =1,3高一数学试题参考答案第页(共5页)∴f (x )=ln2-x2+x.由2-x2+x>0,解得-2<x <2,∴f (x )的定义域为(-2,2).……………………………………………………2分令g (x )=2-x 2+x =-1+42+x.任取x 1,x 2∈(-2,2),且x 1<x 2,则g (x 1)-g (x 2)=42+x 1-42+x 2=4(x 2-x 1)(2+x 1)(2+x 2).……………………………4分∵x 2-x 1>0,2+x 1>0,2+x 2>0,∴g (x 1)-g (x 2)>0,即g (x 1)>g (x 2),∴f (x 1)>f (x 2),∴f (x )在(-2,2)上是减函数.…………………………………………………6分(2)∵f (-x )=ln2+x 2-x =-ln 2-x2+x=-f (x ),……………………………………8分∴原不等式可化为2f (x )<-ln 9,即f (x )<ln 13=f (1).…………………10分由(1)知,f (x )是减函数,∴x >1.又f (x )的定义域为(-2,2),∴x 的取值集合为{}x |1<x <2.……………………………………………12分21.(12分)解:(1)∵W =3,M =50,m =100,∴V =W lnm +M M =3×ln 100+5050=3ln 3≈3.3,∴该单级火箭的最大速度为3.3千米/秒.……………………………………4分(2)∵mM≤9,W =2,∴m +M M =m M+1≤10.………………………………………………………6分∴V =W ln m +MM≤2ln 10.…………………………………………………8分∵e 7.9>27.9>27=128>100,……………………………………………………10分∴7.9=ln e 7.9>ln 100=2ln 10,∴V <7.9.∴该单级火箭的最大速度不能超过7.9千米/秒.…………………………12分4高一数学试题参考答案第页(共5页)22.(12分)解:(1)∵y =2x 是增函数,y =2-x 是减函数,∴f (x )=2x -2-x 在[]0,1上单调递增.∴f (x )的最小值为f (0)=0.…………………………………………………2分又g (k )-sink π4=log 2k ,∴log 2k <0,解得0<k <1,∴实数k 的取值范围为0<k <1.……………………………………………4分(2)当x ∈(2,+∞)时,log 2x >log 22=1,sinπx4≥-1,∴g (x )=log 2x +sinπx4>1+(-1)=0,∴g (x )在(2,+∞)上无零点.…………………………………………………6分当x ∈(0,]2时,y =log 2x 与y =sinπx4单调递增,∴g (x )在(0,]2上单调递增.…………………………………………………8分又g (23)=log 223+sin π6=log 223+12=log 2223<0,g (1)=sin π4>0,∴∃x 0∈(23,1),使得g (x 0)=0,∴g (x )在(0,]2上有且只有一个零点x 0,综上所述,g (x )有且只有一个零点x 0.……………………………………10分又g (x 0)=log 2x 0+sin πx 04=0,即sin πx 04=-log 2x 0,∴f (sin πx 04)=f (-log 2x 0)=2-log 2x 0-2log 2x 0=1x 0-x 0,∵y =1x -x 在(23,1)上单调递减,∴1x 0-x 0<32-23=56,∴f (sinπx 04)<56.……………………………………………………………12分5。

相关文档
最新文档