山东省泰安市2020-2021学年高一上学期期末数学试题
2020-2021学年山东省德州市高一(上)期末数学试卷

2020-2021学年山东省德州市高一(上)期末数学试卷1.(单选题,5分)已知集合A={x|x≥-1},B={x|lgx >0},则A∩B=( ) A.(0,+∞) B.(-1,1) C.(10,+∞) D.(1,+∞)2.(单选题,5分)已知命题p :“∀x∈R ,|x-1|>0”,则¬p 为( ) A.∃x∈R ,|x-1|≤0 B.∀x∈R ,|x-1|<0 C.∃x∈R ,|x-1|<0 D.∀x∈R ,|x-1|≤03.(单选题,5分)已知函数f (x )= {3x +log 2a ,x >03x+1,x ≤0 ,若f[f (-1)]=5,则a=( )A.-2B.2C.-3D.34.(单选题,5分)已知向量 a ⃗ =(1,2), b ⃗⃗ =(1,0), c ⃗ =(3,4).若λ为实数,( a ⃗ +λ b ⃗⃗ ) || c ⃗ ,则λ=( ) A. 14 B. 12 C.1 D.25.(单选题,5分)设a ,b 都是不等于1的正数,则“2a >2b >2”是“log a 2<log b 2”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要6.(单选题,5分)已知不等式ax 2-bx-a 3≥0的解集是[-4,1],则a b 的值为( ) A.-64 B.-36 C.36 D.647.(单选题,5分)已知min{a ,b}表示a ,b 两个数中较小一个,则函数 f (x )=min{|x |,1x 2}−12的零点是( )A. √2 , 12B. √2 , −√2 , 12 , −12 C. (√2,0) , (12,0)D. (−12,0) , (12,0) , (−√2,0) , (√2,0)8.(单选题,5分)甲乙两人进行扑克牌得分比赛,甲的三张扑克牌分别记为A ,b ,C ,乙的三张扑克牌分别记为a ,B ,c .这六张扑克牌的大小顺序为A >a >B >b >C >c .比赛规则为:每张牌只能出一次,每局比赛双方各出一张牌,共比赛三局,在每局比赛中牌大者得1分,牌小者得0分.若每局比赛之前彼此都不知道对方所出之牌,则六张牌都出完时乙得2分的概率为( ) A. 16B. 23C. 12D. 139.(多选题,5分)下列说法中正确的是( ) A.两个非零向量 a ⃗,b ⃗⃗ ,若 |a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗| ,则 a ⃗⊥b ⃗⃗ B.若 a ⃗∥b ⃗⃗ ,则有且只有一个实数λ,使得 b ⃗⃗=λa ⃗ C.若 a ⃗,b ⃗⃗ 为单位向量,则 a ⃗=b ⃗⃗ D. AB ⃗⃗⃗⃗⃗⃗+BA ⃗⃗⃗⃗⃗⃗=0⃗⃗ 10.(多选题,5分)国家为了实现经济“双循环”大战略,对东部和西部地区的多个县市的某一类经济指标进行调查,得出东部,西部两组数据的茎叶图如图所示,则下列结论正确的是( )A.西部的平均数为13.3B.东部的极差小于西部的极差C.东部的30%分位数是116D.东部的众数比西部的众数小11.(多选题,5分)若c a <c b <c ,0<c <1,则( ) A.a c <b cB.ab c >ba cC.ln (a 2+1)>ln (b 2+1)D.log a c <log b c12.(多选题,5分)我们知道:函数y=f (x )关于x=0对称的充要条件是f (-x )=f (x ).某同学针对上述结论进行探究,得到一个真命题:函数y=f (x )关于x=a 对称的充要条件是f (2a-x )=f (x ).若函数y=g (x )满足g (2-x )=g (x ),且当x≥1时,g (x )=x 2-4x+3,则( ) A.g (0)=0B.当x <1时,g (x )=x 2-1C.函数g (x )的零点为3,-1D.g (x-1)>g (4)的解集为(-∞,-1)∪(5,+∞)13.(填空题,5分)已知 α∈{−1,12,−2} ,若幂函数f (x )=x α在(0,+∞)上单调递增,则f (log 216)=___ .14.(填空题,5分)已知a ,b∈R +,且2a+b=ab ,则a+b 的最小值为 ___ .15.(填空题,5分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时乙得分的概率为0.6,各球的结果相互独立.在某局打成10:10后,甲先发球,乙以13:11获胜的概率为 ___ . 16.(填空题,5分)已知函数 f (x )={x 2,x ≤1log 2x ,x >1 ,若方程f (x )=m 有三个不同的根分别设为x 1,x 2,x 3,且x 1<x 2<x 3,则 (x 1+x 2)m 2021+x 3 的取值范围为 ___ . 17.(问答题,0分)求值:(1) (lg2)2+lg20×lg5+3log 94 ;(2) (π−3)0+(√3×√23)6−√24×80.25 .18.(问答题,0分)如图所示,在△ABC 中, AB ⃗⃗⃗⃗⃗⃗=a ⃗ , BC ⃗⃗⃗⃗⃗⃗=b ⃗⃗ ,D ,F 分别为线段BC ,AC 上一点,且BD=2DC ,CF=3FA ,BF 和AD 相交于点E . (1)用向量 a ⃗ , b ⃗⃗ 表示 BF ⃗⃗⃗⃗⃗⃗ ;(2)假设 BE ⃗⃗⃗⃗⃗⃗=λBA ⃗⃗⃗⃗⃗⃗+(1−λ)BD ⃗⃗⃗⃗⃗⃗⃗=μBF ⃗⃗⃗⃗⃗⃗ ,用向量 a ⃗ , b ⃗⃗ 表示 BE ⃗⃗⃗⃗⃗⃗ 并求出μ的值.19.(问答题,0分)已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过点(4,2).(1)若f(3x-1)>f(-x+5)成立,求x的取值范围;) -m<0恒成立,求实数m的取值范围.(2)若对于任意x∈[1,4],不等式f(2x)g (x420.(问答题,0分)某市为了了解中学生课外阅读情况,随机抽取了1000名高一学生,并获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表.组号分组频数频率1 [0,5)50 0.052 [5,10) a 0.353 [10,15)300 b4 [15,20)200 0.25 [20,25] 100 0.1合计1000 1(2)根据频率分布直方图估计该组数据的平均数及中位数(中位数精确到0.01);(3)现从第4,5组中用按比例分层抽样的方法抽取6人,再从这6人中任意抽取2人进行调研《红楼梦》的阅读情况,求抽取的2人中至少有一人是5组的概率.21.(问答题,0分)某专家研究高一学生上课注意力集中的情况,发现其注意力指数p与听课时间t(h)之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈(14,40]时,曲线是函数y=log a(t-5)+83(0<a<1)图象的一部分.专家认为,当注意力指数p大于或等于80时定义为听课效果最佳.(1)试求p=f(t)的函数关系式.(2)若不是听课效果最佳,建议老师多提问,增加学生活动环节,问在哪一个时间段建议老师多提问,增加学生活动环节?请说明理由.−b)(其中a,b∈R且a≠0)的图象关于原点对22.(问答题,0分)已知函数f(x)=ln(axx+1称.(1)求a,b的值;(2)当a>0时,① 判断y=f(e x)在区间(0,+∞)上的单调性(只写出结论即可);② 关于x的方程f(e x)-x+lnk=0在区间(0,ln4]上有两个不同的解,求实数k的取值范围.。
2022-2023学年山东省泰安市肥城市高一年级上册学期期中数学试题【含答案】

2022-2023学年山东省泰安市肥城市高一上学期期中数学试题一、单选题1.设集合{1,2}A =,{2,4}B =,则A B ⋃等于( ) A .{}1,2,4 B .{}2 C .{}1,2,2,4 D .{}1,4【答案】A【分析】由并集的定义求解即可 【详解】因为集合{1,2}A =,{2,4}B =, 所以{}1,2,4A B ⋃=, 故选:A 2.函数()f x=的定义域为( ) A .(,)∞∞-+ B .(,0)(0,)-∞+∞ C .[0,)+∞ D .(0,)+∞【答案】D【解析】求出使()f x=x 的范围即可. 【详解】由题意可得:0x >, 所以函数()f x=的定义域为(0,)+∞, 故选:D3.命题“R x ∀∈,20x +≥”的否定是( ) A .R x ∀∈,20x +< B .R x ∃∈,20x +≥ C .R x ∀∈,20x +> D .R x ∃∈,20x +<【答案】D【分析】全称命题的否定:任意改存在并否定原结论,即可得答案.【详解】由全称命题的否定为特称命题,则原命题的否定为R x ∃∈,20x +<. 故选:D4.下列两个函数是同一个函数的是( )A .y x =与2y =B .y x =与yC .1y =与0y x = D .1y x =-与21xy x=-【答案】B【分析】根据函数的定义域和解析式是否相同即可判断正误. 【详解】解:对于A ,y x =的定义域为R ,()2y x =的定义域为[)0,∞+,A 选项错误;对于B ,y x =的定义域为R ,2y x =定义域为R ,且两个函数解析式都可写成()()00x x y x x ⎧≥⎪=⎨-<⎪⎩,B选项正确;对于C ,1y =的定义域为R ,0y x =的定义域为()(),00,∞-+∞,C 选项错误;对于D ,1y x =-的定义域为R ,21xy x=-的定义域为()(),00,∞-+∞,D 选项错误;故选:B.5.设R a ∈,则“1a =-”是“21a =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【分析】由充分、必要性定义,判断题设条件间的推出关系,即可得答案. 【详解】由21a =,可得1a =±,故“1a =-”是“21a =”的充分不必要条件. 故选:A6.已知()f x 是偶函数,其部分图象如图所示,则()f x 的图象是( )A .B .C .D .【答案】D【分析】根据偶函数图像关于y 轴对称直接判断.【详解】()f x 为偶函数,其图像应该关于y 轴对称,根据题目所给的一部分图像可知,符合题意的只有D 图. 故选:D7.若0,0a b >>,且3ab a b =++,则a b +的最小值为( ) A .2 B .6 C .9 D .12【答案】B【分析】由基本不等式得到()()24120a b a b +-+-≥,求出6a b +≥.【详解】因为0,0a b >>,由基本不等式可得:()234a b a b ab +++=≤,即()()24120a b a b +-+-≥,因为0,0a b >>,解得:6a b +≥,当且仅当3a b ==时,等号成立, 故选:B8.已知函数()22,,x x x af x x x a ⎧-+<=⎨≥⎩,若函数()f x 是R 上的单调函数,则实数a 的取值范围是( )A .1a ≤B .0a ≤C .1a ≥或0a =D .0a ≤或1a =【答案】D【分析】由分段函数的单调性,结合一次、二次函数的单调性可得212a a a a ≤⎧⎨-≤⎩,即可求范围. 【详解】由222(1)1y x x x =-+=--+在(,1)-∞上递增,(1,)+∞上递减;且y x =在R 上递增,所以要使()f x 是R 上的单调函数,则必为单调递增,故212a a a a ≤⎧⎨-≤⎩,可得(,0]{1}a ∈-∞⋃. 故选:D二、多选题9.已知集合A 满足A {}1,2,3,4,5,则A 可以是( ) A .∅ B .{}0,1,2,3C .{}2,3,4,5D .{}1,2,3,4,5【答案】AC【分析】根据真子集的定义直接判断即可. 【详解】因为A {}1,2,3,4,5,所以集合A 可以是∅、{}2,3,4,5,不能是{}0,1,2,3、{}1,2,3,4,5. 故选:AC10.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若实数a b >,则下列不等式不一定...成立的是( ) A .1>a bB .222a b ab +C .b a a b+≥2D .11a b<【答案】ACD【解析】举特值可知选项ACD 正确,作差比较可知选项B 不正确. 【详解】当1,2a b =-=-时,满足a b >,此时112a b =<,故A 正确; 因为2222()0a b ab a b +-=->,所以222a b ab +>,所以222a b ab +>,即222a b ab +<,所以222a b ab +≤一定成立,故B 不正确;当1,1a b ==-时,满足a b >,此时112b aa b+=--=-2<,故C 正确;当1,1a b ==-时,满足a b >,此时1111a b=>=-,故D 正确. 故选:ACD【点睛】关键点点睛:举特值说明不等式不一定成立是解题关键. 11.已知幂函数()f x 的图象经过点12,4⎛⎫⎪⎝⎭,则( )A .函数()f x 为减函数B .函数()f x 的值域为()0,∞+C .函数()f x 为奇函数D .若120x x <<,则()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭【答案】BD【分析】设出函数解析式,将12,4⎛⎫ ⎪⎝⎭代入解析式,求出()2f x x -=,画出函数图象,从而得到函数的单调性和值域,判断出AB 选项,利用函数奇偶性的定义判断出函数的奇偶性,判断C 选项,作差法,结合基本不等式得到若120x x <<,则()()121222f x f x x x f ++⎛⎫<⎪⎝⎭. 【详解】设()f x x α=,将12,4⎛⎫ ⎪⎝⎭代入,得124α=,解得:2α=-,故()2f x x -=,其图象如图所示:可得到()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,且值域为()0,∞+, 故A 错误,B 正确;()2f x x -=定义域为()(),00,∞∞-⋃+,且()()()22f x x x f x ---=-==,为偶函数,C 错误;若120x x <<,则()()212121212222222f x f x x x x x x x f ---++++⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭()()()()222222222222122221112112122128422x x x x x x x x x x x x x x x x -+=⋅+-=+++因为120x x <<,故()()()()()22222222222211211112221121222228x x x x xx x x x x x x x x x x x x +=+++≥⋅++=,当且仅当12x x =时,等号成立,但120x x <<,故等号取不到,故()()()()()111212222222222121212280222x x x x x x f x f x x x f x x x x -+++⎛⎫-=< ⎪++⋅⎝⎭ 即()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,D 正确.故选:BD12.已知定义在R 上的函数()f x 的图象是连续不断的,且满足以下条件: ①()10f -=;②[)12,0,x x ∀∈+∞,当12x x ≠时,都有()()()21210x x f x f x --<⎡⎤⎣⎦; ③R,()()x f x f x ∀∈-=.则下列结论中正确的是( ) A .(3)(2)f f >-B .若()()12f m f -<,则()(,1)3,m +∈-∞-∞C .R x ∀∈,R M ∃∈,使得()f x M ≤D .若()0f x x>,则(0,1)(,1)x ∈-∞- 【答案】BCD【分析】首先判断函数的奇偶性与单调性,根据单调性判断A ,根据单调性与奇偶性将函数不等式转化为自变量的不等式,即可判断B ,求出函数的最大值,即可判断C ,根据函数的取值情况分类讨论,求出不等式()0f x x>的解集,即可判断D. 【详解】解:因为R x ∀∈,()()f x f x -=,所以函数()f x 为偶函数,又[)12,0,x x ∀∈+∞,当12x x ≠时,都有()()()21210x x f x f x --<⎡⎤⎣⎦,所以()f x 在[)0,∞+上单调递减, 根据偶函数的对称性可知函数在(,0)-∞上单调递增,又()10f -=,所以()()110f f =-=,所以当1x <-或1x >时()0f x <,当11x -<<时()0f x >, 对于A :因为()f x 在[)0,∞+上单调递减,所以()()()322f f f <=-,故A 错误; 对于B :因为()()12f m f -<,所以()()12f m f -<,故12m ->,即12m ->或12m -<-, 解得1m <-或3m >,即()(,1)3,m +∈-∞-∞,故B 正确;对于C :函数()f x 在R 上的图象是连续不断的,且函数在(,0)-∞上单调递增,在[)0,∞+上单调递减, 所以()f x 的最大值为(0)f ,故存在max ()(0)M f x f ==,使得R x ∀∈,有()f x M ≤,故C 正确; 对于D :不等式()0f x x>, 当0x >时,()0f x >,解得01x <<;当0x <时,()0f x <,解得1x <-. 综上所述,不等式()0f x x>的解集为(0,1)(,1)⋃-∞-,故D 正确; 故选:BCD三、填空题13.设{}{},,1,,1,a b R P a Q b ∈==--,若P Q =,则a b +=_____________. 【答案】-2【分析】根据集合相等,得到集合元素之间的关系,求出,a b ,最后计算a b +的值.【详解】因为P Q =,所以11211b a a b a b =-=-⎧⎧⇒⇒+=-⎨⎨=-=-⎩⎩. 【点睛】本题考查了集合相等的概念,考查了数学运算能力.14.已知函数()212f x x x -=-,那么()f x 的解析式是___________. 【答案】()21f x x =-【分析】利用换元法即可求出函数()f x 的解析式. 【详解】令11t x x t =-⇒=+,已知()212f x x x -=-,()()()()221211f t t t t t ∴=+-+=-∈R ,则()f x 的解析式是()21f x x =-,故答案为:()21f x x =-.15.已知23a ≤≤,21b -≤≤-,则2+a b 的取值范围为___________. 【答案】[]2,1-【分析】由21b -≤≤-,得422b -≤≤-,再根据不等式同向可加性,即可得出答案. 【详解】解:21b -≤≤-,422b ∴-≤≤-,而23a ≤≤,221a b ∴-≤+≤,即2+a b 的取值范围为[]2,1-.故答案为:[]2,1-四、双空题16.通过学习我们知道:函数()y f x =的图象关于点(),P a b 成中心对称的充要条件是函数()+y f x a b =-为奇函数,也就是满足()()22f a x f x b -+=.已知函数()y g x =在定义域内满足()()24g x g x -=-+,那么函数()y g x =的对称中心(),a b 的坐标为___________;如果对于变量,x y满足0,0x y >>,且1ax by +=,那么代数式a bx y +的最小值为___________.【答案】 ()1,2 9【分析】根据对称中心的定义式即可确定函数()y g x =的对称中心坐标;由,a b 的值,结合基本不等式即可确定所求式子的最小值.【详解】解:已知函数()y g x =在定义域内满足()()24g x g x -=-+,则()()24g x g x -+= 所以函数()y g x =关于点()1,2对称,即函数()y g x =的对称中心(),a b 的坐标为()1,2; 则1,2a b ==,所以21x y +=,0,0x y >>,所以()12122221459a b x y x y x y x y x y y x ⎛⎫+=+=++=+++≥+ ⎪⎝⎭ 当且仅当22x y y x =,即13x y ==时,等号成立,所以a b x y +的最小值为9. 故答案为:()1,2;9.五、解答题17.已知全集U R =,集合{}|01A x x =<<,{}121|B x m x m =-<<+. (1)若12m =,求()UB A ;(2)若A B B ⋃=,求实数m 的取值范围.【答案】(1)10122x x x ⎧⎫-<≤≤<⎨⎬⎩⎭,或(2)[]0,1【分析】(1)利用集合交集、补集的运算性质即可求解.(2)根据A B B ⋃=,首先得出A B ⊆,再利用子集的含义列出方程组,求解m . 【详解】(1)若12m =,则122B x x ⎧⎫=-<<⎨⎬⎩⎭.因为U R =,{}|01A x x =<<,所以{}0,1UA x x x =≤≥或.所以()10122U B A x x x ⎧⎫⋂=-<≤≤<⎨⎬⎩⎭或(2)若A B B ⋃=,则A B ⊆,需满足21110211m m m m +>-⎧⎪-≤⎨⎪+≥⎩,解得01m ≤≤,所以实数m 的取值范围为[]0,1.18.已知函数()22x f x x m+=+,且()f x 是奇函数.(1)求实数m 的值; (2)判断()f x在区间)∞上的单调性,并用定义法证明.【答案】(1)0m = (2)函数()f x在区间)∞上单调递增,证明见解析【分析】(1)由奇函数的定义求解即可; (2)由单调性的定义求解即可【详解】(1)因为()f x 是奇函数,即()()f x f x -=-. 所以有2222x x x m x m++=--++,得x m x m -+=--.解得0m =.(2)函数()f x在区间)∞上单调递增.证明:由于0m =,所以()222=x f x x x x+=+. )12,x x +∀∈∞,12x x <且,则()()()12121212122222f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()21121212121222x x x x x x x x x x x x --=-+=-.由)12,x x +∈∞,得12x x >所以12122,20x x x x >->. 又由12x x <,得120x x -<,于是()()12121220x x x x x x --<,即()()12f x f x <.所以函数()f x在区间)∞上单调递增.19.已知函数()232f x ax x =-+,R a ∈.(1)若不等式()0f x <的解集为{1}xx b <<∣,求实数,a b 的值; (2)若()0f x ≥在实数集R 上恒成立,求a 的取值范围. 【答案】(1)1a =,2b = (2)9+8⎡⎫∞⎪⎢⎣⎭,【分析】(1)首先根据()0f x <的解集为{1}xx b <<∣,得到232=0ax x -+的根为1和b ,先代入1,解a ,再代入b 即可求解.(2)对a 分类讨论,再根据恒成立思路求解.【详解】(1)由不等式2320ax x -+<的解集为{1}xx b <<∣, 可知0a >且1x =是方程232=0ax x -+的一个根, 把1x =代入方程232=0ax x -+,解得1a =. 解不等式2320x x -+<得12x <<, 所以2b =.(2)因为2320ax x -+≥在实数集R 上恒成立, 所以当0a =时,320x -+≥在实数集R 上不是恒成立的.当0a ≠时,需满足0Δ980a a >⎧⎨=-≤⎩,解得98a ≥.综上可知:实数a 的取值范围是9+8⎡⎫∞⎪⎢⎣⎭,. 20.某公司生产某种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收入R (单位:元)关于月产量x (单位:台)满足:21400,0400,280000,400.x x x R x ⎧-≤≤⎪=⎨⎪>⎩ (1)将利润P (单位:元)表示为月产量x 的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收入-总成本)【答案】(1)2130020000,0400260000100,400x x x P x x ⎧-+-≤≤⎪=⎨⎪->⎩;(2)当月产量为300台时,总利润最大,最大利润为25000元.【分析】(1)分0400x ≤≤与400x >两种情况,求解出利润P 表示为月产量x 的函数即得; (2)分0400x ≤≤与400x >两种情况,求解出利润的最大值,比较后得到结论.【详解】(1)当0400x ≤≤时,214002R x x =-, 故2211400200001003002000022P x x x x x =---=-+-, 当400x >时,80000R =,故800002000010060000100P x x =--=-, 故2130020000,0400260000100,400x x x P x x ⎧-+-≤≤⎪=⎨⎪->⎩;(2)当0400x ≤≤时,()21300250002P x =--+, 故当300x =时,P 取得最大值,最大值为25000;当400x >时,60000100P x =-单调递减,故6000010040020000P <-⨯=,综上:当月产量为300台时,总利润最大,最大利润为25000元.21.已知集合{}2560A x x x =-+-≥,(){}2210B x a x a x =--≤. (1)当2a =时,判断x A ∈是x B ∈的什么条件?(2)当1a >时,可得[],B m n =,其中m n <,求n m -的最小值.【答案】(1)x A ∈是x B ∈的充分不必要条件(2)最小值4【分析】(1)根据已知分别求解集合,A B ,则可判断集合,A B 之间的关系,于是可判断x A ∈是x B ∈的什么条件;(2)根据1a >可得集合B ,则可得20,1a m n a ==-,所以可得21a n m a -=-,结合基本不等式即可求最值.【详解】(1)解:由不等式2560x x -+-≥,变形为2560x x -+≤,解得23x ≤≤,所以[]2,3A =.当2a =时,{}(){}[]240400,4B x x x x x x =-≤=-≤=. 则A B ,所以x A ∈是x B ∈的充分不必要条件.(2)解:由于1a >,所以10a ->,不等式()2210a x a x --≤等价转化为201a x x a ⎛⎫-≤ ⎪-⎝⎭, 解得201a x a ≤≤-,因此20,1a m n a ==-, 则2211111121111a a n m a a a a a a -+-===++=-++----24≥=, 当且仅当111a a -=-时,即当2a =时取到等号, 所以当2a =时,n m -取到最小值4.22.已知函数()f x 是定义在实数集R 上的偶函数,当0x ≤时,()21f x x x =-+.(1)当0x >时,解不等式()()223111(R)2k x x k f x k x k ⎛⎫+-+-≤≤++∈ ⎪⎝⎭; (2)不等式()22110f x mx m +-+-≥在⎡⎣上有解,求实数m 的取值范围.【答案】(1)答案见解析(2)22,3⎛⎤-∞ ⎥⎝⎦【分析】(1)根据偶函数的性质求出函数在0x >时的解析式,则不等式等价于()2220210k x x k x k x k ⎧⎛⎫+--≤⎪ ⎪⎝⎭⎨⎪+--≤⎩,由0x >可得020k x x k ⎧-≤⎪⎨⎪-≤⎩,再对k 分0k ≤和0k >两种情况讨论,求出不等式组的解集; (2)令21x t +=,则问题等价于()10f mt t -+≥在[]1,6t ∈上有解,参变分离可得21m t t≤++,令()21g t t t=++,[]1,6t ∈求出函数的最大值,即可求出参数的取值范围. 【详解】(1)解:因为()f x 是定义在实数集R 上的偶函数,且当0x ≤时,()21f x x x =-+,设0x >时,则0x -<,所以()21f x x x =-++又因为()()f x f x -=,所以()21f x x x =++.不等式可化为()2220210k x x k x k x k ⎧⎛⎫+--≤⎪ ⎪⎝⎭⎨⎪+--≤⎩,即()()()20210k x x x x k ⎧⎛⎫+-≤⎪ ⎪⎝⎭⎨⎪+-≤⎩,因为0x >,所以10x +>,20x +>,以上不等式组等价为020k x x k ⎧-≤⎪⎨⎪-≤⎩,当0k ≤时,解不等式组得0x k ≤≤,由于0x >,此时不等式无解;当0k >时,解不等式组得2k x ≤,又因为0x >,所以02k x <≤. 综上所述:当0k ≤时,不等式的解集为∅;当0k >时,不等式的解集为0,2k ⎛⎤ ⎥⎝⎦. (2)解:不等式整理为()()221110f x m x +-++≥,令21x t +=,因为x ⎡∈⎣,可知[]1,6t ∈,不等式转化为()10f mt t -+≥在[]1,6t ∈上有解,整理为2221t t m t t t++≤=++, 令()21g t t t=++,其中[]1,6t ∈,因为()g t 在⎡⎣上单调递减,在⎤⎦上单调递增, 且()14g =,()226=43g >,所以()max 223g t =.所以不等式()22110f x mx m +-+-≥在⎡⎣上有解,等价于()max m g t ≤, 所以223m ≤,所以m 的取值范围是22,3⎛⎤-∞ ⎥⎝⎦.。
2020-2021学年山东省济宁市高一(下)期末数学试卷(b卷)

2020-2021学年山东省济宁市高一(下)期末数学试卷(B卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知复数z的共轭复数为,z=1+i,则z(+1)=()A.3+i B.3﹣i C.1+3i D.1﹣3i2.(5分)设向量=(2,1),=(λ,1),若(+2)⊥,则实数λ的值等于()A.﹣2B.﹣C.2D.3.(5分)如图,在直三棱柱ABC﹣A′B′C′中,AB=BC=CC′且∠ABC=90°.则异面直线AC与BC′所成的角为()A.30°B.45°C.60°D.90°4.(5分)我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除.某单位老年、中年、青年员工分别有80人、100人、120人,现采用分层随机抽样的方法()A.8人B.10人C.12人D.18人5.(5分)已知样本数据x1,x2,…,x100的方差为4,若由y1=2x1+3,y2=2x2+3,…,y100=2x100+3得到另一组样本数据y1,y2,…,y100,则样本数据y1,y2,…,y100的方差为()A.8B.16C.32D.646.(5分)为了让学生了解更多的“一带一路”倡议的信息,某中学举行了一次“丝绸之路知识竞赛”,全校学生的参赛成绩的频率分布直方图如图所示,则可以参加复赛的成绩约为()A.72B.73C.74D.757.(5分)已知||=4,||=2,当与时,在上的投影向量为()A.2B.C.2D.8.(5分)已知A,B,C为球O的球面上的三点,⊙O1为△ABC的外接圆,若AB=BC=AC=OO1=,则球O的表面积为()A.16πB.12πC.9πD.8π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求。
2020-2021学年山东省泰安市高一上学期期末考试生物试题

B.图中五种有机物质中属于单糖的是果糖、葡萄糖
C.每个月采集苹果制备样液,用斐林试剂检测,则10月的样液砖红色最深
D.图中的酶最有可能是淀粉酶,在该酶的作用下,苹果细胞液浓度逐渐变小
4.已知抗利尿激素和催产素均是由9个氨基酸构成的多肽类激素;如图为催产素的结构简式(图中—S—S—为二硫键,是由两个—SH失去2个H后形成的),若将其中异亮氨酸(Ile)和亮氨酸(Leu)分别替换为苯丙氨酸(Phe)和精氨酸(Arg),就是抗利尿激素的结构简式。则下列相关说法正确的是()
C.在线粒体内膜上有催化利用NADH的酶
D.缺氧情况下,阶段C受抑制,阶段A、B不受抑制
15.中国女科学家屠呦呦因分离出青蒿素获2015年诺贝尔生理学或医学奖,临床应用青蒿素治疗疟疾取得了巨大成功,但其抗疟机制尚未完全明了,因此科学家进行了如下表实验。下列说法错误的是()
组别
实验材料
实验处理
实验结果(线粒体膜电位的相对值)
C.载体蛋白介导的运输速率会受到载体蛋白数量的限制
D.载体蛋白和通道蛋白均具有一定的特异性
17.某同学在“探究植物细胞的吸水与失水”的实验过程中,得到如下图像a、b。将形状、大小相同的萝卜条A和萝卜条B均分成5组,每组10段,记录初始质量数据,然后分别放在不同浓度的蔗糖溶液(甲~戊)的小烧杯中,达到平衡后,取出称重、记录并取平均值,结果如图c所示。下列说法正确的是()
C.用过氧化氢酶探究pH对酶活性的影响,要排除温度和其他因素对实验结果的干扰
D.有丝分裂临时装片只用低倍镜观察就可以观察到细胞各时期的变化过程
10.用相同的培养液培养水稻和番茄,一段时间后,测定培养液中离子的浓度,结果如图所示。下列说法错误的是()
2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
山东省济南市2020-2021学年高三上学期期末考试数学试题(含解析)

山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3C .D .46.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2C D8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是A .()12f x π−为奇函数 B .()f x 的最小正周期为πC .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点 11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是 A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32π D .直线PB 1与平面BCC 1B 112.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白 第11题球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 . 15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积. 18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)如图,在三棱柱ABC—A 1B 1C 1中,AB =AC =2,D 为BC 的中点,平面BB 1C 1C ⊥平面ABC ,设直线l 为平面AC 1D 与平面A 1B 1C 1的交线.(1)证明:l ⊥平面BB 1C 1C ;(2)已知四边形BB 1C 1C 为边长为2的菱形,且∠B 1BC =60°,求二面角D—AC 1—C 的余弦值.某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率; (2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性; (2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围.山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 答案:D解析:{}2A |60x x x =−−≤=[﹣2,3],{}B |10x x =−<=(−∞,1),故AB =[﹣2,1).选D .2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−答案:D解析:i i(1i)1i1i (1i)(1i)22z −===+++−,则1i 22z =−.选D . 3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:“直线l 的方程为y =2”⇒“直线l 与圆224x y +=相切”, “直线l 与圆224x y += 相切”“直线l 的方程为y =2”,故选A .4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种答案:B解析:甲若选牛,则有1124C C 种;甲若选马,则有1124C C 种.故共有16种,选B .5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3 C.D .4答案:B解析:由题意知△AEF 的等边三角形,故AE AF +=3,选B .6.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒ 答案:C解析:221321240e e 2k k −−=+⇒=,6311240e 1240()172k θ−=+=+⨯=,故选C . 7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2CD 答案:B解析:将直线AP 与斜率为正数的渐近线方程联立:()a y x a bb y x a ⎧=+⎪⎪⎨⎪=⎪⎩,解得P(322a b a −,222a b b a −),因为OP =a ,则322222222()()a a b a b a b a+=−−,化简得2222222334a b a c a c a =⇒=−⇒=2e ⇒=,选B .8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 答案:C解析:0()0f x <,参变分离得:000(1)e x x a x <+,令000()(1)(1)e x x g x x x =≥+,2000201()0(1)e x x x g x x +−'=−<+,所以0()g x 在[1,+∞)且0x Z ∈单调递增, 求得1(1)2e g =,22(2)3eg =,故要使存在唯一的正整数0x ,使得0()0f x <, 则223e ≤a <12e,选C . 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大 答案:AC解析:班级甲该周每天的人均体育锻炼时间的中位数为65,故B 错误;班级甲该周每天的人均体育锻炼时间的平均值比班级乙的小,故D 错误.综上选AC .10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是 A .()12f x π−为奇函数 B .()f x 的最小正周期为π C .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点答案:BD解析:()12f x π−为偶函数,故A 错误;()f x 在区间[12π−,125π]上单调,但不一定是单调递增,故C 错误.综上选BD .11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32πD .直线PB 1与平面BCC 1B 1答案:ABD解析:因为平面AB 1D 1∥平面BC 1D ,PB 1⊂平面AB 1D 1,所以直线PB 1∥平面BC 1D ,A 正确;V P—BC1D =V A—BC1D =V C1—ABD =111112=323⨯⨯⨯⨯,故B 正确;三棱锥D 1—BC 1D=S 球=246ππ=,故C 错误;PB 1min 点P 到平面BCC 1B 1的距离为1,所以直线PB 1与平面BCC 1B 1所成角的正弦值的最,故D 正确.综上选ABD .12.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 答案:ACD解析:第n 此取出球是红球的概率为n P ,则白球概率为(1)n P −,对于第1n +次,取出红球有两种情况. ①从红箱取出1(1)58n n P P +=⋅(条件概率), ②从白箱取出2(1)3(1)8n nP P +=−⋅, 对应121(1)(1)3184n n n n P P P P +++=+=+(转化为数列问题), 所以1111()242n n P P +−=−, 令12n n a P =−,则数列{n a 为等比数列,公比为14,因为158P =,所以118a =, 故2(21)2n n a −+=即对应(21)122n n P −+=+, 所以21732P =,故选项A 正确; [2(1)1](21)231111112[2]222224n n n n n P P −++−+−−+−=+−⨯+=−,故117232n n P P +=+不成立,故选项B 错误; 经验证可得,211221()2n n n n n n P P P P P P ++++−=−+,故选项C 正确;1(21)(21)11111()()2222n ni j i j i j n i j i P P −−+−+<==+−−=⋅∑∑∑ 1(21)(23)(23)142[22]3n i i n i −−+−+−+==⋅−∑11(44)(23)(21)114[222]3n n i n i i i −−−+−+−+===−∑∑ 844(23)3214164[(22)2(22)]3153n n n −−−−+−−−=−−⋅− 424141122218045369n n n −−−=−⋅−⋅+⋅ 421(14252)180n n −−=+⋅−⋅ 221(142)(12)180n n −−=−⋅−11(14)(14)180n n −−=−−,故D 正确. 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 答案:13解析:51sin()sin[()]sin()6663ππαπααπ−=−+=+=. 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 .答案:4解析:11lg lg lg()1x y x y xy x y x y+=+⇒=+⇒+=, 11()()24y xxy x y x y x y x y=+=++=++≥,当且仅当x =y =2时取“=”.15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .答案:(0,3)(﹣5,﹣1)解析:0(1)0(1)0x xf x f x >⎧+>⇒⎨+>⎩或003(1)0x x f x <⎧⇒<<⎨+<⎩或51x −<<−,故原不等式的解集为(0,3)(﹣5,﹣1).16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)答案:16,252解析:当PQ 为抛物线通径时△PTQ 的面积最小,为16;当TF =5时,可得线段PQ 中点的纵坐标为3或﹣3,故PQ 的斜率为43或43−,故PQ =2228254sin 2()5p α==. 四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积.解:在△ABC 中,由余弦定理可得:所以在△ACD 中,由正弦定理可得:,即所以所以 因为,所以所以所以18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 解:(1)因为所以所以当时,适合上式,所以(2)若选①: 因为所以若选②:因为所以则两式相减可得:所以若选③:当n为偶数时,当n为奇数时,综上:19.(本小题满分12分)如图,在三棱柱ABC—A1B1C1中,AB=AC=2,D为BC的中点,平面BB1C1C⊥平面ABC,设直线l为平面AC1D与平面A1B1C1的交线.(1)证明:l⊥平面BB1C1C;(2)已知四边形BB1C1C为边长为2的菱形,且∠B1BC=60°,求二面角D—AC1—C的余弦值.解:(1)证明:因为AB=AC=2,D为BC的中点,所以AD⊥BC,又因为平面BB1C1C⊥平面ABC,且平面BB1C1C平面ABC=BC,AD 平面ABC,所以AD⊥平面BB1C1C,而AD∥平面A1B1C1,且AD⊂平面AC1D,平面AC1D平面A1B1C1=l,所以AD∥l,所以l⊥平面BB1C1C;(2)因为AD⊥平面BB1C1C,AD⊂平面AC1D,所以平面AC1D⊥平面BB1C1C,在平面BB1C1C内,过C作CH⊥DC1于点H,则CH⊥平面AC1D,过C作CG⊥AC1于点G,则G为线段AC1的中点,连接HG,则∠CGH就是二面角D—AC1—C的平面角,在直角中,在中,,在中,,在直角中,,所以所以二面角D—AC1—C的余弦值为20.(本小题满分12分)某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率;(2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由. 解:(1)从红枣中任意取出一个,则该红枣为优质品的概率是,记“如果该农户采用方案一装箱,一箱红枣被定为A 类”为事件A ,则(2)记“如果该农户采用方案一装箱,一箱红枣被定为B 类”为事件B ,“如果该农户采用方案一装箱,一箱红枣被定为C 类”为事件C ,则所以如果该农户采用方案一装箱,每箱红枣收入的数学期望为:元;由题意可知,如果该农户采用方案二装箱,则一箱红枣被定为A 类的概率为,被定为C 类的概率也为,所以如果该农户采用方案二装箱,每箱红枣收入的数学期望为: 元;所以该农户采用方案二装箱更合适.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.解:(1)由题可知22c a b a⎧=⎪⎪⎨⎪=⎪⎩,又因为,所以所以椭圆C 的标准方程为(2)因为折线与椭圆C 相交于A ,B 两点,设点B 关于x 轴的对称点为B′, 则直线与椭圆C 相交于A ,B′两点,设则由得所以所以整理得解得22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性;(2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围. 解:(1)若,,此时在上单调递减;若,由得,此时在上单调递减,在上单调递增;综上所述,,在上单调递减;,在上单调递减,在上单调递增;(2)因为记所以在上单调递增,所以,所以恒成立;若不合题意;若,由(1)知,在上单调递减,所以不合题意;若,记记所以在上单调递增,所以所以符合题意;综上实数a的取值范围是.。
山东省潍坊市寿光中学2020-2021学年高一数学理上学期期末试卷含解析

山东省潍坊市寿光中学2020-2021学年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中,,,且△ABC的面积为,则BC=A. 2B.C.D. 1参考答案:A【分析】根据△ABC的面积为bc sin A,可得c的值,根据余弦定理即可求解BC.【详解】解:由题意:△ABC的面积为bc sin A,∴c=2.由余弦定理:a2=b2+c2﹣2bc cos A即a2=4+12﹣84,∴a=2.即CB=a=2.故选:A.【点睛】本题考查解三角形问题,涉及到三角形面积公式,余弦定理,考查转化能力与计算能力,属于基础题.2. 已知等差数列{a n}中,前n项和为S n,若a3+a9=6,则S11等于()A.12B.33C.66D.11参考答案:B【考点】等差数列的前n项和;等差数列;等差数列的通项公式.【分析】由等差数列的性质可得a1+a11=a3+a9=6,代入求和公式可得答案.【解答】解:由等差数列的性质可得a1+a11=a3+a9=6,由求和公式可得S11===33,故选:B3. 如果且,则角为()A.第一象限角 B.第二象限角 C.第一或第二象限角 D.第一或第三象限角参考答案:D4. 在△ABC中,设角A,B,C的对边分别为a,b,c.若,则△ABC是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰三角形或直角三角形参考答案:D【分析】根据正弦定理,将等式中的边a,b消去,化为关于角A,B的等式,整理化简可得角A,B的关系,进而确定三角形。
【详解】由题得,整理得,因此有,可得或,当时,为等腰三角形;当时,有,为直角三角形,故选D。
【点睛】这一类题目给出的等式中既含有角又含有边的关系,通常利用正弦定理将其都化为关于角或者都化为关于边的等式,再根据题目要求求解。
5. 设集合A={f(x)|存在互不相等的正整数m,n,k,使得[f(n)]2=f(m)f(k)成立},则下列不属于集合A的函数是()A.f(x)=1+x B.f(x)=1+lgx C.f(x)=1+2x D.f(x)=1+cos x参考答案:C【考点】函数解析式的求解及常用方法.【专题】函数思想;定义法;函数的性质及应用.【分析】根据条件分别确定n,m,k的值即可得到结论.【解答】解:A.∵f(1)=2,f(27)=4,f]2=f(1)f=1,f(10)=2,f]2=f(1)f=1,f()=1,f()=4,∴满足[f()]2=f()f().故只有C不满足条件.故选:C.【点评】本题主要考查函数值的计算,根据条件找出满足条件的n,m,k是解决本题的关键,比较基础.6. 设向量=(2,4)与向量=(x,6)共线,则实数x=()A. 2B. 3C. 4D. 6参考答案:B由向量平行的性质,有2∶4=x∶6,解得x=3,选B考点:本题考查平面向量的坐标表示,向量共线的性质,考查基本的运算能力.7. 已知∠AOB=lrad,点A l,A2,…在OA上,B1,B2,…在OB上,其中的每一个实线段和虚线段氏均为1个单位,一个动点M从O点出发,沿着实线段和以O为圆心的圆弧匀速运动,速度为l单位/秒,则质点M到达A10点处所需要的时间为( ) 秒。
山东省淄博市2020-2021学年高一上学期期末数学试卷

2020-2021学年山东省淄博市高一(上)期末数学试卷1.已知集合A={x|3x<13},B={−3,−2,−1,0,1,2},则(∁R A)⋂B=( )A. {−3,−2}B. {−3,−2,−1}C. {0,1,2}D. {−1,0,1,2}2.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为( )A. 2B. 4C. 6D. 83.下列函数是偶函数且在(0,+∞)上单调递增的是( )A. f(x)=−x 12 B. f(x)=3−x C. f(x)=log2|x| D. f(x)=1x44.用二分法求方程log2x+x=2的近似解时,可以取的一个区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)5.已知a=212,b=313,c=ln52,则( )A. b>c>aB. a>c>bC. b>a>cD. a>b>c6.函数f(x)=x1−x2的图象大致是( )A. B.C. D.7.已知实数x>3,则4x+9x−3的最小值是( )A. 24B. 12C. 6D. 38.我们知道:y=f(x)的图象关于原点成中心对称图形的充要条件是y=f(x)为奇函数,有同学发现可以将其推广为:y=f(x)的图象关于(a,b)成中心对称图形的充要条件是y=f(x+a)−b为奇函数.若f(x)=x3+3x2的对称中心为(m,n),则f(2019)+f(2017)+f(2015)+…+f(3)+ f(1)+f(−3)+f(−5)+…+f(−2017)+f(−2019)+f(−2021)=( )A. 8080B. 4040C. 2020D. 1010A. lg2−lg 14+3lg5=3 B. 命题“∀x >0,2x >1”的否定为“∃x ≤0,2x ≤1”C. “α=β”是“sinα=sinβ”成立的充分不必要条件D. 若幂函数f(x)=x α(α∈R)经过点(18,2),则α=−310. 若角α为钝角,且sinα+cosα=−15,则下列选项中正确的有( )A. sinα=45 B. cosα=−45 C. tanα=−43D. sinαcosα=−122511. 设a >b >0,c ≠0,则下列不等式成立的是( )A. a −c >b −cB.c 2a>c 2b C. a b <a+cb+cD. a −1a >b −1b12. 三元均值不等式:“当a ,b ,c 均为正实数时,a+b+c 3≥√abc 3,即三个正数的算术平均数不小于它们的几何平均数,当且仅当a =b =c 时等号成立.”利用上面结论,判断下列不等式成立的有( ) A. 若x >0,则x 2+2x ≥3B. 若0<x <1,则x 2(1−x)≤19C. 若x >0,则2x +1x 2≥3D. 若0<x <1,则x(1−x)2≤1913. 函数f(x)=(12)1−x 2的值域为__________.14. 已知函数f(x)={x 2−3x,x ≤0log 2x,x >0,若f(a)=4,则实数a =__________.15. 若sin(π3−α)=15,则sin(2π3+α)=__________,cos(5π6−α)=__________.16. 已知函数f(x)=2x +ax 2(a >0),g(x)=x 2−4x +1.若对任意x 1∈[−1,2],总存在x 2∈[−1,2],使得f(x 1)=g(x 2),则实数a 的取值范围是__________. 17. 已知角α终边上一点P(1,2).(1)求sinα+2cosαsinα−cosα的值; (2)求cos(11π2−α)+sin(9π2+α)的值.18. 已知集合A ={x|(x −a)(x +1)>0}(a ∈R),B ={x|−1<log 2x ≤1}.(1)当a =1时,求A⋂B ;(2)是否存在实数a ,使得_____成立?请在①A⋂B =B ,②A⋂B =⌀,③B ⊆(∁R A)这三个条件中任选一个,补充在上面的问题中;若问题中的实数a 存在,求出a 的取值范围;若不存在,说明理由.19.已知函数g(x)=asin(2x+π6)+b(a>0,b∈R).若函数g(x)在区间[0,π2]上的最大值为3,最小值为0.(1)求函数g(x)的解析式;(2)求出g(x)在(0,π)上的单调递增区间.20.某乡镇为打造成“生态农业特色乡镇”,决定种植某种水果,该水果单株产量M(x)(单位:千克)与施用肥料x(单位:千克)满足如下关系:M(x)={5(x2+3),0≤x≤250x1+x+53,2<x≤5,单株成本投入(含施肥、人工等)为30x元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为f(x)(单位:元).(1)求f(x)的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?21.已知一元二次函数f(x)=ax2−x+1(a≠0).(1)若0<a≤1,证明函数f(x)在区间(−∞,12]上单调递减;(2)若函数f(x)在区间[1,4]上的最小值为−2,求实数a的值.22. 函数f(x)的定义域为D ,若x 0∈D ,满足f(x 0)=x 0,则称x 0为f(x)的不动点.已知函数f(x)={3−3x,0≤x ≤1log 3x,1<x ≤3,g(x)=f(f(x)).(1)试判断g(x)不动点的个数,并给予证明;(2)若“∃x ∈[0,23),g(x)−1>log 3(1+x)+log 3(x +k)”是真命题,求实数k 的取值范围.答案和解析1.【答案】D【解析】【分析】化简集合A,根据补集与交集的定义,运算即可.本题考查了集合的化简与运算问题.【解答】}={x|x<−1},解:集合A={x|3x<13所以∁R A={x|x≥−1};又集合B={−3,−2,−1,0,1,2},所以(∁R A)⋂B={−1,0,1,2}.故选D.2.【答案】B【解析】【分析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积.本题是基础题,考查扇形的面积公式的应用,考查计算能力.【解答】解:设扇形的半径为R,所以2R+2R=8,所以R=2,扇形的弧长为4,半径为2,×4×2=4.扇形的面积为S=12故选B.3.【答案】C【解析】可看出选项A,B的函数都是非奇非偶函数,选项D的函数在(0,+∞)上是减函数,从而只能选C.本题考查了函数奇偶性,幂函数、指数函数和对数函数的单调性,属于基础题.【解答】解:f(x)=−x 12和f(x)=3−x都是非奇非偶函数;f(x)=log2|x|是偶函数,且在(0,+∞)上单调递增;f(x)=1x4是偶函数,在(0,+∞)上单调递减.故选C.4.【答案】B【解析】【分析】令f(x)=log2x+x−2,分别求出f(1),f(2),然后利用零点的存在性定理即可判断得到答案.本题考查了二分法,涉及了函数零点的存在性定理的应用,属于基础题.【解答】解:令f(x)=log2x+x−2,则f(1)=log21+1−2=−1<0,f(2)=log22+2−2=1>0,故f(1)f(2)<0,由零点的存在性定理可得,在区间(1,2)内存在函数的零点,故方程log2x+x=2的近似解可以取的一个区间是(1,2).故选B.5.【答案】C【解析】【分析】利用指数函数、对数函数的单调性直接求解.本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是中档题.【解答】解:∵a =212>20=1,b =313>30=1,a 6=23=8,b 6=32=9,∴a <b ,c =ln 52<lne =1,∴b >a >c.故选C.6.【答案】A 【解析】 【分析】根据函数的奇偶性和对称性,利用排除法进行判断即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性的关系,结合排除法是解决本题的关键,是中档题. 【解答】解:函数的定义域为{x|x ≠±1},f(−x)=−x 1−x 2=−f(x),为奇函数,图象关于原点对称,排除CD , 当x >1时,f(x)<0,排除B , 故选A.7.【答案】A 【解析】 【分析】本题考查了基本不等式的性质,属于基础题. 4x +9x−3=4(x −3)+9x−3+12,利用基本不等式的性质,即可求得最小值.【解答】解:∵x >3,∴x −3>0,4x +9x−3=4(x −3)+9x−3+12≥12+2√4(x −3)×9x−3=24, 当且仅当4(x −3)=9x−3,即x =92时,取得最小值24.8.【答案】B【解析】【分析】根据对称性的定义求出函数的对称中心,结合对称性进行转化求解即可.本题主要考查函数值的计算,结合对称性的定义求出函数的对称中心,然后进行转化是解决本题的关键,是拔高题.【解答】解:若函数f(x)=x3+3x2图象的对称中心为(m,n),则y=f(x+m)−n为奇函数,即y=(x+m)3+3(x+m)2−n=x3+(3m+3)x2+(3m2+6m)x+m3+3m2−n为奇函数,必有3m+3=0且m3+3m2−n=0,解得m=−1,n=2,则f(x)的对称中心为(−1,2),所以f(−2+x)+f(−x)=4,设S=f(2019)+f(2017)+f(2015)+…+f(3)+f(1)+f(−3)+f(−5)+…+f(−2017)+f(−2019)+f(−2021),则S=f(−2021)+f(−2019)+f(−2017)+…+f(3)+f(5)+…+f(2017)+f(2019),由−2021=2019−2(n−1),得n=2021,去掉f(−1)项,共2020项,则两式相加得2S=[f(2019)+f(−2021)]+[f(2017)+f(−2019)]+…+[f(−2021)+f(2019)]=4+4+…+4=4×2020,所以S=2×2020=4040,故选B.9.【答案】AC【解析】【分析】A根据对数运算判断;B根据全称量词命题的否定定义判断;C根据充分条件和必要条件概念判断;D 根据幂函数函数值运算判断.本题以命题的真假判断为载体,考查了幂函数与对数的基本运算,考查了全称量词命题的否定概念,属中档题.【解答】解:对于A ,lg2−lg 14+3lg5=lg2+lg4+lg53=lg(2×4×53)=lg103=3,所以A 正确;对于B ,命题“∀x >0,2x >1”的否定为“∃x >0,2x ≤1”,所以B 错误; 对于C ,α=β⇒sinα=sinβ,反之未必成立,如sin0=sinπ,0≠π, 即“α=β”是“sinα=sinβ”成立的充分不必要条件,所以C 正确;对于D ,幂函数f(x)=x α(α∈R)经过点(18,2),则(18)α=2,α=−13,所以D 错误. 故选AC.10.【答案】BD 【解析】 【分析】本题考查同角三角函数间的基本关系,考查运算能力,是基本知识的考查. 根据sinα+cosα=−15,sin 2α+cos 2α=1,角α为钝角,求得α的三角函数值.【解答】解:∵角α为钝角, ∴sinα>0,cosα<0,联立方程组{sinα+cosα=−15sin 2α+cos 2α=1,解得{sinα=35cosα=−45, ∴tanα=sinαcosα=−34,sinα⋅cosα=−1225. 观察选项,选项BD 符合题意. 故选BD.11.【答案】AD 【解析】 【分析】根据不等式的性质对选项中的命题判断正误即可.本题主要考查了不等式的性质和应用问题,熟练掌握不等式成立的性质是解题的关键,是中档题. 【解答】解:对于A,因为a>b>0,c≠0,所以a−c>b−c,所以A正确;对于B,因为a>b>0,c≠0,所以c2>0,1a <1b,所以c2a<c2b,所以B错误;对于C,因为a>b>0,当b+c<0且a+c>0时,ab >0>a+cb+c,所以C错误;对于D,因为a>b>0,所以1a <1b,所以−1a>−1b,所以a−1a>b−1b,所以D正确.故选AD.12.【答案】AC【解析】【分析】根据已知将原式变形为,a+b+c3≥√abc3,即可判断.本题考查了新定义三元均值不等式的应用,属于拔高题.【解答】解:对于A:x>0,x2+2x =x2+1x+1x≥3√x2⋅1x⋅1x3=3,当且仅当x=1时取等号,故A正确,对于B:∵0<x<1,∴1−x>0,x2(1−x)=12x⋅x⋅(2−2x)≤12(x+x+2−2x3)3=427,当且仅当x=23时取等号,故B错误,对于C:x>0,2x+1x2=x+x+1x2≥3√x⋅x⋅1x23=3,当且仅当x=1时取等号,故C正确,对于D:∵0<x<1,∴1−x>0,x(1−x)2=12×2x(1−x)(1−x)≤12(2x+1−x+1−x3)3=427,当且仅当x=13时取等号,故D错误.故选AC.13.【答案】[12,+∞)【解析】【分析】本题主要考查指数函数值域的求解,注意换元法的使用.利用换元法,结合指数函数的性质进行求解即可.解:设t =1−x 2,则t ≤1, 所以y =(12)t ≥(12)1=12,所以函数f(x)=(12)1−x 2的值域为[12,+∞),故答案为[12,+∞).14.【答案】−1或16 【解析】 【分析】本题考查了函数的求值问题,主要考查的是分段函数的应用. 直接利用分段函数的解析式,分两种情况分别求解,即可得到答案. 【解答】解:当a ≤0时,则有a 2−3a =4,解得a =−1或a =4(舍); 当a >0时,则有log 2a =4,解得a =16. 故a =−1或16. 故答案为:−1或16.15.【答案】15−15【解析】 【分析】由题意利用诱导公式,计算求得结果. 本题主要考查诱导公式的应用,属于基础题. 【解答】解:若sin(π3−α)=15,则sin(2π3+α)=sin[π−(π3−α)]=sin(π3−α)=15; cos(5π6−α)=cos(π2+π3−α)=−sin(π3−α)=−15, 故空1答案为:15;空2答案为:−15.16.【答案】(0,12]【解析】【分析】本题考查了恒成立问题,涉及了二次函数求最值、函数单调性的应用,对于此类问题一般会转化为两个函数值域的包含关系进行研究,属于较难题.先求出g(x)在[−1,2]上的值域,设函数f(x)的值域为A,然后将问题转化为A⊆[−3,6],进而研究函数f(x)的取值情况,得到f(x)>0恒成立,又f(x)的最大值为f(2),则f(2)≤6,求解即可.【解答】解:函数g(x)=x2−4x+1=(x−2)2−3,因为x2∈[−1,2],所以g(x2)∈[−3,6],因为对任意x1∈[−1,2],总存在x2∈[−1,2],使得f(x1)=g(x2),设函数f(x)的值域为A,所以A⊆[−3,6],又2x>0,ax2≥0,故f(x)>0在[−1,2]上恒成立,又f(x)在[0,2]上单调递增,所以f(x)的最大值为f(2)=4+4a≤6,解得a≤12,又a>0,所以实数a的取值范围是(0,12].故答案为(0,12].17.【答案】解:(1)因为α终边上一点P(1,2),所以tanα=yx=2,所以sinα+2cosαsinα−cosα=tanα+2tanα−1=4.(2)角α终边上一点P(1,2),则r=|OP|=√12+22=√5,所以sinα=yr =√5=2√55,cosα=xr=√5=√55,所以cos(11π2−α)+sin(9π2+α)=−sinα+cosα=−√55.【解析】(1)由α终边上一点P(1,2),得tanα=y x=2,由此能求出sinα+2cosαsinα−cosα的值.(2)由角α终边上一点P(1,2),求出sinα=y r=√5=2√55,cosα=x r=√5=√55,由此能求出cos(11π2−α)+sin(9π2+α)的值.本题考查三角函数值的求法,考查任意角三角函数的定义、诱导公式等基础知识,考查运算求解能力,是中档题.18.【答案】解:(1)若a =1,则A ={x|(x −1)(x +1)>0}=(−∞,−1)⋃(1,+∞), 解不等式−1<log 2x ≤1,得,12<x ≤2,所以集合B =(12,2], 所以A⋂B =(1,2]. (2)由于B =(12,2],若选①A⋂B =B ,则B ⊆A ,当a ≥−1时,集合A =(−∞,−1)⋃(a,+∞), 要使B ⊆A ,则需a ≤12,所以−1≤a ≤12;当a <−1时,集合A =(−∞,a)⋃(−1,+∞),此时满足B ⊆A , 所以若选①,则实数a 的取值范围为{a|a ≤12};若选②A⋂B =⌀,当a ≥−1时,集合A =(−∞,−1)⋃(a,+∞), 要使A⋂B =⌀,则需a ≥2,所以a ≥2;当a <−1时,集合A =(−∞,a)⋃(−1,+∞),此时不满足A⋂B =⌀, 所以若选②,则实数a 的取值范围为{a|a ≥2}; 若选③B ⊆(∁R A),B =(12,2],当a >−1时,集合A =(−∞,−1)⋃(a,+∞),∁R A =[−1,a], 要使B ⊆(∁R A),则需a ≥2,所以a ≥2;当a =−1时,集合A =(−∞,−1)⋃(−1,+∞),此时(C R A)={−1},不满足条件B ⊆(∁R A);当a <−1时,集合A =(−∞,a)⋃(−1,+∞),此时∁R A =[a,−1],B⋂(∁R A)=⌀,不满足条件B ⊆(∁R A); 所以若选③,则实数a 的取值范围为{a|a ≥2}.【解析】本题考查交集、补集、并集、实数的取值范围的求法,考查交集、补集、并集的定义等基础知识,考查运算求解能力,属于拔高题.(1)求出a =1时集合A ,化简集合B ,根据交集的定义写出A⋂B ; (2)由集合知识可以解出集合B ,若选①A⋂B =B ,则B ⊆A ,对集合A 进行分类求解,再利用集合的子集解出; 若选②A⋂B =⌀,对集合A 进行分类求解,再利用集合的交集解出; 若选③B ⊆(∁R A),对集合A 进行分类求解,再利用集合的子集,补集解出.19.【答案】解:(1)由题意知,若x ∈[0,π2],则π6≤2x +π6≤7π6,所以sin(2x +π6)∈[−12,1],又因为a >0,所以{a +b =3−12a +b =0,得a =2,b =1;所以g(x)=2sin(2x +π6)+1;(2)令2kπ−π2≤2x +π6≤2kπ+π2,k ∈Z ,得到kπ−π3≤x ≤kπ+π6,k ∈Z ,当k =0时,−π3≤x ≤π6; 当k =1时,2π3≤x ≤7π6,所以g(x)在(0,π)上的单调递增区间为(0,π6]和[2π3,π).【解析】本题主要考查了y =Asin(ωx +φ)+b 的图象及性质,属于中档题. (1)由题意知,利用正弦函数的性质可得sin(2x +π6)∈[−12,1],又a >0,可得{a +b =3−12a +b =0,解得a ,b 的值,即可求g(x)的函数解析式; (2)根据正弦函数的单调性即可求解.20.【答案】解:(1)由题意得:f(x)=15M(x)−30x , 则函数f(x)的解析式为:f(x)={75x 2−30x +225,0≤x ≤2750x 1+x−30x +25,2<x ≤5;(2)由(1)得f(x)={75x 2−30x +225,0≤x ≤2750x 1+x −30x +25,2<x ≤5;(i)当0≤x ≤2时,f(x)=75(x −15)2+222, 当x =2时,f(2)=465;(ii)当2<x ≤5时,f(x)=750x 1+x−30x +25=805−30[251+x+(1+x)]≤805−30×2√251+x ⋅(1+x)=505,当且仅当251+x =1+x 时,即x =4时等号成立, 因为465<505,所以当x =4时,f(x)max =505,所以当施用肥料为4千克时,种植该果树获得的最大利润是505元.【解析】本题考查了根据实际问题建立函数模型,涉及到分段函数求最大值的问题,考查了学生的运算能力.(1)由题意得:f(x)=15M(x)−30x ,然后即可求解; (2)根据(1),分段求出函数的最大值,比较即可求解.21.【答案】(1)证明:根据题意,设x 1<x 2≤12,则f(x 1)−f(x 2)=(ax 12−x 1+1)−(ax 22−x 2+1)=(x 1−x 2)[a(x 1+x 2)−1], 因为x 1<x 2,得x 1−x 2<0; 因为x 1<12,x 2≤12,得x 1+x 2<1,且0<a ≤1,得a(x 1+x 2)<a ≤1,即a(x 1+x 2)−1<0; 所以f(x 1)−f(x 2)>0成立,即f(x 1)>f(x 2); 函数f(x)在区间(−∞,12]上单调递减;(2)解:根据题意,f(x)=ax 2−x +1,其对称轴为x =12a , 分4种情况讨论:①当a <0时,此时f(x)的对称轴12a<0,函数f(x)=ax 2−x +1在区间[1,4]上单调递减,此时f(x)min =f(4)=16a −3=−2,得a =116,不符合题意; ②当0<a ≤18时,此时f(x)的对称轴12a ≥4, 函数f(x)=ax 2−x +1在区间[1,4]上单调递减,此时f(x)min =f(4)=16a −3=−2,得a =116,符合题意; ③当18<a ≤12时,此时f(x)的对称轴满足1≤12a <4, 此时函数f(x)=ax 2−x +1的最小值为f(x)min =f(12a )=4a−14a=−2,解得a =112,不符合题意;④当a >12时,此时f(x)的对称轴满足0<12a <1,函数在区间[1,4]上单调递增,f(x)min =f(1)=a =−2,不符合题意. 综合可得:a =116.【解析】(1)根据题意,作差分析可得结论.(2)根据题意,结合二次函数的对称轴和单调性,按a 的取值范围分4种情况讨论,求出a 的值,综合可得答案.本题考查二次函数的性质以及应用,涉及函数的单调性证明.22.【答案】解:g(x)=f(f(x))={log 3(3−3x),(0≤x <23)3−3(3−3x),(23≤x ≤1)3−3log 3x,(1<x ≤3)={log 3(3−3x),(0≤x <23)9x −6,(23≤x ≤1)3−3log 3x,(1<x ≤3). (1)下面分区间讨论g(x)的不动点个数.①当0≤x <23时,g(x)=x ⇒log 3(3−3x)=x ⇒x −log 3(1−x)−1=0,因为函数ℎ(x)=x −log 3(1−x)−1在[0,23)上单调递增,ℎ(0)=−1<0,ℎ(23)=23>0,所以ℎ(x)在[0,23)内存在唯一零点,即g(x)在[0,23)内存在唯一不动点;②当23≤x ≤1时,g(x)=x ⇒9x −6=x ,解得x =34, 即g(x)在[23,1]内存在唯一不动点;③当1<x ≤3时,g(x)=x ⇒3−3log 3x =x ;φ(x)=x +3log 3x −3在(1,3]上单调递增,φ(1)=−2<0,φ(3)=3>0, 所以φ(x)=x +3log 3x −3在(1,3]内有唯一零点,即g(x)在(1,3]内存在唯一不动点; 综上所述,g(x)有3个不动点.(2)因为“∃x ∈[0,23),g(x)−1>log 3(1+x)+log 3(x +k)”是真命题, 所以{ log 3(3−3x)−1>log 3(x +1)+log 3(x +k)0≤x <23x +1>0x +k >0有解,即{log 3(1−x)−log 3(x +1)>log 3(x +k)0≤x <23x >−k有解,所以{1−x 1+x>x +k0≤x <23−x <k有解,即{k <2x+1−(x +1)−x <k 0≤x <23有解,即{−x <k <2x+1−(x +1)0≤x <23有解, 令p(x)=−x ,q(x)=2x+1−(x +1),函数p(x)与q(x)在[0,23)上都是减函数,值域分别为(−23,0]和(−715,1];所以k 的取值范围是(−23,1).【解析】本题主要考查命题的真假应用,考查了不等式性质,考查了复合函数,理解新定义是是解决本题的关键,属于难题.(1)用函数复合运算求出函数解析式,理解新定义,分段讨论,解方程确定不动点个数; (2)对命题等价变换,用函数值域确定取值范围.第18页,共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省泰安市2020-2021学年高一上学期期末数学
试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 已知集合,,则()
A.B.C.D.
2. ()
A.B.C.D.
3. 已知命题,,则命题的否定为()
A.,B.,
C.,D.,
4. 二十四节气是中华民族上古农耕文明的产物,是中国农历中表示季节变迁的24个特定节令.现行的二十四节气是根据地球在黄道(即地球绕太阳公转的轨
道)上的位置变化而制定的.每个节气对应地球在黄道上运动所到达的一个位置.根据描述,从冬至到雨水对应地球在黄道上运动的弧度数为()
A.B.C.D.
5. 已知角的顶点与直角坐标系的原点重合,始边与轴的非负半轴重合,终
边经过点,若,则的值为()
A.B.C.D.
6. 若,,()
A.B.C.D.
7. 科学研究已经证实,人的智力,情绪和体力分别以天、天和天为周
期,按进行变化,记智力曲线为,情绪曲线为,体力曲线为,且现在三条曲线都处于轴的同一点处,那么第天时()
A.智力曲线处于最低点
B.情绪曲线与体力曲线都处于上升期
C.智力曲线与情绪曲线相交
D.情绪曲线与体力曲线都关于对称
8. 已知定义域为的函数的图象是一条连续不断的曲线,且满足
.若,当时,总有,则满足
的实数的取值范围为()A.B.C.D.
二、多选题
9. 下列结论正确的是()
A.若为正实数,,则
B.若为正实数,,则
C.若,则“”是“”的充分不必要条件
D.当时,的最小值是
10. 若为第二象限角,则下列结论正确的是()A.B.C.D.
11. 函数的图象可能为()
A.
B.
C.D.
12. 已知函数的定义域为,且,.若,
,则下列说法正确的是()A.B.C.D.
三、填空题
13. 已知弧长为cm的弧所对圆心角为,则这条弧所在圆的半径为
___________cm.
14. 已知函数,若,则实数的值为
_________.
15. 若函数且在上的最大值为,最小值为,函数在上是增函数,则的值是______.
16. 若函数的最大值为,则常数的值为_______.
四、解答题
17. 设函数的定义域为集合,函数的定义域为集合.
(1)若,求实数的取值范围;
(2)若,求实数的取值范围.
18. 在下列三个条件中任选一个,补充在下面问题中,并作答.
①的最小正周期为,且是偶函数
②图象上相邻两个最高点之间的距离为,且
③与是图象上相邻的两条对称轴,且
问题:已知函数,
若.
(1)求,的值;
(2)将函数的图象向右平移个单位长度后,再将得到的函数图象上各点的横坐标伸长到原来的倍,纵坐标不变,得到函数的图象,求
在上的单调递减区间.
注:如果选择多个条件分别解答,按第一个解答计分.
19. 己知,且.
(1)求的值;
(2)若,求的值.
20. 已知函数,,且.
(1)证明:定义域上是减函数;
(2)若,求的取值集合.
21. 北京时间2020年11月24日,我国探月工程嫦娥五号探测器在海南文昌航天发射场发射升空,并进入地月转移轨道.探测器实施次轨道修正,次近月制动后,顺利进入环月圆轨道,于12月1日在月球正面预选区域着陆,并开展采样工作.12月17日1时59分,嫦娥五号返回器在内蒙古四子王旗预定区域成功着陆,标志着我国首次地外天体采样返回任务圆满完成.
某同学为祖国的航天事业取得的成就感到无比自豪,同时对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响
时,单级火箭的最大速度(单位:千米/秒)满足,其中,(单位:千米/秒)表示它的发动机的喷射速度,(单位:吨)表示它装载的燃料质量,(单位:吨)表示它自身的质量(不包括燃料质量).
(1)某单级火箭自身的质量为吨,发动机的喷射速度为千米/秒.当它装载吨燃料时,求该单级火箭的最大速度(精确到);
(2)根据现在的科学水平,通常单级火箭装载的燃料质量与它自身质量的比值不超过.如果某单级火箭的发动机的喷射速度为千米/秒,判断该单级火箭的最大速度能否超过千米/秒,请说明理由.
(参考数据:无理数=,)
五、填空题
22. 已知函数,
(1)若,恒成立,求实数的取值范围; (2)证明:有且只有一个零点,且。