爆破监测方案

合集下载

爆破监测方案

爆破监测方案

爆破监测方案一、背景介绍爆破监测是在工程爆破过程中,为了确保工程的安全和周边环境的稳定,而进行的一种安全措施。

本文将针对爆破监测方案进行全面阐述,以确保工程的安全进行。

二、监测目标爆破监测方案的主要目标是通过对工程爆破过程中的震动、噪声和空气振动等因素进行监测,以评估其对现有建筑物、地下管线、地质环境等的影响程度,从而采取相应的防护措施,减少损害和安全隐患。

三、监测器具在爆破监测方案中,需要使用一系列监测器具来获取准确的监测数据。

常用的监测器具包括地震仪、噪声仪、气象站等设备。

这些设备能够记录和分析爆破过程中产生的振动、噪声和空气振动等数据,为后续的分析和判断提供依据。

四、监测方案4.1 监测前准备在进行爆破监测之前,需要进行一系列的准备工作。

首先,确定监测范围和监测点位,以覆盖可能受到影响的区域。

其次,进行现场勘查,了解周边环境和已有的建筑物、管线等情况,为监测提供基础数据。

此外,还需要制定监测方法和参数,确保监测的准确性和可比性。

4.2 监测过程爆破过程中,监测人员需要按照事先确定的监测点位和时间,在合适的位置设置监测设备,并确保其正常工作。

同时,还需要注意监测数据的记录和保存,以便后续的数据分析和评估。

在爆破结束后,监测人员需要及时收回监测设备,并对其进行数据提取和处理。

4.3 数据分析和评估监测数据的分析和评估是爆破监测方案的重要环节。

监测人员需要对收集到的数据进行分析和处理,以评估爆破对周边环境的影响程度。

同时,还需要与相关部门和专家进行沟通和交流,以得到更加准确的评估结果。

最终,根据评估结果和法律法规的要求,确定相应的防护措施和整改措施。

五、监测报告爆破监测方案的最终成果是监测报告。

监测报告应当包括监测的目的、范围和结果,以及对监测数据的分析和评估。

报告的编写应当符合相关规范和要求,做到准确、全面、客观。

监测报告将为相关部门和项目方提供决策和参考依据,以确保工程的安全和周边环境的稳定。

人工挖孔桩爆破施工监测方案

人工挖孔桩爆破施工监测方案

人工挖孔桩爆破施工监测方案背景和目的本监测方案旨在监测人工挖孔桩爆破施工过程中的振动和噪声水平,以确保施工过程安全可控,最大程度地减少对周围环境和建筑物的影响。

监测内容和方法1. 振动监测- 在施工现场周围设置振动监测站点。

站点数量和位置应根据施工工程的特点和影响范围确定。

- 使用合适的振动监测仪器,对挖孔桩爆破过程中的振动进行实时监测。

- 监测数据应包括振动速度、振动加速度等参数,监测时间频率应根据实际需要确定。

2. 噪声监测- 在施工现场周围设置噪声监测站点。

站点数量和位置应根据施工工程的特点和影响范围确定。

- 使用合适的噪声监测仪器,对挖孔桩爆破过程中产生的噪声进行实时监测。

- 监测数据应包括噪声级别、频谱分析等参数,监测时间频率应根据实际需要确定。

监测结果评估1. 振动评估- 将实时监测数据与相关的振动限值标准进行对比评估。

常用的振动限值标准可根据国家或地方相关法规和规范确定。

- 如果监测数据超过了振动限值标准,应采取相应措施进行调整,以确保施工过程的安全性和可控性。

2. 噪声评估- 将实时监测数据与相关的噪声限值标准进行对比评估。

常用的噪声限值标准可根据国家或地方相关法规和规范确定。

- 如果监测数据超过了噪声限值标准,应采取相应措施进行调整,以降低对周围环境和建筑物的影响。

监测报告和应对措施1. 监测报告- 施工期间应定期编制监测报告,记录并分析监测数据,评估施工过程的安全性和可控性。

- 监测报告应包括监测数据的统计、分析结果以及针对超标情况的处理措施。

2. 应对措施- 如果监测数据超过了限值标准,应及时采取必要的应对措施,如调整施工方案、增加保护层等,以确保施工过程的安全性和可控性。

监测设备和人员1. 监测设备- 振动监测仪器和噪声监测仪器应具备合法合规的计量检定证书,并定期进行维护和校准。

2. 监测人员- 监测人员应具备相关专业知识和工作经验,并了解施工过程中的安全要求和相关法规。

爆破监测方案

爆破监测方案

爆破监测方案爆破监测是指对工程施工中进行的爆破作业进行监测和控制,以确保施工过程的安全性和环境保护的方案。

本文将针对爆破监测方案进行详细讨论。

一、引言爆破作业在建筑、矿山等领域具有重要作用,但其施工过程中,由于涉及到爆炸物的使用,存在安全隐患和环境风险。

因此,爆破监测方案的制定和实施显得尤为重要。

二、爆破监测的目的和意义爆破监测旨在实时监测爆破作业过程中的振动、噪声、气体浓度等指标,及时发现和控制潜在的安全隐患和环境风险,确保施工过程的安全性和环境保护。

三、爆破监测方案的制定与实施1. 爆破监测方案制定的依据爆破监测方案的制定需遵循相关标准和规范,如《爆破监测规范》、《建筑爆破作业技术规程》等。

同时,还需要考虑地质条件、工程特点、施工环境等因素。

2. 爆破监测方案的编制流程- 方案的制定者需充分了解工程背景和要求,确定监测指标。

- 按照规范要求,进行爆破监测仪器设备的选型和布置。

- 制定监测操作流程和工作安排,确保监测数据的准确性和可靠性。

- 设定监测阈值和报警机制,及时响应异常情况。

- 定期检查和维护监测设备,确保其正常运行。

- 进行监测数据的分析和处理,生成监测报告。

3. 爆破监测方案的实施要点- 在爆破前,对现场进行详细勘察,确定监测点位的布设和监测范围。

- 在施工过程中,严格按照方案要求进行监测操作,保证监测数据的准确性。

- 监测操作人员需具备相关专业知识和技能,并接受规范的培训。

- 定期对监测设备进行校准和检修,确保其正常运行。

四、爆破监测方案的评估和改进1. 监测数据的评估- 对监测数据进行统计和分析,评估施工过程中的爆破振动、噪声等情况,与规范要求进行比对。

- 分析监测数据的趋势和变化,发现异常情况,并及时采取措施进行调整。

2. 方案的改进和优化- 根据监测数据的评估结果,总结经验教训,对方案中存在的问题进行改进和优化。

- 充分利用新技术和方法,提升爆破监测方案的可行性和可靠性。

五、结论爆破监测方案的制定和实施对保障爆破施工的安全和环境保护具有重要意义。

爆破振动监测方案

爆破振动监测方案

爆破振动监测方案爆破是一种常见的工程施工方式,可以用于矿山开采、建筑拆除等工程领域。

然而,爆破施工会伴随着强烈的振动,可能对周围环境和结构物造成不可忽视的影响。

因此,为了保证工程施工的安全性和可持续发展,爆破振动监测方案应运而生。

1. 振动监测原理爆破振动监测方案的核心是对爆破引起的振动进行实时监测和记录。

通常采用的方法是利用振动传感器将振动信号转化为电信号,并通过数据采集系统进行数据的存储和分析。

振动监测方案的目标是获得准确、全面的振动参数,包括振动速度、振动加速度和振动位移等指标。

2. 振动监测方案的关键技术(1)传感器选择:选择适合的振动传感器对于监测方案至关重要。

常见的振动传感器有加速度传感器、速度传感器和位移传感器等。

根据实际需要和监测要求,选择合适的传感器进行布置。

(2)布置方案:根据监测目标和工程施工的具体情况,合理规划传感器的布置位置和数量。

一般来说,应根据工程施工区域的大小和结构物的分布等因素进行布置,以确保监测数据的准确性和可靠性。

(3)数据采集与处理:振动监测方案需要结合现代信息技术手段,通过数据采集系统对监测数据进行实时采集和处理。

数据处理包括数据存储、传输和分析等环节,可以借助计算机、云平台和人工智能等技术手段进行。

3. 爆破振动监测方案的应用(1)工程施工监测:爆破振动监测方案可以应用于各类工程施工中,如建筑拆除、地铁隧道开挖等。

通过监测振动参数,可以评估工程施工对周围环境和结构物的影响,及时采取相应的措施进行调整和改进。

(2)安全评估与预警:振动监测方案可以提供全面的数据支持,对爆破施工产生的振动进行准确评估。

一旦发现超过安全限值的振动情况,可以及时预警并采取措施,以保证工程施工的安全性。

(3)环境保护与监管:爆破振动监测方案可以用于环境保护和监管领域,对工程施工中的爆破振动进行监测和评估。

通过振动监测数据,可以了解爆破施工对周边生态环境的影响程度,提出相应的环境保护措施和监管建议。

爆破作业振动监测方案

爆破作业振动监测方案

爆破作业振动监测方案一、监测目的爆破作业振动监测的主要目的是:1、评估爆破振动对周边环境的影响程度,包括建(构)筑物、道路、桥梁、地下管线等设施的安全性。

2、验证爆破设计参数的合理性,为优化爆破方案提供依据。

3、确保爆破作业符合相关法规和标准的要求,避免对周边环境和人员造成不必要的损害。

二、监测依据1、《爆破安全规程》(GB6722-2014)2、相关工程的设计文件和施工方案3、国家和地方有关环境保护、安全管理的法律法规三、监测范围根据爆破工程的规模、地形地貌、周边环境等因素,确定监测范围。

一般来说,监测范围应包括距离爆破点最近的建(构)筑物、重要设施以及可能受到影响的人员密集区域。

四、监测内容1、振动速度振动速度是评估爆破振动影响的主要参数,包括水平方向(X 轴、Y 轴)和垂直方向(Z 轴)的振动速度。

2、振动频率振动频率反映了振动的特性,对于不同类型的建(构)筑物和设施,其对振动频率的敏感度不同。

3、持续时间爆破振动的持续时间也是一个重要的监测指标,它与振动能量的释放和传播有关。

五、监测设备1、振动传感器选用高精度、高灵敏度的振动传感器,如压电式加速度传感器或速度传感器。

2、数据采集仪能够实时采集、存储和传输振动数据的设备,具备良好的稳定性和可靠性。

3、计算机及分析软件用于对采集到的数据进行处理、分析和生成报告。

六、监测点布置1、在建(构)筑物的基础、柱子、墙壁等关键部位布置监测点,每个监测点应至少布置三个方向的传感器。

2、对于重要的设施,如桥梁的桥墩、桥台,地下管线的检查井等,应根据其结构特点合理布置监测点。

3、在人员密集区域,如居民区、学校、医院等,应适当增加监测点的密度,以全面了解振动影响情况。

七、监测时间1、爆破前进行背景振动监测,了解周边环境的自然振动情况,为后续数据分析提供参考。

2、爆破时在爆破作业过程中,实时采集振动数据,确保振动参数在控制范围内。

3、爆破后对爆破后的振动影响进行持续监测,观察建(构)筑物和设施的稳定情况。

爆破监测方案

爆破监测方案

目录1、工程概况 (2)2、爆破监测目的与内容 (2)3、爆破振动监测原理 (3)4、监测方法 (4)5、仪器操作注意事项 (8)6、现场协调与配合 (9)1、工程概况2、爆破监测目的与内容2.1监测目的(1)通过爆破振动监测与试验,获取爆破振动沿不利断面或不安全方向的振动衰减传播规律,回归计算爆破振动传播公式,估算开挖爆破最大允许药量与安全距离,为确定爆破施工方案与爆破参数提供依据;(2)通过爆破振动监测与试验,评价爆破施工方案和爆破参数的合理性,为控制与优化爆破施工参数提供依据;(3)通过爆破振动监测,测定开挖爆破作业对震动敏感建(构)筑物、岩土体的振动影响程度,并根据相关规范及设计标准,对其安全性作出评估,并为控制或调整爆破参数提供依据。

2.2监测工作内容根据开挖爆破施工情况,结合需要重点保护的对象分析,爆破振动试验与监测工作内容包括:(1)测定基坑四周爆破振动参数,监测基坑开挖爆破对周边建筑、铁路、公路的振动影响。

(2)测定基坑围护结构的爆破振动参数,监测基坑开挖爆破对基坑围护结构的振动影响。

3、爆破振动监测原理爆破振动监测原理如流程图 图形数据输出计算机RS232接口CPU外触发输入时钟、触发电路掉电保护存储器AD 转换可变增益放大器传感器由于炸药在岩石中的爆炸作用,使安装布置在监测质点上的传感器随质点振动而振动,使传感器内部的磁系统、空气隙、线圈之间作相对的运动,变成电动势信号,电动势信号通过导线输入可变增益放大器将信号放大,进入AD 转换,再通过时钟、触发电路,同时也通过存储器信号保护,再通过CPU 系统输入计算机,采用波形显示和数据处理软件进行波形分析和数据处理。

4、监测方法爆破振动监测是实时监测,所以在爆破前根据实地调查结果进行细致的准备工作,并严格按照工作流程进行工作。

为确保监测的准确可靠,首先对爆破点附近的监测对象进行详细准确的调查后,确定监测对象,然后在爆破前对监测系统进行检查、检测和标定,同时根据监测对象与爆破点相对位置关系,确定测点位置及布置方法,提前进入现场进行安置,根据爆破时间进行监测。

爆破振动监测方案

爆破振动监测方案

爆破振动监测方案一、引言二、监测目的1、评估爆破振动对周边建(构)筑物、设施的影响程度,确保其结构安全。

2、验证爆破设计参数的合理性,为优化爆破方案提供依据。

3、积累爆破振动数据,为类似工程提供参考。

4、遵守相关法律法规和标准规范的要求,保障公众安全和环境质量。

三、监测依据1、《爆破安全规程》(GB 6722-2014)2、《建筑抗震设计规范》(GB 50011-2010)(2016 年版)3、《工程测量规范》(GB 50026-2020)4、工程爆破设计文件和相关技术要求四、监测内容1、振动速度包括水平径向、水平切向和垂直方向的振动速度。

振动速度是评估爆破振动影响的主要指标。

2、振动频率了解振动的频谱特性,分析振动能量的分布情况。

3、持续时间记录振动的持续时间,评估振动的累积效应。

五、监测仪器选择1、传感器选用高精度、高灵敏度的速度传感器,如压电式加速度传感器。

传感器的频率响应范围应覆盖爆破振动的主要频段。

2、数据采集仪具备多通道同步采集功能,采样频率满足监测要求。

具有数据存储、传输和分析处理功能。

3、计算机及分析软件用于对采集的数据进行后期处理和分析。

六、监测点布置1、监测点的选择原则优先选择在距离爆破源较近、可能受到较大振动影响的建(构)筑物和设施上布置监测点。

考虑不同地质条件、地形地貌和建筑物结构类型的代表性。

2、具体布置位置建筑物的基础、柱、梁等关键部位。

桥梁的墩台、梁体等部位。

地下管线的检查井、阀门等位置。

3、监测点数量根据工程规模、爆破类型和周边环境的复杂程度确定监测点数量,一般不少于 3 个。

七、监测时间和频率1、监测时间在爆破作业前进行背景振动监测,获取初始数据。

爆破作业期间进行实时监测,记录爆破振动过程。

2、监测频率对于单次爆破,在爆破前 5 分钟开始采集数据,直至爆破振动结束后 5 分钟。

对于多次爆破的工程,根据爆破规模和振动影响程度,确定监测的间隔时间,一般每天监测 1-2 次。

爆破监测方案

爆破监测方案

爆破监测方案爆破监测方案主要是为了确保爆破作业的安全、可控和环保。

本方案旨在综合考虑监测方法、监测点位的布置、监测设备的选择和数据处理等方面,以保障现场作业的正常进行,并对可能产生的影响加以有效控制。

下文将详细介绍爆破监测方案的具体内容和实施流程。

一、监测方法1.实地勘察:在进行爆破作业前,必须对作业区域进行详细的实地勘察,包括地质构造、岩石性质、地下水位、建筑物分布等情况进行调查,为后续监测点位的选择提供依据。

2.震动监测:通过在监测点位上设置合适的加速度计和地震仪,实时监测爆破引起的地面震动情况,以评估爆破振动对周围环境和建筑物的影响。

3.声级监测:利用声级计在监测点位上进行实时监测,以评估爆破引起的噪音对周围居民和建筑物的影响。

同时,还需要对监测点位处设定相应的噪音容许值,确保作业符合相关环保标准。

4.烟尘监测:通过设置监测站点,利用激光颗粒物在线监测仪等设备,对爆破引起的烟尘进行实时监测,以保障作业的环保要求。

二、监测点位布置根据实地勘察结果和监测要求,确定监测点位并进行布置。

监测点位应涵盖作业区域的关键位置和敏感区域,以最大程度地监测到爆破引起的振动、噪音和烟尘情况。

三、监测设备选择1.加速度计:选择合适的加速度计进行地面振动监测。

加速度计应具备高精度、高灵敏度、广测量范围和低噪声等特点,以确保监测结果的准确性和可靠性。

2.地震仪:选择合适的地震仪进行地震监测。

地震仪应具备高分辨率、高采样率和低噪声等特点,以获取准确的地震数据。

3.声级计:选择合适的声级计进行噪音监测。

声级计应具备宽频带、高灵敏度和低畸变等特点,以满足爆破噪音监测的要求。

4.激光颗粒物在线监测仪:选择合适的激光颗粒物在线监测仪进行烟尘监测。

监测仪应具备高精度、高稳定性和高响应速度等特点,以确保烟尘监测数据的准确性。

四、数据处理监测数据需要进行及时、准确的处理,以得出可靠的结论。

数据处理主要包括数据采集、传输、存储和分析等步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

爆破监测方案
目录
1、工程概况 ............................................................... 错误!未定义书签。

2、爆破监测目的与内容............................................. 错误!未定义书签。

3、爆破振动监测原理 ................................................ 错误!未定义书签。

4、监测方法 ............................................................... 错误!未定义书签。

5、仪器操作注意事项 ................................................ 错误!未定义书签。

6、现场协调与配合 .................................................... 错误!未定义书签。

1、工程概况
2、爆破监测目的与内容
2.1监测目的
(1)经过爆破振动监测与试验,获取爆破振动沿不利断面或不安全方向的振动衰减传播规律,回归计算爆破振动传播公式,估算开挖爆破最大允许药量与安全距离,为确定爆破施工方案与爆破参数提供依据;
(2)经过爆破振动监测与试验,评价爆破施工方案和爆破参数的合理性,为控制与优化爆破施工参数提供依据;
(3)经过爆破振动监测,测定开挖爆破作业对震动敏感建(构)筑物、岩土体的振动影响程度,并根据相关规范及设计标准,对其安全性作出评估,并为控制或调整爆破参数提供依据。

2.2监测工作内容
根据开挖爆破施工情况,结合需要重点保护的对象分析,爆破振动试验与监测工作内容包括:
(1)测定基坑四周爆破振动参数,监测基坑开挖爆破对周边建筑、铁路、公路的振动影响。

(2)测定基坑围护结构的爆破振动参数,监测基坑开挖爆破对基坑围护结构的振动影响。

3、爆破振动监测原理
爆破振动监测原理如流程图 图形数据输出
计算机RS232接口CPU
外触发输入时钟、触发电路
掉电保护
存储器
AD 转换可变增益
放大器传感器
由于炸药在岩石中的爆炸作用,使安装布置在监测质点上的传感器随质点振动而振动,使传感器内部的磁系统、空气隙、线圈之间作相正确运动,变成电动势信号,电动势信号经过导线输入可变增益放大器将信号放大,进入AD 转换,再经过时钟、触发电路,同时也经过存储器信号保护,再经过CPU 系统输入计算机,采用波形显示和数据处理软件进行波形分析和数据处理。

4、监测方法
爆破振动监测是实时监测,因此在爆破前根据实地调查结果进行细致的准备工作,并严格按照工作流程进行工作。

为确保监测的准确可靠,首先对爆破点附近的监测对象进行详细准确的调查后,确定监测对象,然后在爆破前对监测系统进行检查、检测和标定,同时根据监测对象与爆破点相对位置关系,确定测点位置及布置方法,提前进入现场进行安置,根据爆破时间进行监测。

4.1 测点布置
根据设计要求,将爆破振动测点布置在所需监测的地表、建筑物结构支撑柱、铁路桥梁下、基坑侧壁上。

安装传感器时必须安装稳固,否则质点的速度监测数据将产生失真现象,一般采用石膏固定传感器效果较好。

还应注意对传感器的保护,使其避免受到爆破碎石或其它物体的物理性损伤。

另外必须注意传感器的方向性。

(1)、测点布置遵循的原则
最大振动断面发生的位置和方向监测;
爆破地震效应跟踪监测;
爆破地震波衰减规律监测。

(2)、测点的布置方法
按照上述原则和爆破地震的传播规律和以往的经验,基坑开挖爆。

相关文档
最新文档