滚动轴承损伤和失效资料

合集下载

阐述滚动轴承主要失效形式。

阐述滚动轴承主要失效形式。

阐述滚动轴承主要失效形式。

滚动轴承是一种常见的机械元件,被广泛应用于各种机械设备中。

然而,由于长时间的使用或其他原因,滚动轴承会出现各种失效现象。

本文将阐述滚动轴承的主要失效形式。

1. 疲劳失效:滚动轴承长时间运转会受到周期性的载荷,这会导致轴承材料的疲劳破坏。

疲劳失效是滚动轴承最常见的一种失效形式。

在高速旋转或载荷较大的情况下,疲劳失效会更加严重。

2. 磨损失效:滚动轴承在工作时,滚动体与滚道、保持架之间会产生相对滑动,引起摩擦和磨损。

长时间的磨损会导致滚道和滚珠的形状变化,甚至出现凹坑和裂纹,从而影响轴承的正常运转。

3. 腐蚀失效:在潮湿、腐蚀性介质环境下,滚动轴承容易受到腐蚀,导致金属表面产生氧化、锈蚀等现象。

腐蚀会降低轴承的表面质量和硬度,进而影响其承载能力和使用寿命。

4. 偏磨失效:轴承在使用过程中,如果安装不当或者受到外力影响,可能会导致轴承的滚动体和滚道之间产生不均匀的接触压力,从而引起偏磨。

偏磨会导致滚动体表面形成凹坑,加剧磨损和摩擦,最终导致轴承失效。

5. 堵塞失效:滚动轴承在工作过程中,如果进入过多的灰尘、杂质等异物,会导致滚动体和滚道之间的接触变得不平滑,从而增加磨损和摩擦。

严重的堵塞会使轴承卡死,无法正常运转。

6. 热损失效:滚动轴承在高速旋转或载荷较大的情况下,会产生大量热量。

如果无法及时散热,轴承温度会升高,导致润滑油失效,进而影响轴承的润滑和运转。

过高的温度还会引起轴承材料的热膨胀,导致轴承失效。

7. 错位失效:滚动轴承在受到外力或安装不当等原因影响时,可能会出现滚动体和滚道之间的错位现象。

错位会导致滚动体和滚道之间的接触不均匀,增加了磨损和摩擦,最终导致轴承失效。

滚动轴承的主要失效形式包括疲劳失效、磨损失效、腐蚀失效、偏磨失效、堵塞失效、热损失效和错位失效。

了解这些失效形式,可以帮助我们更好地维护和保养滚动轴承,延长其使用寿命,提高机械设备的可靠性和性能。

同时,在设计和选择滚动轴承时,也应考虑其抗疲劳、抗磨损、抗腐蚀等性能,以满足实际工作条件的要求。

滚动轴承常见失效形式及原因分析

滚动轴承常见失效形式及原因分析

滚动轴承常见失效形式及原因分析滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面。

轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:>>>>1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

>>>>2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

>>>>3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:(1)制造因素a.产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

滚动轴承失效和破坏形式

滚动轴承失效和破坏形式
4、若发现轴承座有“咔、咔”的异常响声或油脂烧焦气味,可结 合该轴承座温度、电流综合判断。
5、发现轴承的异常情况,无论何时,无论什么原因,均可第一时 间通知准备作业区负责人或预装班长,要求其到 4.保持架断裂 (1)内圈与轴过盈配合,所以会减小径向游隙。 (2)如果内圈滚道比外滚道的温度高,那么径向游隙也会减小。 (3)如果完全没有径向游隙,保持架与滚动体之间的载荷会过大,从而使保持 架断裂。 (4)轴承运行过度倾斜也会使保持架断裂。
5.滚动接触面点蚀或压痕造成的早期失效。 (1)点蚀:腐蚀点或凹坑会造成滚动接触表面光滑性的中断,这样会加剧摩擦 ,造成显著升温。 (2)击蚀 轴承运转时突发的冲击载荷或停转时重负荷会引起击蚀,它是一种塑性变形。 例如压痕,它典型地分布在滚动体圆周间隙上。 (3)轴承滚道的摩擦腐蚀在装配或搬运环节的震动造成,比击蚀的痕迹宽。 (4)电流通过轴承造成的腐蚀。 (5)硬颗粒杂质造成的压痕。
滚动轴承失效和破坏形式
目录
一、滚动轴承成功运转的条件 二、轴承的失效类型 三、轴承的检查 四、现场点检 五、轴承烧损的判断方法
一、滚动轴承成功运转的条件
1.选型正确 2.润滑系统设计合理(油脂厚度足以使滚动接触面适当分离,油供应充 足)。 3.滚动体与保持架、保持架与轴承套圈之间润滑充分。 4.运转速度与润滑方法一致,防止温度过高。 5.防止污染物进入轴承。 6.安装正确。
8.表面初始疲劳 滚动接触面在反复的引起疲劳强度的循环压力作用下,表面将产生疲劳裂纹, 裂纹扩张后,在表面上产生一个大的凹坑或剥落,它的特征是: 深度相对较浅。 起始于接触尾部边缘。 可以辨识。
1.内圈 2.外圈 3.保持架 4.滚动体 5.油脂 6.转动
三、轴承的检查
1.温度 2.响声 3.气味 4.挡环 5.迷宫

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因分析滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:A、制造因素1、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。

滚动轴承常见的失效形式与原因分析

滚动轴承常见的失效形式与原因分析

滚动轴承常见的失效形式及原因分析+浪逐风尖2008-11-05 10:55滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:A、制造因素1、产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。

滚动轴承常见的失效形式及原因分析

滚动轴承常见的失效形式及原因分析

滚动轴承常见的失效形式及原因分析滚动轴承是一种用于支撑和减少摩擦的常用机械元件。

它们广泛应用于各种机械设备和领域,如汽车、风力发电、机械制造等。

然而,由于工作环境的恶劣条件或长期运行等原因,滚动轴承可能会出现各种故障和失效。

以下是滚动轴承常见的失效形式及其原因分析。

1.疲劳失效:疲劳失效是滚动轴承最常见的失效形式之一、它通常在长时间高速运转或载荷较大的情况下发生。

轴承在不断重复的载荷下产生微小的裂纹,最终导致轴承出现断裂。

这种失效通常与以下原因有关:-动载荷过大:轴承在长时间内承受过大的动载荷,超出了其额定负荷能力。

-轴承安装不当:安装不当会使轴向载荷分布不均匀,导致局部载荷过大。

-润滑不良:缺乏或过多的润滑剂都会导致轴承摩擦增加,使得轴承易于疲劳失效。

2.磨损失效:磨损是轴承常见的失效形式之一、它通常发生在轴承和周围部件之间的摩擦表面上。

常见的磨损形式包括:-磨粒磨损:当粉尘、金属碎屑等进入轴承内部时,会使滚动体、保持架等部件发生磨损。

-粘着磨损:当润滑不良时,摩擦表面出现直接接触,轴承可能会发生粘着磨损。

-磨料磨损:当轴承受污染物质时,如沙尘、水等,会导致轴承表面产生磨料磨损。

3.返现失效:轴承返现是指滚动体和滚道之间的剥离、严重滚道表面损伤或磨擦减小所引起的失效。

返现失效的原因主要有:-轴承清洗不当:清洗过程中使用的溶剂或清洁剂残留在轴承内部,导致润滑性能下降,滚动体容易返现。

-轴承热胀冷缩:当轴承受到温度变化时,轴承和轴承座之间的配合间隙有可能发生变化,导致轴承返现。

-润滑不良:缺乏或过多的润滑剂会导致轴承受到不均匀的载荷分布,容易引起轴承返现。

4.偏磨失效:偏磨是指轴承滚动体在滚道上发生偏磨,导致滚道表面形变或表面破坏。

-不均匀载荷:长期承受不均匀载荷会导致滚动体在滚道上的位置发生偏移,从而引起偏磨失效。

-润滑不良:过多或过少的润滑剂会导致轴承滚动体和滚道之间的摩擦增加,从而引起偏磨。

滚动轴承主要失效形式及其形成原因介绍

滚动轴承主要失效形式及其形成原因介绍滚动轴承是机械设备中支撑和保证轴类零件正常运转的重要零件,滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效,一旦出现失效就会影响机械设备的正常运转。

因此,正确认识和了解滚动轴承的失效形式及形成原因,对于提高轴承使用寿命、提高劳动生产效率和设备使用率以及保证安全生产,都是十分必要的。

滚动轴承在实际生产中,虽然滚动轴承的结构形式各式各样,承受载荷方向不同、大小不一,工作环境和使用条件千差万别,但其失效形式主要有以下几种:①内、外圈或滚动体剥落;②内、外圈或滚动体有压坑:③内、外圈或滚动体磨损;④内、外圈或滚动体裂纹;⑤内、外圈或滚动体点腐蚀;⑥内、外圈或滚动体烧伤;⑦内、外圈或滚动体变色。

现就其主要失效形式及其形成原因做一简单介绍:一、内、外圈或滚动体剥落对于滚动轴承来说零件工作表面承受周期性交变载荷或冲击载荷的作用,由于零件间接触面积很小,因此会产生极高的接触应力。

滚动轴承套圈及各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角。

通常呈现疲劳扩展特征的海滩状纹路.产生部位主要出现在套圈和滚动体的滚动表面。

二、内、外圈或滚动体有压坑压坑是由于在压力作用下硬质固体物侵入零件表面产生的凹坑的现象。

它属于材料的局部表面塑性变形,其产生的部位主要在零件的工作表面上,形状和大小不一,有一定深度,压坑边缘有轻微凸起,边缘较光滑。

其形成的原因是轴承零件在运转中产生的金属颗粒、密封不良造成轴承外部杂质侵入。

预防压坑的措施主要有:提高零件的加工精度和轴承的清洁度、改善润滑、提高密封质量等。

三、内、外圈或滚动体磨损滚动轴承在工作时滚动体和内外圈相互接触的金属表面相对运动产生摩擦,从而引起金属消耗或产生残余变形,使其表面的形状、尺寸、组织或性能发生改变即产生磨损。

阐述滚动轴承主要失效形式。

阐述滚动轴承主要失效形式。

滚动轴承是一种常见的机械元件,广泛应用于各种设备和机械系统中。

它们承载着旋转部件的重量和力,并通过滚动方式减少摩擦,使设备运转更加平稳高效。

然而,由于各种因素的影响,滚动轴承也会出现各种失效形式,影响其正常工作。

下面将对滚动轴承的主要失效形式进行阐述。

1. 疲劳失效:疲劳失效是滚动轴承最常见的失效形式之一。

当轴承在长时间的运行中,由于负荷和转速的作用,滚动体和轨道之间会产生周期性的应力和变形,导致轴承材料逐渐疲劳开裂,最终引发轴承失效。

疲劳失效通常表现为滚道和滚珠或滚子表面出现裂纹、剥落或断裂。

2. 磨损失效:磨损失效是指滚动轴承在工作过程中,由于摩擦和磨擦力的作用,导致滚动体和轨道之间的材料逐渐磨损。

磨损失效通常表现为滚道和滚珠或滚子表面出现磨损和磨痕,严重时甚至会导致轴承间隙增大或轴承失效。

3. 过载失效:过载失效是指滚动轴承在工作过程中,承受超过其额定负荷的力或瞬时冲击载荷,导致轴承损坏或失效。

过载失效通常表现为滚道和滚珠或滚子出现塑性变形、断裂或剥落等现象。

4. 腐蚀失效:腐蚀失效是指滚动轴承在特殊环境下,如高温、高湿度、腐蚀性介质等条件下,轴承材料发生化学反应而导致的失效。

腐蚀失效通常表现为滚道和滚珠或滚子表面出现腐蚀、氧化或锈蚀等现象,严重时会导致轴承尺寸变化和失效。

5. 渗透失效:渗透失效是指滚动轴承在工作过程中,由于外界介质、润滑剂或污染物的渗入,导致轴承内部受到污染或润滑不良而引发的失效。

渗透失效通常表现为轴承内部出现异物、污染物或润滑剂失效,从而影响轴承的正常工作。

总结起来,滚动轴承的主要失效形式包括疲劳失效、磨损失效、过载失效、腐蚀失效和渗透失效。

在实际应用中,我们应该根据具体的工作环境和要求,选择适当的轴承材料、润滑方式和维护方法,以延长滚动轴承的使用寿命,提高设备的可靠性和效率。

轴承的主要失效形式和处理方法

轴承的主要失效形式和处理方法滚动轴承在使用过程中由于本身质量和外部条件的原因,其承载能力,旋转精度和减摩能性能等会发生变化,当轴承的性能指标低于使用要求而不能正常工作时,就称为轴承损坏或失效,轴承一旦发生损坏等意外情况时,将会出现其机器、设备停转,功能受到损伤等各种异常现象。

轴承坏了,要先分析出坏的原因,然后再找到解决办法。

因此需要在短期内查处发生的原因,并采取相应措施。

一、轴承的损坏的原因轴承是损耗型的零件,只要一用就肯定会损,只是要积累到一定的程度才表现出来,也就是要到一定的量才坏。

当然,滚动轴承损坏的情况比一般机械零件的损坏要复杂得多,滚动轴承损坏的特点是表现形式多,原因复杂,轴承的损坏除了轴承设计和制造的内在因素外,大部分是由于使用不当,例如:选型不适合、支承设计不合理,安装不当,润滑不良,密封不好等外部因素引起的。

1、发生金属锈蚀。

如果缺少润滑的话,很容易被空气氧化,生锈。

防止轴承的锈蚀,不要用水泡。

轴承是精钢做的,但也怕水。

用手拿取轴承时,要充分洗去手上的汗液,并涂以优质矿物油后再进行操作,在雨季和夏季尤其要注意防锈。

轴承自然锈蚀磨损的具体原因主要有以下几种:①氧化磨损。

其摩擦外表上的微小峰谷互相挤压,使脆性表层逐渐脱落而磨损。

轴承相对运动外表上的微小峰谷与空气中的氧化合成而生成与基体金属接合不牢的脆性氧化物,该氧化物在摩擦中极易脱落,发生的磨损称为氧化磨损。

②摩擦生热磨损。

当轴承在高速重负荷和润滑不良的情况下工作时,外表峰谷处由于摩擦而产生高温、接触点硬度及耐磨性下降,甚至发生粘连、撕裂现象。

这种磨损称为摩擦生热磨损。

③硬粒磨损。

如果轴承作相对运动时。

轴承运动外表组织不匀,存在硬颗粒,或轴承的运动外表间落入沙粒、摩屑、切屑等杂质,轴承在相对运动中,硬粒或杂质会使轴承外表擦伤甚至形成沟槽,这种磨损称为硬粒磨损。

汽车轴承④点蚀磨损。

齿轮、轴承等滚动接触外表,相对过程中周期性地受到很大的接触压力,长时间作用,金属外表发生疲劳现象,使得轴承外表上发生微小裂纹和剥蚀,这种磨损称为点蚀磨损。

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因分析滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产烧伤、生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、架电腐蚀、保持损坏等。

一,疲劳剥落用应表面在接触力的反复作疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体劳料由于材疲。

现状剥落下来的象称为疲劳剥落点蚀也是或体从表,下其滚动面金属金属基呈点状片。

后,点蚀扩展将形成疲劳剥落寸但劳起引一种疲现象,形状尺很小疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有: 1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

2、表面起源型滚动表面是以表面为起源产生的疲表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,劳剥落。

3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下: A、制造因素精度、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、 1、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了、材料品质的影响:轴承工作时,零件滚动表面承受周期性交变载荷目标值,这种情况很容易造成产品的早期失效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滚动轴承 损伤和失效 术语、特征及原因
GB/T 24611-2009/ISO 15243:2004
图3 次表面疲劳扩展
图4 “鱼鳞状”显微裂纹
图6 深灰色区(放大比率1.25﹕1)
图7 有中档边双列圆柱滚子轴承内圈滚道上 的磨粒磨损
图8 滚道表面上的涂抹
图9 滚子端面上的涂抹
图10 套圈端面上的涂抹(套圈同时断裂)
5.5 塑性变形 5.5.1 通用定义
图22 过载造成的圆锥滚子轴承滚道 上的塑性变形
图23 安装过程中的过载
图24 装拆)
图25 颗粒被滚辗造成的压痕
图31 轴承座支承不足造成的轴承外 圈疲劳断裂
图32 内圈端面的热裂
A2失效图例一览表——失效原因和预防措施
5.3 腐蚀 5.3.1 通用定义
图11 滚子轴承外圈滚道上的腐蚀
图12 球轴承内圈和外圈沟道上 的接触腐蚀
图13 轴承滚道上的接触腐蚀
图14 内圈内孔表面上的微动腐蚀
图15 圆柱滚子轴承内圈滚道上的伪压痕
图18 球和沟道上呈珠状排列的环形坑
图20 内圈沟道上的波纹状的凹槽和颜色变暗的钢球 图21 滚针轴承内圈滚道上的波纹状凹槽
A3 术语和定义
相关文档
最新文档