宏蛋白组学Metaproteomics-生物化学与分子生物学
宏蛋白质组学研究进展及应用

宏蛋白质组学研究进展及应用吴重德;黄钧;周荣清【摘要】Metaproteomics is a newly emerging technology to investigate the micro-ecosystem in environmental system by proteomic approach,and it has shown powerful functions in the fields of environmental ecosystem.This review summarized the research strategies of metaproteomics and applications in wastewater biotreatment,soil and fermented food.It demonstrated the directions for future research in the field of microbial ecosystems.%宏蛋白质组学是近几年出现的一种应用蛋白质组学方法对环境微生态系统进行研究的一种新技术,已在环境生态领域研究中展示出了强大的功能.文中综述了宏蛋白质组学的研究技术及策略、介绍了其在污水生物处理、土壤及发酵食品微生物群落结构分析中的应用,并对其在环境微生态领域中的研究进行了展望.【期刊名称】《食品与发酵工业》【年(卷),期】2016(042)005【总页数】5页(P259-263)【关键词】宏蛋白质组学;二维电泳;环境微生物;微生物群落结构【作者】吴重德;黄钧;周荣清【作者单位】四川大学轻纺与食品学院,皮革化学与工程教育部重点实验室,四川成都,610065;酿酒生物技术及应用四川省重点实验室,四川自贡,643000;四川大学轻纺与食品学院,皮革化学与工程教育部重点实验室,四川成都,610065;四川大学轻纺与食品学院,皮革化学与工程教育部重点实验室,四川成都,610065【正文语种】中文人类基因组计划的完成,标志着生命科学研究进入了后基因组时代。
分子生物学---蛋白组学整理英文

proteomicsProteome: 细胞或组织或机体在特定时间和空间上表达的所有蛋白质。
Proteomics: 分析细胞内动态变化的蛋白质组成成分,表达水平于修饰状态,了解蛋白质之间的相互作用于联系,在整体水平上研究蛋白的组成与调控的活动规律。
研究蛋白组学希望达到的目标:By studying global patterns of protein content and activity and how these change during development or in response to disease, proteomics research is poised to boost our understanding of systems-level cellular behaviors. Clinical research also hopes to benefit from proteomics by both the identification of new drug targets and the development of new diagnostic markers.蛋白质组学研究内容:蛋白鉴定,蛋白定量,蛋白相互作用,蛋白修饰。
Why proteomics(为什么研究蛋白组学)•Proteins distinguish various types of cells, since all cells have essentially the same “Genome” their differences are dictated by which genes are active and the corresponding proteins that are made.•Similarly, diseased cells may produce dissimilar proteins to healthy cells.•Post-translational modifications can dramatically alter protein function - the task of studying proteins is often more difficult than genes.What’s MS(mass spectrometry),即质谱的工作原理1.The basic principle of MS is to generate ions from either inorganic or organiccompounds by suitable method, to separate these ions by their mass-to-charge ratio (m/z) and to detect them qualitatively and quantitatively by their respective m/z and abundance.即质谱能够实现不同质量离子的分离和相对定量,m/z(谱图中的x轴)值可以区分出不同的离子,intensity(谱图中的y轴)表示离子的相对丰度。
化学生物学专业一级学科-概述说明以及解释

化学生物学专业一级学科-概述说明以及解释1.引言1.1 概述化学生物学作为一级学科,是化学和生物学两个领域的融合和交叉学科。
它研究生物系统中化学物质的结构、功能和相互作用,探索生命现象的化学基础。
随着科学技术的发展和生物医学领域的进步,化学生物学正在成为一个重要的研究领域。
化学生物学专业涵盖了许多领域,包括生物化学、分子生物学、生物技术、药物化学等。
学生需要掌握化学和生物学的基本理论知识,具备综合分析和解决问题的能力。
该专业培养学生在生物医药、生物工程、食品安全等领域的应用能力,为社会的发展和健康做出贡献。
本文将从化学生物学专业的概述、重要性和应用以及学科发展趋势等方面展开论述,以帮助读者更深入地了解这一领域的研究内容和发展前景。
1.2 文章结构文章结构部分旨在介绍本文的整体框架和组织方式,以便读者更好地理解和阅读全文。
本文的结构分为三个主要部分:引言、正文和结论。
- 引言部分主要包括概述、文章结构和目的。
在概述中,将对化学生物学专业进行简要介绍,引出下文讨论的主题;文章结构部分则是本节所在位置,介绍整篇文章的框架和组织方式;目的部分则明确本文撰写的目的和意义,为后续内容提供铺垫。
- 正文部分将分为三个小节:化学生物学专业概述、重要性和应用、学科发展趋势。
在第二部分中,将详细讨论化学生物学专业的概况,以及其在实际生活和科研中的重要性和应用;同时,还将探讨该学科在未来的发展趋势和展望,为读者提供对化学生物学专业的全面了解。
- 结论部分则包括总结、展望和结束语。
在总结部分,将对全文进行简要回顾,概括出本文的主要内容和观点;展望部分将展望化学生物学专业的未来发展,并提出一些可能的研究方向或趋势;结束语则是对全文的总结和展望,为读者留下深刻的印象。
整体来说,本文的文章结构清晰明了,将为读者带来系统性和连贯性的阅读体验,帮助读者更好地理解和掌握化学生物学专业的相关知识和信息。
1.3 目的文章的目的是探讨化学生物学专业一级学科的重要性和应用,揭示该学科在生物领域中的地位和作用,同时分析学科的发展趋势,为学生选择专业提供参考和指导。
生物化学与分子生物学第二版(贾弘禔)名词解释与课后题总结

可利用氨基酸理化特性对其进行定性定量分析 2 氨基酸 氨基酸具有两性离子特征,氨基酸具有特征性的滴定曲线 氨基酸的氨基和羧基可发生多种化学反应,包括肽反应和形成 schiff 碱。 利用其理化性质进行定性定量反应的方法 氨基酸与茚三酮试剂发生呈色反应 氨基酸与 2,4-二硝基氟苯反应生成二硝基苯基氨基酸 氨基酸与亚硝酸反应生成氮气 含共轭双键的氨基酸具有紫外吸收性质 薄层层析是鉴定氨基酸及其修饰的经典方法 此外,含共轭双键的氨基酸具有紫外吸收性质,色氨酸、酪氨酸的最大吸收峰在 280 nm 附 近。 核苷酸:核苷酸的紫外吸收特征可用于其定性定量分析 嘌呤碱和嘧啶碱共轭双键最大吸收 峰值 260nm 核苷酸的解离特征可用于其分离纯化 核苷酸分子在特定溶液中各基团的解离常数(pK)和等电点(pI)均为特征性常数,这些特 性赋予核苷酸以层析和电泳行为的差异,因此被广泛用于核苷酸的分离和纯化。例如,薄层 层析、离子交换层析、毛细管电泳等技术都可用于分离和纯化核苷酸。
除了 mRNAtRNArRNA 外,细胞内存在的许多其他种类的小分子 RNA ,统称为非信使小 RNA(small non-messenger RNAs, snmRNAs)。 简答 1 双螺旋结构 DNA 是反向平行、右手螺旋的双链结构 两条多聚核苷酸链相互平行但走向相反,围绕着同一个螺旋轴形成右手双螺旋结构 由脱氧核糖和磷酸基团构成的亲水性骨架(backbone)位于双螺旋结构的外侧,而疏水的碱 基位于内侧。 直径为 2 nm,螺距为 3.4 nm 从外观上看, DNA 双螺旋结构的表面存在一个大沟 (major groove) 和一个小沟 (minor groove) DNA 双链之间具有碱基互补关系 碱基垂直螺旋轴居双螺旋内側,与对側碱基形成氢键配对(互补配对形式: ) 相邻碱基平面距离 0.34nm,螺旋一圈螺距 3.4nm,一圈 10 对碱基 疏水作用力和氢键维系 DNA 双螺旋结构的稳定 相邻的两个碱基对平面在旋进过程中发生相互重叠(overlapping) ,由此产生了疏水性的碱 基堆积力(base stacking interaction) 。 这种碱基堆积力和互补碱基对的氢键共同维系着 DNA 双螺旋结构的稳定,并且碱基堆积力 在双螺旋结构的稳定中起着更为重要的作用。 科学依据:1952 年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905— )测定了 DNA 中 4 种碱基的含量,发现其中腺膘呤与胸腺嘧啶的数量相等,鸟膘呤与胞嘧啶的数量相等。 这使沃森、 克里克立即想到 4 种碱基之间存在着两两对应的关系, 形成了腺膘呤与胸腺嘧啶 配对、鸟膘呤与胞嘧啶配对的概念。 1953 年 2 月,沃森、克里克通过维尔金斯看到了富兰 克琳在 1951 年 11 月拍摄的一张十分漂亮的 DNA 晶体 X 射线衍射照片,这一下激发了他们 的灵感。他们不仅确认了 DNA 一定是螺旋结构,而且分析得出了螺旋参数。他们采用了富 兰克琳和威尔金斯的判断,并加以补充:磷酸根在螺旋的外侧构成两条多核苷酸链的骨架, 方向相反;碱基在螺旋内侧,两两对应 X-射线衍射图 2 tRNA 结构特点:P55 3 嘌呤和嘧啶含有共轭双键,在紫外波段有吸收。不同的原因是一般 DNA 是双链,RNA 是 单链。 第四章 糖与复合糖 名解 单糖是不能被分解成更小分子的糖,如葡萄糖(glucose) 、果糖(fructose)和核糖(ribose)等 由 2~10 个单糖以葡糖苷键连接而成的糖称为寡糖 由 10 个以上单糖通过糖苷键连接而成的线性或分支聚合物称为多糖 糖蛋白聚糖结构的不均一性称为糖形(glycoform) 聚糖中的 N-乙酰葡糖胺与多肽链中天冬酰胺残基的酰胺氮以共价键连接,形成 N-连接糖蛋 白 N-连接糖蛋白中 Asn-X-Ser/Thr 三个氨基酸残基组成的序列段称为糖基化位点。 聚糖中的 N-乙酰半乳糖胺与多肽链的丝/苏氨酸残基的羟基以共价键相连而形成 O-连接糖 蛋白。 糖胺聚糖链共价结合的蛋白质称为核心蛋白。 简答 1 聚糖中的 N-乙酰葡糖胺与多肽链中天冬酰胺残基的酰胺氮以共价键连接,形成 N-连 接糖蛋白。N-连接聚糖结构有高甘露糖型、复杂型和杂合型 N-连接聚糖是在内质网上以长 萜醇作为聚糖载体,先合成含 14 个糖基的聚糖链,然后转移至肽链的糖基化位点上,进一 步在内质网和高尔基体进行加工而成。 每一步加工都由特异的糖基转移酶催化完成,糖基必须活化为 UDP 或 UDP 的衍生物。 2 丝/苏氨酸残基的羟基,O-连接聚糖常由 N-乙酰半乳糖胺与半乳糖构成核心二糖,核心二
宏基因组,宏转录组,代谢组,蛋白组

宏基因组,宏转录组,代谢组,蛋白组宏基因组、宏转录组、代谢组和蛋白组是当前生物大数据研究领域中的热门话题,它们分别代表了生物学研究在不同层面上的探索和解析。
本文将围绕这四个主题展开深入探讨,并从简到繁,由浅入深地介绍它们的概念、研究方法和意义,帮助你更全面、深刻地理解这些关键词。
1. 宏基因组宏基因组是一种研究生态系统中不同生物种类基因组的方法。
它通过对不同生物群体中的基因组进行大规模的测序和比较分析,来了解它们在生态系统中的功能和相互作用。
宏基因组的研究范围涵盖了微生物、植物和动物等广泛的生物群体,为我们揭示了整个生态系统的多样性和稳定性。
在实际应用中,宏基因组的研究可以帮助我们更好地理解生态系统中的物种组成、功能特征和生态学意义,为环境保护和资源利用提供科学依据。
2. 宏转录组宏转录组是研究生物体内所有基因的转录活动的方法。
通过宏转录组技术,我们可以全面了解细胞内转录的全貌,包括RNA的种类、丰度和转录调控。
宏转录组的研究不仅可以帮助我们发现新的非编码RNA,还可以解析细胞在不同生理状态下的转录调控网络,为疾病诊断和药物研发提供重要依据。
宏转录组的研究也对生态系统的功能和动态过程有着重要的启示,有助于揭示生物体对外界环境变化的适应机制和调控策略。
3. 代谢组代谢组是针对生物体内所有代谢物的研究。
通过代谢组学技术,可以全面解析生物体内代谢物的种类、丰度和相互关系,从而揭示生物体在不同生理状态下的代谢活动和代谢调控网络。
代谢组的研究对于疾病诊断、药物研发和个体化治疗具有重要意义。
代谢组学也为植物代谢工程和微生物发酵工艺的优化提供了重要的信息和方法支持。
4. 蛋白组蛋白组学是研究生物体内所有蛋白质的研究。
通过蛋白组学技术,我们可以全面了解生物体内蛋白质的种类、结构和功能,从而揭示蛋白质在生物体内的相互作用和调控网络。
蛋白组学的研究对于疾病诊断、药物研发和蛋白质工程具有重要意义。
蛋白组学也为生物体内信号转导通路和代谢途径的解析提供了关键信息和技术手段。
蛋白质组学Proteomics-PPT课件.ppt

ICAT的优点
• ICAT具有广泛的兼容性,主要表现在:(1) 能够兼容分析任何条件下体液、细胞、组 织中绝大部分蛋白质;(2)烷化反应即使在 盐、去垢剂、稳定剂(如SDS、尿素、盐酸 胍等)存在下都可进行;(3)只需分析含Cys 残基的肽段,从而降低了蛋白质混合物分 析的复杂性;(4)ICAT战略允许任何类型的 生化、免疫、物理的分离方法,因此能很 好地定量分析微量蛋白质。
双向凝胶电泳
• 首先利用等电点聚焦来分离不同等电点的 蛋白,再利用SDS-PAGE来分离不同分子 量的蛋白,其分辨率是非常高的。微克级 的蛋白质就可以被很好的分辨开了。
基质辅助的激光解吸电离技术
(MALDI)的发展
• 日本岛津公司的田中耕一的工作,是质谱分析发 展的一个主动力。 1987年,在第二届中-日质谱 分析联合讨论会上,田中耕一论述了软激光解吸 附技术可以使蛋白质分子离子化。一年之后,他 的这篇创造性的论文发表在Rapid Communications in Mass Spectrometry上。田中 耕一的工作为基质辅助的激光解吸电离技术 (Maldi)打下了基础。2019年,他和弗吉尼亚联 邦大学的John B Fenn,由于他们对软吸附电离 方法上的贡献一起被授予了该年度诺贝尔化学奖
应用实例
• 1.通过比较给药前后细胞的蛋白质组, 鉴别出毒理学的蛋白质标志物 。
• 2. 疟疾疫苗的研究。
ICAT技术
同位素标记的亲和标签(isotope-coded affinity tag, ICAT)技术作为一种体外标记稳定同位素的相对定量方法, 已经成为重要的蛋白质组学定量分析方案。2019年,Gygi 等人用化学方法合成一种能和半胱氨酸反应的亲和试剂, 称为稳定同位素编码的亲和标签,它有轻链和重链(稳定重 同位素)两种形式,可以在体外标记不同状态下的蛋白质样 品,酶解并用亲和柱分离纯化被标记的肽段后,再用质谱 进行分析,和体内标记法一样也能够得到成对的峰表示不 同样品中肽段及对应蛋白质含量的差异。这种稳定同位素 亲和标签技术可以广泛地应用在细胞和组织的定量蛋白质 组学分析上,提供精确的蛋白质相对定量数据。
《分子生物学》课程教学大纲

《分子生物学》课程教学大纲课程代码:0700163课程负责人:刘青珍课程中文名称: 分子生物学课程英文名称:Molecular Biology课程类别:必修课程学分数:3课程学时数:54授课对象:生科院国际班、弘毅班、生物学基地班、生物学技术基地班、化学生物学基地班本课程的前导课程:生物化学,遗传学,细胞生物学一、教学目的本课程在生物化学、遗传学和细胞生物学基本知识的基础上,从生物大分子水平阐述基因组的保持、基因组的表达和基因表达调控的机制;并在掌握理论知识的基础上,系统介绍基本分子生物学技术的原理及其应用。
本课程授课内容是学生将来从事生物学研究所需掌握的基础理论知识。
因此,在讲授理论知识的同时,我会提醒学生注意相关知识与科学研究之间的联系,以促进学生的科研思维能力,为学生今后从事科研工作奠定一定基础。
本课程是英文或双语授课, 以提高学生在分子生物学相关知识方面的英语听力、英语思维能力和英语表达能力,为学生适应研究生学习阶段阅读英文文献的要求和顺利进入日趋国际化的工作岗位打好基础。
二、教学任务重点掌握:原核生物和真核生物保持和表达遗传信息及基因表达调控的分子机制。
掌握:常规分子生物学技术原理。
熟悉:在基因组保持、表达和基因调控中主要酶和蛋白质的结构和作用机制;分子生物学技术在鉴定、诊断和治疗中的作用。
三、课程内容与学时分配课程内容与学时分配表第一章相互认识及课程简介1.认识学生、了解学生的英语水平, 并据此初步确定授课语言比例及英语语速。
2.课程介绍:介绍教学目标和方法及教学内容和安排。
3.促使学生开始像科学家一样思考。
4.完成学习小组分组。
第二章基因组保持1-核酸与染色体的结构(教材第6至第7章)第一节DNA的结构与拓扑异构酶重点:DNA的双螺旋结构与DNA的功能和复制之间的关系,以及DNA拓扑异构酶在解决细胞中DNA拓扑结构中的重要性。
第二节RNA的结构与核酶重点:RNA可以折叠成高级结构的机制,不同核酶的结构与功能。
宏蛋白组学Metaproteomics

一些新的能够快速检测和鉴定新的 微生物的方法
• 宏基因组学(metagenomics):又叫微生物环境 基因组学,元基因组学。自然界约99%的微生物 不能通过传统的分离筛选途径进行培养(即未培 养微生物),为获得新的基因资源,更全面地认识微 生物多样性和微生物在自然环境和生物圈中的重 要作用,近年来随着分子生物学的快速发展及其 在微生物研究中的广泛运用,以环境中未培养微生 物为研究对象的新兴学科 • 可利用环境微生物基因组技术进行土壤污染修复、 畜禽养殖除臭、鉴定新物种以及确定特定生态环 境体系中未培养微生物种群与群落的结构组成及 物种的进化模式
宏基因组学研究策略
• 从环境样品中提取并纯化微生物群体 基因组: • 构建环境基因组: • 环境基因组的筛选分析:
宏蛋白组学(Metaproteomics):是由Paul和Philip二人 在2004年首先提出,是应用蛋白质组学技术对微生 物群落进行研究的一项新技术,其定义为在特定的时 间对微生物群落的所有蛋白质组成进行大规模鉴定 . 近年来,人们已经意识到微生物在自然界中的重 要作用,它们是生态系统中各种元素循环不可或 缺的一环,而且它们大多具有许多独特的生物功 能,如有些微生物对各种复杂有机化合物有降解 作用、有些微生物可以在一些极端环境下生存等 等,而使微生物具有这些独特功能的是一些特殊 的酶.众所周知,大多数酶的化学本质是蛋白质, 因此对不同自然生态环境中所有的蛋白质的研究 就显得特别重要,宏蛋白质组学就是在这种背景 下诞生的.
Байду номын сангаас在全球性的改变方面发挥关键的作用。
2,微生物对三个主要的全球性问题,包括能源安
全,环境方面面临的挑战和传染疾病的解决方案。
微生物体已经被广泛的开发用于 医药,农业,食品和工业上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2,微生物对三个主要的全球性问题,包括能源安
全,环境方面面临的挑战和传染疾病的解决方案。
微生物体已经被广泛的开发用于 医药,农业,食品和工业上
• 1,很大一部分小分子药物,如青霉素和万 古霉素都来自微生物。大多数的工业酶也 是从微生物中分离得到。 • 2,微生物作为一个全细胞式的催化剂被用 于许多重要的化学转化反应。 • 3,微生物被设计用来生产重组蛋白和药物, 生物燃料,氨基酸等化学品
• 有人认为利用转录组学很蛋白质组学,可进一步 提高生物修复中的实用效率。虽然运用设计微生 物这种想法很具有吸引力,具体的实现仍然受当 地微生物种群和其保持活性能力的相互制约。 • Lorenzo指出通过连接到(UMBBD)美国明尼苏 达大学生物催化和生物降解数据库,通过设计代 谢网络(metabolic networks)中的代谢途的 微生物的方法
• 宏基因组学(metagenomics):又叫微生物环境 基因组学,元基因组学。自然界约99%的微生物 不能通过传统的分离筛选途径进行培养(即未培 养微生物),为获得新的基因资源,更全面地认识微 生物多样性和微生物在自然环境和生物圈中的重 要作用,近年来随着分子生物学的快速发展及其 在微生物研究中的广泛运用,以环境中未培养微生 物为研究对象的新兴学科 • 可利用环境微生物基因组技术进行土壤污染修复、 畜禽养殖除臭、鉴定新物种以及确定特定生态环 境体系中未培养微生物种群与群落的结构组成及 物种的进化模式
微生物解决能源保证
Microbial solutions to energy security
• 根据新的能源政策法案,直到2012年,成亿加仑 的可再生燃料一定会是生物燃料通过可再生的生 物体产生的。 • 乙醇和生物柴油是两种使用最广泛的产生于可再 生资源的生物燃料,然而,由于这两种物质很低 的能量含量,这两种生物燃料都不是运输燃料的 理想替代品。近年来,人们已经开始尝试设计微 生物从可再生木质纤维生物中来生产运输燃料产 品。 • Keasling小组很好的总结了在这个领域的最新进 展,对运用微生物来生产异丁醇,异丙醇,高不 饱和脂肪酸和作为生物柴油的烷烃都进行了讨论。
微生物解决全球性变化
microbial solutions to global change
—杨拉维
• 一 引言:了解微生物世界
• 二:1,微生物和能源 2,微生物和环境 3,微生物和疾病
了解微生物世界 Understanding the microbial world
微生物的作用: 1,微生物体是地球上生活的生物的主要组成部分,
• 在过去的几十年里,大量的工业污染物被释放到 环境中。最近几年,生物修复做为一种很好的环 境清理方法得到广泛的研究。然而,这些污染物 的顽固的性质已经促使利用代谢工程或合成生物 学的方法针对目标设计微生物进行有效的清理。 Wood很好的概括了这方面的一些成果。最显著的 是利用先进的代谢工程和蛋白质工程手段作为复 杂的通路工程对有机和无机污染物进行整治。
• 微生物之间通信交流的一个重要特点就是 细胞—细胞间的通信。微生物相互之间能 够交流的一个方式就是通过群体感应 (quorum sensing),其中微生物能够通过制 造,释放和检测信号分子,根据细胞密度 的变化来调节基因的表达
群体感应(quorum sensing)
• 细菌根据细胞密度变化进行基因表达调控的一种 生理行为.具有群体感应的细菌能产生并释放一种 被称为自体诱导物(autoinducer)的信号分子,它随 着细胞密度增加而同步增加.当自体诱导物积累到 一定浓度时会改变细菌特定基因的表达.革兰氏阳 性及阴性细菌通过群体感应与周围环境进行信息 交流,从而改变细菌的一系列生理活性,这些细菌的 生理特性包括共生、细菌毒性、竞争、接合、抗 生素的产生、运动性、孢子及生物膜的形成.这种 信号传递方式可能对低等的细胞进一步进化,并形 成高等的生物体有重要作用.细菌中群体感应系统 的进化可能是多细胞体形成的早期阶段。
• 除了传统的液体生物燃料,使用微生物生 产生物电池已经受到了相当的重视。现有 的微生物燃料电池技术的一个主要限制是 相对较低的电流密度。 • Lovely总结归纳了在这个领域的一些新兴的 技术。认为更深一步的理解电子从微生物 体向电池阳极的转移,是提高电池效率的 关键。
微生物解决环境面临的挑战 Microbial solutions to environmental challenges
宏基因组学研究策略
• 从环境样品中提取并纯化微生物群体 基因组: • 构建环境基因组: • 环境基因组的筛选分析:
宏蛋白组学(Metaproteomics):是由Paul和Philip二人 在2004年首先提出,是应用蛋白质组学技术对微生 物群落进行研究的一项新技术,其定义为在特定的时 间对微生物群落的所有蛋白质组成进行大规模鉴定 . 近年来,人们已经意识到微生物在自然界中的重 要作用,它们是生态系统中各种元素循环不可或 缺的一环,而且它们大多具有许多独特的生物功 能,如有些微生物对各种复杂有机化合物有降解 作用、有些微生物可以在一些极端环境下生存等 等,而使微生物具有这些独特功能的是一些特殊 的酶.众所周知,大多数酶的化学本质是蛋白质, 因此对不同自然生态环境中所有的蛋白质的研究 就显得特别重要,宏蛋白质组学就是在这种背景 下诞生的.
代谢网络(metabolic networks)
宏蛋白质组的研究策略
• 环境总蛋白质的提取纯化:环境总蛋白质
提取纯化一般是以经典的生物化学、细胞 生物学和分子生物学技术为基础,包括细胞 的破碎和总蛋白的沉淀。 • 环境总蛋白质分离:蛋白质分离一般采 取凝胶的(如2D电泳)或非凝胶的(如液相色 谱)方法。 • 环境总蛋白质鉴定及数据处理:以生物 信息学为基础,获取和分析全面的蛋白质 系统发育起源和功能信息