2.3 设计轴对称图案(课堂练习纸)
苏科版八年级数学上册2.3 设计轴对称图案(含解析)

2.3 设计轴对称图案一.选择题(共10小题)1.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是()A.B.C.D.2.如图2,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④3.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半4.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.45.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种6.下列各图,均是圆与等边三角形的组合,则不是轴对称图形的是()A.B.C.D.7.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④8.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个9.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为()A.10B.6C.3D.210.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个二.填空题(共6小题)11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有种.12.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.13.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.14.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有种.15.如图是3×3正方形网格,其中已有3个小方格涂成了黑色,现在要从其余6个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.16.在4×4的方格中有四个同样大小的正方形如图摆放,再添涂一个空白正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形,这样的添涂方法共有种.三.解答题(共4小题)17.有三个3×3的正方形网格,网格中每个小正方形的边长均为1.请在图①、图②、图③中各画出一个面积为2,形状不同的四边形,要求顶点均在正方形的格点处,且四边形为轴对称图形.18.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.20.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.答案与解析一.选择题(共10小题)1.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:A.【点评】此题主要考查了轴对称图形的概念.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.如图2,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④【分析】根据轴对称图形的概念求解.【解答】解:有3个使之成为轴对称图形分别为:②,③,④.故选:A.【点评】此题主要考查了轴对称变换,正确把握轴对称图形的性质是解题关键.3.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘﹣1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.4.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.4【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.5.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【解答】解:如图所示:,共5种,故选:C.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.6.下列各图,均是圆与等边三角形的组合,则不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了利用轴对称设计图案,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④【分析】根据轴对称图形的特点进行判断即可.【解答】解:选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是:④.故选:D.【点评】本题考查的是利用轴对称设计图案,轴对称图形是要寻找对称轴,沿对称轴对折后与两部分完全重合.8.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个【分析】直接利用平移的性质结合轴对称图形的性质得出答案.【解答】解:如图所示:正方形ABCD可以向上、下、向右以及沿AC所在直线,沿BD 所在直线平移,所组成的两个正方形组成轴对称图形.故选:C.【点评】此题主要考查了利用轴对称设计图案以及平移的性质,正确掌握轴对称图形的性质是解题关键.9.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为()A.10B.6C.3D.2【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个【分析】对称轴的位置不同,结果不同,根据轴对称的性质进行作图即可.【解答】解:如图所示,满足题意的涂色方式有3种,故选:C.【点评】本题主要考查了利用轴对称设计图案以及等边三角形的性质,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.二.填空题(共6小题)11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有5种.【分析】根据轴对称图形的定义即可解决问题;【解答】解:如图有5种方法:故答案为5.【点评】本题考查利用轴对称设计图案,解题的关键是理解轴对称图形的定义,属于中考常考题型.12.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有3种.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有3种.【分析】根据轴对称图形的性质进行作图即可.【解答】解:如图所示,新图形是一个轴对称图形.故答案为:3.【点评】本题主要考查了利用轴对称变换进行作图,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.14.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有6种.【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案.【解答】解:得到的不同图案有:共6种.故答案为:6.【点评】本题考查了利用轴对称设计图案,培养学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.15.如图是3×3正方形网格,其中已有3个小方格涂成了黑色,现在要从其余6个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有2个.【分析】利用轴对称图形的性质,分别得出符合题意的答案.【解答】解:如图所示:一个涂成黑色的图形成为轴对称图形.故答案为:2.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.16.在4×4的方格中有四个同样大小的正方形如图摆放,再添涂一个空白正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形,这样的添涂方法共有4种.【分析】根据题意再添加一个正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形即可.【解答】解:如图所示:故答案为:4.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.三.解答题(共4小题)17.有三个3×3的正方形网格,网格中每个小正方形的边长均为1.请在图①、图②、图③中各画出一个面积为2,形状不同的四边形,要求顶点均在正方形的格点处,且四边形为轴对称图形.【分析】本题可以选择画长为2宽为1的长方形、上底为1下底为3的等腰梯形及边长为的正方形.【解答】解:所画图形如下:【点评】此题考查了在正方形组成的网格中画一定面积的轴对称四边形,对于此类题目要熟悉掌握几种常见的轴对称图形,然后结合题意要求的面积进行设计作图.18.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【分析】如图,在四个图形中分别将两个小正方形涂黑,并使阴影部分成为轴对称图形.【解答】解:如图所示:【点评】本题考查了轴对称的性质和图案设计,熟练掌握轴对称的定义是关键,涂黑二个小正方形后,以是否沿一条直线折叠后能重合,作为依据,能则组成轴对称图形,反之则不能.19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.20.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称变换,正确把握定义是解题关键.。
第2章 《轴对称图形》 :2.3 设计轴对称图标(含答案)

第2章《轴对称图形》:2.3 设计轴对称图标解答题1.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.2.如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图1~3中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图乙与图丙)3.认真观察4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征;(2)请在图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.4.如图,由小正方形组成的L形图中,请你用三种方法分别在图中添画一个小正方形使它成为轴对称图形.5.由16个相同的小正方形拼成正方形网络,现将其中的两个小正方形涂黑(如图),请你用两种不同的方法分别在下图中将两个空白的小正方形涂黑,使它成为轴对称图形.6.已知图中A,B分别表示正方形网格上的两个轴对称图形(阴影部分),其面积分别记为S1,S2(网格中最小的正方形的面积为一个单位面积),请你观察并回答问题.(1)求s1和s2的值;(2)请你在图C中的网格上画一个面积为8个平方单位的轴对称图形.7.请用1个等腰三角形、2个矩形、3个圆,在下面方框内设计一个轴对称图形,并用简炼的文字说明你的创意.8.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种(至少设计四种).答案:解答题1.考点:利用轴对称设计图案.专题:网格型.分析:作简单平面图形轴对称后的图形,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.解答:解:如图所示:点评:解答此题要明确轴对称的性质,并据此构造出轴对称图形,然后将对称部分涂黑,即为所求.2.考点:利用轴对称设计图案.专题:作图题.分析:根据轴对称图形的性质画图,但要注意本题中的要求涂黑部分的面积是原正方形面积的一半;所以图中一共有16个三角形,那就要涂黑8个,而且这8个要是轴对称图形.解答:解:点评:本题主要考查了轴对称图形的性质,及通过将四边形的转化为三角形来计算面积.3.考点:利用轴对称设计图案.专题:综合题;开放型.解答:解:(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积.(2)满足条件的图形有很多,这里画三个,三个都具有上述特征.点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.考点:利用轴对称设计图案.专题:作图题.分析:先根据图形的性质确定对称轴,再添加正方形.解答:解:如图:点评:解答此题要明确轴对称的性质:1、对称轴是一条直线;2、垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线.线段垂直平分线上的点到线段两端的距离相等;3、在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等;4、在轴对称图形中,对称轴把图形分成完全相等的两份;5、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.5.考点:利用轴对称设计图案.专题:作图题.分析:本题是一道开放题,答案不唯一,只要根据轴对称图形的性质先确定一个对称轴,再找出阴影部分的图形的关键点的对称点,画出图形即可,因为对称轴有很多种,所以图形就有很多种.解答:解:如图所示:(答案不唯一)点评:本题主要是根据轴对称图形的性质来做轴对称图形.6.考点:利用轴对称设计图案.专题:网格型.分析:根据图形特点,数出格的个数即可.解答:解:(1)因为每个小方格的面积为1,A,B图形中的图形分别占18个格,22个格,故s1=18,s2=22;(2)提示:如果没有规律性认识,要找出具有“美感”的图案是比较困难的,适当的方法是:选择一些图形作为基本图形,通过基本图形的组合,找出解答,所列的7个图形可认为是基本图形.点评:此题考查的是面积一定求轴对称图形的方法,先确定图形应占的格数,再根据作轴对称图形的方法找出关键点连线即可.7.考点:利用轴对称设计图案.专题:开放型;操作型.分析:本题是一道开放题,学生设计的图形只要用到了1个等腰三角形、2个矩形、3个圆,而且是轴对称图形即可.解答:解:如图.点评:本题主要考查了轴对称图形在生活中的实际应用以及同学们的空间想象能力.8.考点:利用轴对称设计图案.专题:作图题.分析:本题是一道动手操作题,学生可亲自做一做,答案不唯一,只要符合题意即可.解答:解:四种:(也可以是其他图形,只要符合条件即可)点评:本题是一道开放题,答案不唯一,但主要也是利用轴对称图形的性质来画图.。
专题2.3 设计轴对称图案(备作业)八年级数学上册同步备课系列(苏科版)

第二章轴对称图形2.3 设计轴对称图案一、单选题(共8小题)1.长城是我国古代劳动人民创造的伟大奇迹,是中国悠久历史的见证,是中华民族的象征,被列为世界文化遗产.下列以长城为背景的标志设计中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【知识点】利用轴对称设计图案2.下列有关“安全提示”的图案中,可以看作轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.【知识点】利用轴对称设计图案3.如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称A.B.C.D.【解答】解:如图所示:使图形中的四枚棋子成为轴对称图形的概率是:=,故选:C.【知识点】利用轴对称设计图案、概率公式4.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④【解答】解:选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是:④.故选:D.【知识点】利用轴对称设计图案5.在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小正方形序号是()A.①或②B.③或⑥C.④或⑤D.③或⑨【解答】解:由图可知,当涂黑③或⑥时,涂黑的四个小正方形构成的图形为轴对称图形.故选:B.【知识点】利用轴对称设计图案6.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程A.1B.2C.3D.4【解答】解:图形①可以分别旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形②可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形③可以旋转180°得到,不可以经过轴对称得到,故此选项错误;图形④可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有3个.故选:C.【知识点】利用轴对称设计图案、利用旋转设计图案7.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.4【解答】解:如图所示,共有4条线段.故选:D.【知识点】利用轴对称设计图案8.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选:B.【知识点】利用轴对称设计图案、概率公式二、填空题(共7小题)9.如图是3×3正方形网格,其中已有4个小方格涂成了黑色.移动其中一个黑色方块到其他无色位置,使得整个图形成为轴对称图形(包括黑色部分),你有种不同的移法.【解答】解:如图所示:有8种不同的移法,.故答案为;8.【知识点】利用轴对称设计图案10.如图,在4×4的正方形网格中有五个同样大小的正方形被涂黑,移动其中一个正方形到空白方格中,使其与其余四个被涂黑的正方形构成一个轴对称图形,共有种这样的移法.【解答】解:如图所示:故一共有13种画法.故答案是:13.【知识点】利用轴对称设计图案11.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有种.【解答】解:如图所示:这个格点正方形的作法共有4种.故答案为:4.【知识点】利用旋转设计图案、利用轴对称设计图案12.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字的格子内.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故答案为:3.【知识点】利用轴对称设计图案13.如图,在3×3正方形网格中,黑色部分的图形构成一个轴对称图形,若在其余网格中再涂黑一个小正方形,使黑色部分的图形仍然构成一个轴对称图形,则可涂黑的小正方形共有.【解答】解:如图所示:当在空白处1到4个数字位置涂黑时,使黑色部分的图形仍然构成一个轴对称图形.故答案为:4.【知识点】利用轴对称设计图案14.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.【解答】解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.【知识点】利用轴对称设计图案15.以图(1)(以O为圆心,半径为1的半圆作为“基本图形”,分别经历如下变换不能得到图(2)的有①只要向右平移1个单位;②先以直线AB为对称轴进行翻折,再向右平移1个单位;③先绕着点O旋转180°,再向右平移1个单位;④绕着OB的中点旋转180°即可.【解答】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180°,再向右平移一个单位,或绕着OB的中点旋转180°即可得到图(2),只要向右平移1个单位不能得到图(2),符合题意.故答案为:①.【知识点】几何变换的类型、利用轴对称设计图案、利用旋转设计图案、利用平移设计图案三、解答题(共5小题)16.如图是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分的面积为4.【解答】解:如图所示;答案不唯一.【知识点】利用轴对称设计图案、利用旋转设计图案17.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用三种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.【解答】解:如图所示:都是轴对称图形.【知识点】利用轴对称设计图案18.如图,每个小方格都是边长为1的正方形,在图中添加阴影,使阴影部分既是轴对称图形,又是中心对称图形,且阴影部分的面积是9,请在图①、②、③中各画出一幅图形,所画的三幅图形互不全等.【解答】解:如图所示:.【知识点】利用轴对称设计图案、利用旋转设计图案19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.【解答】解:如图所示:【知识点】利用轴对称设计图案20.如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影)(1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴;(2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可)【解答】解:(1)如图①所示:即为所求;(2)如图②所示:即为所求.【知识点】利用轴对称设计图案。
苏科版八年级上册数学2.3《设计轴对称图案》课件 (共27张PPT)-经典教学教辅文档

作图元素
放一些财务数据或者市场份额(国内、国际)、产品归 类、组织结构之类的文字,反白字,加阴影。
TMG
AGW
作图元素
产品示意图标,使用时标上名称。 (组网图不能使用产品实物图, 所以大家要善于运用此示意图标)
Soft X (CS)
策略管理服务器
SGW 信令网关
GK
C&C08 iNET
MSR多业务交换机 (ATM/IP/MPLS)
路由器
原则上产品 都要用右边 的符号,但 对于无法用 符号表达的 就用此色块 示意,标上 名称即可。
ATM交换机
MD
MPLS
3、这些图标大部分都有一定的透视,如果您注意其透视的 一致性,再加以有透视感的组网线,可以画出一张立体 的组网图。
4、缩放时,按Shift键及鼠标点图片选框的角部,避免变形 5、胶片尽量使用此图库,使公司资料风格统一
常用字列表
作图元素 小区、业务平台等的表示图标,上面放终端或产品示意图
作图元素 立体部件化组合
1、收集并欣赏与轴对称有关的图案、花纹、商标、剪纸等. 2、利用所学知识再创作一些图案、花纹、商标、剪纸等,并与同学交流.
本节课的体会:
1、能按要求完成某些轴对称图案. 2、会设计简单轴对称标志; 3、感受轴对称的美.
Office
Type : Image
Type : Image
Type : Image
目标: 1、会按要求设计轴对称图案; 2、展示创作作品,培养学生美感;
准备: 1、3×3方格纸 2、4×4方格纸
重点: 作品要符合要求.
1.3 设计轴对称图案
轴对称图形均衡、和谐,给人以美的享受!
(无对称轴) 注意:轴对称的图案,除图形对称外,还包括色彩之内,即颜色也“对称”
苏科版八年级数学上册《2.3-设计轴对称图案》同步练习题(带答案)

苏科版八年级数学上册《2.3 设计轴对称图案》同步练习题(带答案)一、选择题(在每小题列出的选项中,选出符合题目的一项)1. 下列四个图案中,可以看作是轴对称图形的是( )A. B. C. D.2. 如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有( )A. 1个B. 2个C. 3个D. 4个3. 如图,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形的办法有种.( )A. 3B. 4C. 5D. 64. 把一张长方形纸片按如图 ① ②所示的方式从右向左连续对折两次后得到图 ③,再在图 ③中挖去一个三角形小孔,则重新展开后得到的图形是( )A. B.C. D.5. 如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的ΔABC为格点三角形,在图中最多能画出个格点三角形与ΔABC成轴对称.( )A. 6个B. 5个C. 4个D. 3个6. 在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到给出的有字母标号的四个空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,其中不正确的是( )A. AB. BC. CD. D7. 如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则应把阴影凃在图中标有哪个数字的格子内( )A. 1B. 2C. 3D. 48. 如图是嘉嘉把纸折叠后剪出的图案,将剪纸展开后得到的图案是( )A. B.C. D.二、填空题9. 如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.10. 如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有______ 个.11. 如图,为某种药品的商业标志图案,可以视为利用图形的______ 设计,也可视为利用图形的______ 设计.12. 如图,在3×3的正方形网格中,其中有三格带阴影,若在剩下的6个空白小方格中任选其中1个加上阴影,使所得的图形是轴对称图形,则可选的那个小方格的位置有种.13. 如图所示,形状和大小都相同的四条小鱼正在一起吃食,则小鱼 ①与小鱼成轴对称,整个图案有条对称轴.14. 如图是3×3的正方形网格,要在图中再涂黑一个小正方形,使得图中黑色的部分成为轴对称图形,这样的小正方形有个.15. 在如图所示的由5个小正方形组成的图形中,再补上一个小正方形,使它成为轴对称图形,有种不同的方法.16. 如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余的小正三角形涂黑一个,使整个图案构成一个轴对称图形的方法有种.17. 在如图所示的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有________种.三、解答题(解答应写出文字说明,证明过程或演算步骤)18. 如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,并在下面所给的格纸中一一画出所有符合条件的三角形.(所给的六个格纸未必全用)19. 请在下面三个2×2的方格中,各作出一个与图中三角形成轴对称的图形,且所画图形的顶点与方格中小正方形的顶点重合,并给所画图形涂上阴影(所画的三个图形不能重复).20. 如图,以虚线为对称轴画出图形的另一半.21. 认真观察下面四幅图中阴影部分构成的图案,回答下列问题.(1)请你写出这四个图案都具有的两个共同特征:特征1:______;特征2:______.(2)请你借助下面的网格,设计出三个不同图案,使它也具备你所写出的上述特征.(注意:新图案与以上四幅图中的图案不能相同)22. 生活中因为有美丽的图案,才显得丰富多彩,以下是来自现实生活中的三个商标(图1、2、3)(1)以上三个图中轴对称图形有______ ,中心对称图形有______ ;(写序号)(2)请在图4中画出是轴对称图形但不是中心对称图形的新图案;在图5中画出是轴对称图形又是中心对称图形的新图案.答案1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】C8.【答案】A9. 【答案】310.【答案】311.【答案】平移轴对称12.【答案】213.【答案】 ② ③ ④ 414.【答案】515.【答案】416.【答案】317. 【答案】418. 【答案】解:如图,与△ABC成轴对称且以格点为顶点的三角形有5个,分别为△BCD,△BCE,△AFG,△HIJ,△ACK.19. 【答案】如图,任选三个即可.20. 【答案】如图所示.21. 【答案】(1)都是轴对称图形;阴影部分面积都为4;(2)如图(答案不唯一,满足(1)中的两个特征即可).22. 【答案】解:(1)图1、2、3是轴对称图形,图1、3是中心对称图形;(2)如图:。
八年级数学上册 第2章 轴对称图形《2.3 设计轴对称图案》同步练习(含解析)(新版)苏科版

《2.3 设计轴对称图案》一、选择题1.(3分)羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.42.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.3.(3分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12 B.18 C.2+D.2+2二、解答题4.如图所示图形曾被哈佛大学选为人学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图形空白处填上恰当的图形.5.请你应用轴对称的知识画出图中的三个图形,并涂上彩色,与同学比一比,看谁画得正确、漂亮.6.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)7.以直线l为对称轴,画出图形的另一半.8.利用如图设计出一个轴对称图案.9.某居民小区搞绿化,要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在如图矩形中画出你的设计方案.10.如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.11.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.12.仔细观察图(1)、图(2)、图(3)中阴影部分图案的共同特征,在图(4)、图(5)中再设计两幅具备上述特征的图案.(每小格面积为1)13.如图,有两个7×4的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时满足以下要求:(1)线段的一端点为梯形的顶点,另一个端点在梯形一边的格点上;(2)将梯形分成两个图形,其中一个是轴对称图形;(3)图1、图2中分成的轴对称图形不全等.14.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.15.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.《2.3 设计轴对称图案》参考答案与试题解析一、选择题1.羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:美、善都是轴对称图形;而洋、祥都不是轴对称图形.故选B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【考点】剪纸问题.【专题】计算题.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.3.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12 B.18 C.2+D.2+2【考点】剪纸问题.【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线①为矩形的对称轴,依据对称轴的性质虚线①平分矩形的长,即可得到沿虚线②裁下的直角三角形的短直角边为10÷2﹣4=1,虚线②为斜边,据勾股定理可得虚线②为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三角形的周长.【解答】解:根据题意,三角形的底边为2(10÷2﹣4)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2.答:展开后等腰三角形的周长为2+2.故选D.【点评】本题主要考查了剪纸问题以及考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来.二、解答题4.如图所示图形曾被哈佛大学选为人学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图形空白处填上恰当的图形.【考点】规律型:图形的变化类.【分析】仔细观察会发现它们都是轴对称图形,所以在空白处再画一个轴对称图形即可.【解答】解:从图中可以发现所有的图形都是轴对称图形,而且图形从左到右分别是1﹣7的数字,所以画一个轴对称图形且数字为6即可.故答案为:.【点评】本题是一道规律型的题,首先要从图中找出规律,然后再根据规律画图.但还是考查了轴对称图形的性质.5.请你应用轴对称的知识画出图中的三个图形,并涂上彩色,与同学比一比,看谁画得正确、漂亮.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:沿一条直线折叠,直线两旁的部分能够互相重合的图形涂色即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.6.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)【考点】图形的剪拼;利用轴对称设计图案.【分析】根据轴对称图形的法则去画即可,有多种图形.【解答】解:(1)所作图形如下所示:【点评】此题是图形的剪拼,主要考查学生对轴对称图形的理解以及操作能力.7.以直线l为对称轴,画出图形的另一半.【考点】作图-轴对称变换.【分析】直接利用轴对称图形的性质得出对应点位置进而得出答案.【解答】解:如图所示:【点评】此题主要考查了作轴对称变换,正确得出对应点位置是解题关键.8.利用如图设计出一个轴对称图案.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:沿一条直线折叠,直线两旁的部分能够互相重合的图形涂色即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.9.某居民小区搞绿化,要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在如图矩形中画出你的设计方案.【考点】利用轴对称设计图案.【专题】方案型;开放型.【分析】根据轴对称图形的定义设计.即图形沿某一直线对折,图形能完全重合.【解答】解:【点评】本题主要考查了轴对称图形的性质.10.如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.【考点】轴对称图形.【分析】结合轴对称图形的概念进行解答即可.【解答】解:.(答案不唯一).【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.【考点】利用轴对称设计图案.【分析】只要满足12个场馆排成6排,且形成的图形是轴对称图形即可.【解答】解:如图所示:.【点评】本题考查了利用轴对称设计图案的知识,属于开放型题目,答案不唯一.12.仔细观察图(1)、图(2)、图(3)中阴影部分图案的共同特征,在图(4)、图(5)中再设计两幅具备上述特征的图案.](答案不唯一)【点评】本题考查轴对称图形的特点:沿某条直线折叠,直线两旁的部分能够互相重合.14.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念作图.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴,以16个相同的小正方形构成的大正方形的对称轴作出图形即可.【解答】解:作图如下:【点评】此题考查了轴对称图形和轴对称的作图方法.轴对称图形要找对称轴,轴对称要找关于对称轴对应的点.15.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.【考点】利用轴对称设计图案;等边三角形的性质.【分析】根据轴对称轴图形的定义,画出图形即可.【解答】解:如图所示,①表示劳动工具,②电灯泡,③路标.【点评】本题考查对称轴图形的定义、等边三角形的性质等知识,解题的关键是理解题意,属于创新题目.11。
苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习

苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.1 轴对称与轴对称图形一、自主先学1. 观察下列各种图形,判断是否为轴对称图形?如果是,并找出该轴对称图形的对称轴。
2. 下列图片有什么共同特性?二、合作助学3. 折纸印墨迹:在纸的一侧滴一滴墨水后,对折,压平.(1)你发现折痕两边的墨迹形状一样吗?为什么?(2)两边墨迹的位置与折痕有什么关系?(3)归纳:把一个图形沿着某一条直线翻折,如果它能够与另一个图形,那么称这两个图形关于这条直线,也称这两个图形成,这条直线叫做,两个图形中的对应点叫做.4. 观察下列图案,它们有什么共同特征?(1)归纳:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相,那么称这个图形是图形,这条直线叫做.(2)画出上面各图的对称轴.5. 轴对称与轴对称图形的区别与联系.如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个;如果把一个轴对称图形位于轴对称两旁的部分看成两个图形,那么这两部分就成.三、拓展导学6. (1) 正五边形(各边相等且各角也相等的五边形,如图①)有几条对称轴?(2)在图中画一条对角线得到图②,图②有几条对称轴?(3 ) 如果在图②中再画一条对角线,那所得的图形有几条成轴对称?①②四、检测促学7. 下列图形中,是.轴对称图形的为()A. B. C. D.8. 如图,由4个全等的正方形组成L形图案,(1)请你在图案中改变1个正方形的位置,使它变成轴对称图案;(2)请你在图中再添加一个小正方形,使它变成轴对称图案.五、反思悟学9. (1)剪两个全等的三角形,并把它们叠合在一起;(2)把其中的一个三角形沿一边翻折,所得的图形是轴对称图形吗?如果是,指出它的对称轴;(3)再改变其中一个三角形的位置,使这两个三角形成轴对称.lA'B'C'A BCCBAAA'B'苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(1)一、自主先学1. 操作:把一张纸折叠后,用针扎一个孔,再把纸展开,两针孔分别记为点A 、点A ’,折痕记为l . (1) 在下面空白处画出你得到的图形 . (2)连接AA ’, AA ’与 l 相交于点O , 线段AA ’与 l 有什么关系?(可以从位置、数量两个角度考虑)二、合作助学2. 操作:将一张长方形的纸片对折;在纸上画△ABC ;用针尖沿△ABC 各顶点扎小孔将纸展开,连接AA ’、BB ’、CC ’ .① ② ③(1)线段AA ’、BB ’、CC ’与折痕l 有什么关系?(2)图中,线段AB 与''A B 有什么关系?BC 与''B C 呢?(3)图中ABC ∆与'''C B A ∆有什么关系?(4)归纳:垂直并且 一条线段的直线,叫做这条线段的 .如图,直线l 交线段AB 于点O ,∠1 = 90º , AO = BO ,直线l 是线段AB 的垂直平分线. (5) 轴对称的性质:成轴对称的两个图形 , 对应点的连线被对称轴 .3. 如图,线段AB 与''A B 关于直线l 对称. 连接AA ’、BB ’,设它们分别与l 相交于点P 、Q.(1)在所画的图形中,相等的线段有: ; (2)AA ’与BB ’ 平行吗?为什么?三、拓展导学4. 你能求出这7个角的和吗?321BCDA 第5题第6题四、检测促学5.下列说法中,正确的是 ( ) A .关于某直线对称的两个三角形是全等三角形; B .两个全等的三角形是关于某直线对称的;C .两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧;D .若点A 、B 关于直线MN 对称,则AB 垂直平分MN .6.如图,所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°则∠3=_ __°. 7.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积是 cm 2. 8.分别画出下列各图中成轴对称的两个图形的对称轴.① ② ③五、反思悟学9.如何画成轴对称的两个图形或轴对称图形的对称轴?lAlllBAABABl ABC苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(2)一、自主先学1. 思考:如图,点 A 、B 、C 都在方格纸的格点上. 请你再找一个格点D ,使点 A 、B 、C 、D 组成一个轴对称图形.小结:画轴对称图形,应先确定 ,再找出 .2. 如果直线l 外有一点A ,那么怎样画出点A 的对称点A ’?画法图形1. 画AO ⊥l , 垂足为O.2. 在AO 的延长线上截取OA ’,使 OA ’ =AO.点A ’ 就是点A 关于直线l 对称的点.二、合作助学3. 操作:(1)在图①中,用三角尺画线段AB 关于直线l 对称的线段A ’B ’; (2)在图②中,用三角尺画△ABC 关于直线l 对称的△A ’B ’C ’.① ②小结:画一个图形关于一条直线对称的图形,关键是确定 .4. 讨论:在图中,四边形ABCD 与四边形EFGH 关于直线l 对称.连接AC 、BD .设它们相交于点P .怎样找出点P 关于l 的对称点Q ?C ABll BCAOA'B'BAl 第6题第7题DACB小结:成轴对称的两个图形的 也成轴对称. 三、拓展导学5. 如图,三角形Ⅰ的2个顶点分别在直线上1l 和2l 上 ,且1l ⊥2l .画三角形Ⅱ,使它与三角形Ⅰ关于直线2l 对称; 画三角形Ⅲ,使它与三角形Ⅱ关于直线1l 对称; 画三角形Ⅳ,使它与三角形Ⅲ关于直线2l 对称. 所画的三角形Ⅳ与三角形Ⅰ成轴对称吗? 四、检测促学6. 用三角尺画△ABC 关于直线l 对称的三角形.① ②7. 如图,线段AB 与A ’B ’关于对称,AA ’ 交直线 l 于点O.(1)把线段AB 沿直线 l 翻折,重合的线段有: .(2)因为 △OAB 与 △O ’A ’B ’关于直线 l ,所以△OAB ≌△O ’A ’B ’,直线 l 垂直平分线段 ,∠ABO = ,∠AOB ’= . 五、反思悟学8. 如图,长方形的台球桌CDEF 内有黑、白两 球分别位于A 、B 两点,试问怎样撞击白球 A 才能使A 先碰到桌边DE ,反弹后再击中 黑球B?苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.3设计轴对称图案一、自主先学观察、欣赏课本上的绿色食品标志、中国环境标志、国家免检产品标志等,说出这些标志的含义,判断它们是否是轴对称图形,它们是怎么样设计的?你还见过哪些在生活中见过的图案,成轴对称的?(可从一些商标、会徽、车标等方面去发挥)二、合作助学1.对称的美术图案,除图形对称外,有时颜色也要“对称”。
八年级数学苏科版上册课时练第2单元《2.3设计轴对称图案》 练习试题试卷 含答案

课时练2.3设计轴对称图案一.选择题(共5小题)1.下列由全等的等边三角形拼成的图形中,不是轴对称图形的是()A.B.C.D.2.如图,在44´正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个3.如图,正方形网格中,已有两个小正方形被涂黑,再涂黑另外一个小正方形,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5B.6C.4D.74.如图,是44´正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有( )A.1个B.2个C.3个D.4个5.在44´的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有()种.A.5B.6C.8D.13二.填空题(共5小题)6.在44´的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有种.7.如图,在22´的正方形格纸中,有一个以格点为顶点的ABCD,请你找出格纸中所有与D成轴对称且也以格点为顶点的三角形,这样的三角形共有个.ABC8.如图,图案甲是由左面的五种基本图形中的两种拼接而成的,这两种基本图形是.9.如图是44´正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.10.仔细观察下列图案,并按规律在横线上画出合适的图形.三.解答题(共13小题)11.在下列的图形上补一个小正方形,使它成为一个轴对称图形.12.如图,在43´正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.13.(1)观察图①~图④中阴影部分的图形,写出这4个图形具有的两个共同特征:;.(2)在图⑤中设计一个新的图形,使它也具有这两个共同特征.14.利用网格作图,(1)请你在图①中画出线段AB关于线段CD所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.15.在44´的方格中有三个同样大小的正方形如图摆放,请你在图1-图3中的空白处添加一个正方形方格(涂黑),使它与其余三个黑色正方形组成的新图形是一个轴对称图形.16.在44´的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,请在备用图中画出4种不同的轴对称图形.17.指出各图形各有多少条对称轴,并在各个轴对称图形上画出它所有的对称轴.18.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.19.在44´的方格中有五个同样大小的正方形如图摆放,请你在图1-图4中的空白处添加一个正方形方格,使它与其余五个正方形组成的新图形是一个轴对称图形.20.观察图①~④中阴影部分构成的图案:(1)请写出这四个图案都具有的两个共同特征;.(2)在图⑤、⑥中各设计一个新的图案,使该图案同时具有图①~④中的两个共同性质.21.如图,由小正方形组成的L形图中,请你用三种方法分别在图中添加一个小正方形使它成为轴对称图形.22.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使A、B、C、D 组成一个轴对称图形.23.如图,OP是MONÐ的平分线,请你利用该图形,用三角板和圆规画一对以OP所在直线为对称轴的全等三角形,并标注字母.你画的是△@△,依据是.参考答案一.选择题(共5小题)1.D.2.D.3.A.4.C.5.D.二.填空题(共5小题)6.4.7.5.8.②⑤.9.4.10..三.解答题(共13小题)11.解:如图所示.12.解:如图所示,答案不唯一,参见下图.13.解:(1)答案不唯一,例如四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;故答案为:都是轴对称图形;面积都等于四个小正方形的面积之和;(2)答案示例:.14.解:(1)、(2)如图所示:.15.解:如图所示:.16.解:如图所示..17.解:(1)有6条对称轴;(2)有4条对称轴;(3)有1条对称轴;(4)有2条对称轴;(5)有1条对称轴;(6)有1条对称轴;作图如下:18.解:作图如下:19.解:如图所示..20.解:(1)这四个图案都具有的两个共同特征轴对称图形;旋转得到,故答案为:轴对称图形,旋转得到;(2)如图:.21.解:如图:22.解:如图所示:23.解:作图过程:以O为圆心任意长为半径作弧,交射线ON,OM为C,B两点,在射线OP上任取一点(A O点除外),连接AB,AC,所得AOB AOCD@D,Ð=Ð,,OA是公共边,OP是角平分线AOB AOC=OB OC\全等的依据是SAS.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3设计轴对称图案(课堂练习纸)
一、情境创设
欣赏轴对称图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?
请用1个等腰三角形、2个矩形、3个圆,设计一个轴对称图形,并用简练的文字说明你的创意. 二、探索活动
1.对称的美术图案,除图形对称外,有时颜色也“对称”.如果不包括色彩因素在内,下列图形有几条对称轴?请你画出图中的对称轴.
2.如果不考虑颜色的“对称”,图2-13中(1)和(2)中各有几条对称轴?考虑颜色的“对称”呢?
3.如果将图2-13(1)中左上方和右下方的小方格也涂上色,那么它有几条对称轴? 4.改变图2-13(2)哪些小方格的颜色,就能使它有4条对称轴? 5.(补充习题26页第4题)如图是由4个小正方形组成的图形,请你用3种方法分别在每个图形中各添加1个小正方形,使所得的图形是轴对称图形.
三、数学实验
1.制作4张如图 的正方形纸片,将纸片拼合.
用这四张纸片拼合,能得到不同的图案.下列图案是轴对称图形吗?如果是,画出它的对称轴.
图(2) 图(3)
图(1)
这些图案可以看成是由一个小正方形纸片经过怎样的变换得到的? 2.你拼出的图案是轴对称图形吗?如果是,有几条对称轴?
3.请用2块大小一样的三角尺(两锐角分别是60°和30°)拼出不同的轴对称图形,你能拼出几种? 四、思考:(课本45页) 如图,点C B A 、、都在方格纸的格点上.请找出符合条件的格点D . (1)使C 、D 关于AB 所在直线对称;(2)使C 、D 关于AB 垂直平分线对称; (3)使图中的4点组成一个轴对称图形.
五、课堂练习
1.在5×7的方格纸上,任意选出5个小方块涂上颜色,使着色的图形有:
(1)1条对称轴; (2)2条对称轴; (3)4条对称轴.
2.为了美化环境,需要在一块正方形空地上分别种植四种不同的花草,现将这块空地按下列要求分成四块:(1)四块图形形状相同;(2)四块图形面积相等.
现已经有两种不同的分法: ①分别作两条对角线如图(1);
②过一条边的四等分点作这边的垂线段如图(2).(图中两图形的分割看做同一方法) 请你按照上述两个要求画出另外两种不同的分割方法.(只要求正确画图,不写画法)
3.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同的共有 种.
4.(课本50页习题第2题)。