高二数学 3.2.2复数的基本运算

合集下载

3.2.2 复数代数形式的乘除运算

3.2.2 复数代数形式的乘除运算

+
������������2������+-���������������2��� i(c+di≠0).
名师点拨复数的除法和实数的除法有所不同,实数的除法可以直
接约分、化简得出结果;而复数的除法是先将两复数的商写成分式,
然后分母实数化(分子、分母同乘分母的共轭复数).
【做一做 3】 计算:24+-33ii.
集.
答案:B
探究一
探究二
探究三
思维辨析 当堂检测
课堂篇探究学习
一题多解(变)——复数的综合问题
典例
(1)已知复数
z=(1-
3+i 3i)2
,
������是
z
的共轭复数,则
z·������等于(
)
A.1
B.1
4
2
C.1
D.2
(2)已知复数 z 满足|z|= 5,且(1-2i)z 是实数,求������.
3 4

4i ,∴z·������
=
14.
法二:∵z=(1-3+3ii)2,
3.实数范围内整数指数幂的运算律在复数范围内仍然成立,即对 复数z,z1,z2和自然数n,m,有:
zm·zn=zm+n,(zm)n=zmn,(z1·z2)n=������1������ ·������2������ .
课前篇自主预习
【做一做1】 (1)(4-i)(3+2i)=
.
(2)(-3+2i)2=
=0×504+i2 016=1.
探究一
探究二
探究三
思维辨析 当堂检测
课堂篇探究学习
反思感悟利用i幂值的周期性解题的技巧 1.熟记i的幂值的4个结果,当幂指数除以4所得的余数是0,1,2,3时, 相应的幂值分别为1,i,-1,-i. 2.对于n∈N*,有in+in+1+in+2+in+3=0.

第三章3.2.2复数代数形式的乘除运算

第三章3.2.2复数代数形式的乘除运算

3.2.2 复数代数形式的乘除运算 课时目标 1.掌握复数代数形式的乘法和除法运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念.1.复数的乘法法则设z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R ),则z 1·z 2=(a +b i)(c +d i)=________________.2.复数乘法的运算律对任意z 1、23交换律 z 1·z 2=____________ 结合律 (z 1·z 2)·z 3=__________乘法对加法的分配律 z 1(z 2+z 3)=____________3.设z =a +b i (a ,b ∈R ),则z =___________叫z 的共轭复数.若b ≠0,则z 叫虚数z 的________虚数,且z +z =______,z -z =________,两共轭复数在复平面内所对应点关于________对称.4.a +b i c +d i=_____________________________. 5.设i 为虚数单位,则i 1=______,i 2=______,i 3=_______,i 4=______.一、选择题1.复数i 3(1+i)2等于( )A .2B .-2C .2iD .-2i2.已知a +2i i=b +i(a ,b ∈R ),其中i 为虚数单位,则a +b 等于( ) A .-1 B .1 C .2 D .33.设i 是虚数单位,则i 3(i +1)i -1等于( ) A .-1 B .1 C .-i D .i4.若x -2+y i 和3x -i 互为共轭复数,则实数x 与y 的值是( )A .x =3,y =3B .x =5,y =1C .x =-1,y =-1D .x =-1,y =15.设z 的共轭复数是z ,若z +z =4,z ·z =8,则z z 等于( )A .iB .-iC .±1D .±i二、填空题 6.已知复数z =1+i ,则2z-z =________. 7.设复数z 满足z (2-3i)=6+4i(i 为虚数单位),则z 的模为________.8.若21-i=a +b i (a ,b ∈R ,i 是虚数单位),则a +b =________.三、解答题9.计算:(1)(2+i)(2-i);(2)(1+2i)2;(3)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i.10.已知x ,y 为共轭复数,且(x +y )2-3xy i =4-6i ,求x ,y 的值.能力提升11.复数z =i 1+i在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限12.已知关于x 的方程x 2+(k +2i)x +2+k i =0有实根,求这个实根以及实数k 的值.1.复数的乘法与多项式乘法是类似的,在所得结果中把i 2换成-1.2.复数除法的实质是“分母实数化”,一般可以分子分母同乘以分母的共轭复数.3.解决复数问题时,可以将问题转化为复数的实虚部满足的条件,即实数化思想.3.2.2 复数代数形式的乘除运算答案知识梳理1.(ac -bd )+(ad +bc )i2.3.a -b i 共轭 2a 2b i x 轴4.ac +bd c 2+d 2+bc -ad c 2+d 2i (c +d i ≠0) 5.i -1 -i 1作业设计1.A [i 3(1+i)2=i 3·2i =2i 4=2,选A.]2.B [∵a +2i i=b +i ,∴a +2i =b i -1. ∴a =-1,b =2,∴a +b =1.]3.A [∵i +1i -1=(1+i )2-(1-i )(1+i )=2i -2=-i , ∴i 3(i +1)i -1=i 3·(-i)=-i 4=-1.] 4.D [x -2=3x ,y =-(-1),即x =-1,y =1.]5.D [设z =x +y i (x ,y ∈R ),则z =x -y i , 依题意2x =4且x 2+y 2=8,解之得x =2,y =±2.∴z z =z 2z ·z =(2±2i )28=±i.] 6.-2i解析 2z -z =21+i -1-i =2(1-i )(1+i )(1-i )-1-i =-2i.7.2解析 方法一 ∵z (2-3i)=6+4i ,∴z =6+4i 2-3i =26i 13=2i ,∴|z |=2. 方法二 由z (2-3i)=6+4i ,得z =6+4i 2-3i. 则|z |=⎪⎪⎪⎪⎪⎪6+4i 2-3i =|6+4i||2-3i|=62+4222+32=2. 8.2解析 由21-i=a +b i ,得2=(a +b i)·(1-i), ∴2=a +b +(b -a )i ,(a ,b ∈R ),由复数相等的定义,知a +b =2.9.解 (1)(2+i)(2-i)=4-i 2=4-(-1)=5;(2)(1+2i)2=1+4i +(2i)2=1+4i +4i 2=-3+4i.(3)方法一 原式=⎣⎡⎦⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i.方法二 (技巧解法)原式=⎣⎡⎦⎤(1+i )226+(2+3i )i (3-2i )i=i 6+(2+3i )i 2+3i=-1+i. 10.解 设x =a +b i (a ,b ∈R ),则y =a -b i.又(x +y )2-3xy i =4-6i ,∴4a 2-3(a 2+b 2)i =4-6i ,∴⎩⎪⎨⎪⎧4a 2=4,a 2+b 2=2,∴⎩⎪⎨⎪⎧ a =1,b =1,或⎩⎪⎨⎪⎧ a =1,b =-1,或⎩⎪⎨⎪⎧ a =-1,b =1,或⎩⎪⎨⎪⎧ a =-1,b =-1. ∴⎩⎪⎨⎪⎧ x =1+i ,y =1-i ,或⎩⎪⎨⎪⎧ x =1-i ,y =1+i ,或⎩⎪⎨⎪⎧ x =-1+i ,y =-1-i ,或⎩⎪⎨⎪⎧ x =-1-i ,y =-1+i. 11.A [∵z =i 1+i =i (1-i )(1+i )(1-i )=1+i 2=12+12i , ∴复数z 在复平面上对应的点位于第一象限.]12.解 设x =x 0是方程的实根,代入方程并整理得(x 20+kx 0+2)+(2x 0+k )i =0,由复数相等的充要条件得⎩⎪⎨⎪⎧x 20+kx 0+2=02x 0+k =0, 解得⎩⎨⎧ x 0=2k =-22或⎩⎨⎧ x 0=-2k =22, ∴方程的实根为x =2或x =-2,相应的k 值为k =-22或k =2 2.。

2014-2015学年高中数学(人教版选修2-2)配套课件第三章 3.2 3.2.2 复数代数形式的乘除运算

2014-2015学年高中数学(人教版选修2-2)配套课件第三章 3.2 3.2.2 复数代数形式的乘除运算

z2 · z1 z1· z2=________ z1 ( z2 · z3 ) (z 1 · z2)· z3=________
1 z2 + z1 z3 z1(z2+z3)=z ________
栏 目 链 接
基 础 梳 理
例:(1) (2+i)i=__________________; (2)(1-2i)(3+i)=________________.
解析:(1)原式=1-i2+(-1+i)=2-1+i=1+i.
3 3 3 1 (2)原式=- - +4-4i(1+i) 4 4 3 1 =- + i(1+i) 2 2 3 1 1 3 =- - + - i 2 2 2 2
栏 目 链 接
1+ 3 1- 3 =- + i. 2 2
-2+3i -2+3i1-2i (3)原式= = 1+2i 1+2i1-2i -2+6+3+4i 4 7 = = + i. 5 5 12+22 5-29 5 i 5-29 5 i7+3 5 i (4)原式= = 7-3 5 i 7-3 5 i7+3 5 i 35+29×15+15 5-29×7 5i 470-188 5 i = = 2 2 94 7 +3 5 =5-2 5 i.
2 2 2 2
栏 目 链 接
基 础 梳 理
例:i+2 的共轭复数是( A.2+i C.-2+i
答案:B
)
B.2-i D.-2-i
栏 目 链 接
+ 2
4 . i
4n + 1
4n i - 1 - i 1 = ______________ , i

i -1 -i 1 , ____________
i -1 -i 1, i4n + 3 = ____________

3.2.2复数代数形式的乘除运算

3.2.2复数代数形式的乘除运算
设复数 z 12i (m∈R)在复平面内 mi
对应的点为Z,若点Z位于第一象限,求实
数m的取值范围.
课堂小结
1.复数相乘类似于多项式相乘,只要在所得的结 果中把i2 换成-1,并且把实部和虚部分别合并. 2.实数系中的乘法公式在复数系中仍然成立. 3.共轭复数的相关概念. 4.复数代数形式的除法实质:分母实数化. 5.体会类比的方法.
1.理解复数代数形式的乘除运算法则. 2.会进行复数代数形式的乘除运算. 3.了解互为共轭复数的概念.
类比(a+b)×(c+d)
=ac+ad+bc+bd
计算:(1+3i)(2-3i)
=1×2+1×(-3i)+2×3i+3i×(-3i) =2-3i+6i-9i2 =11+3i
合作探究
探究1: 复数代数形式的乘法运算 设z1=a+bi,z2=c+di 是任意两个复数,那么它们 乘积为: (a+bi)(c+di)= ac+adi+bci+bdi2 = ac+adi+bci-bd = (ac-bd)+(ad+bc)i.
探究2:复数的乘法是否满足交换律,结 合律以及乘法对加法的分配律?
对任意z1 ,z2 ,z3 ∈C,有
z1·z2=z2·z1
(交换律)
(z1·z2)·z3= z1·(z2·z3) (结合律)
z1(z2+z3)=z1·z2+z1·z3
(分配律)
例2 计算: (1)(1+i)2; (2)(3+4i)(3-4i);
这与作根式除法时的处理是很类似的.

高二数学复数的加减乘除与运算规则

高二数学复数的加减乘除与运算规则

高二数学复数的加减乘除与运算规则复数是数学中的一个重要概念,它由实部和虚部组成,可以表示为a+bi的形式,其中a是实部,b是虚部,i是虚数单位。

在高二数学中,我们学习了复数的加减乘除与运算规则,它们是我们在解决复数相关问题时的基础。

本文将对这些运算规则进行详细的介绍。

一、复数的加法与减法规则复数的加法规则很简单,实部相加得到新的实部,虚部相加得到新的虚部。

例如,给定两个复数z1=a+bi和z2=c+di,它们的和可以表示为(z1+z2) = (a+c) + (b+d)i。

同样地,复数的减法规则也很直观,实部相减得到新的实部,虚部相减得到新的虚部。

例如,给定两个复数z1=a+bi和z2=c+di,它们的差可以表示为(z1-z2) = (a-c) + (b-d)i。

二、复数的乘法规则复数的乘法规则需要我们对两个复数进行分配律的运算。

设有两个复数z1=a+bi和z2=c+di,我们首先计算实部的乘积,然后计算虚部的乘积,最后将两部分相加。

所以,两个复数的乘积可以表示为:(z1*z2) = (a+bi)*(c+di) = (ac-bd) + (ad+bc)i三、复数的除法规则复数的除法规则与乘法规则有些类似,但需要注意的是,我们需要将除数的共轭复数乘以被除数,然后进行分配律的运算。

设有两个复数z1=a+bi和z2=c+di,我们首先计算两个复数的乘积,然后将乘积的实部和虚部除以除数的模的平方。

所以,两个复数的除法可以表示为:(z1/z2) = (a+bi)/(c+di) = [(a+bi)*(c-di)] / [(c+di)*(c-di)]= [(ac+bd) + (bc-ad)i] / (c^2 + d^2)以上就是高二数学中复数的加减乘除与运算规则的详细介绍。

通过掌握这些规则,我们可以更加熟练地进行复数的运算,解决与复数相关的问题。

同时,在实际应用中,我们可以利用这些规则简化计算,并应用到其他数学领域中。

高二复数数学知识点归纳总结

高二复数数学知识点归纳总结

高二复数数学知识点归纳总结复数是数学中一个重要的概念,由实部和虚部组成,常用形式为a+bi,其中a为实部,bi为虚部。

在高二数学学习中,我们接触到了许多与复数相关的知识点,包括四则运算、共轭复数、复数的乘方等。

本文将对这些知识点进行归纳总结。

一、复数的定义与表示复数是由实数和虚数构成的数,可以用a+bi的形式表示,其中a为实部,bi为虚部。

实部和虚部都是实数。

二、复数的四则运算1. 复数的加法:将实部相加,虚部相加,得到结果的实部和虚部。

例如:(3+2i) + (4+5i) = (3+4) + (2+5)i = 7 + 7i2. 复数的减法:将实部相减,虚部相减,得到结果的实部和虚部。

例如:(6+4i) - (2+3i) = (6-2) + (4-3)i = 4 + i3. 复数的乘法:使用分配律展开,将实部和虚部分别相乘,再进行合并。

例如:(2+3i) × (4+5i) = 2×4 + 2×5i + 3i×4 + 3i×5i = 8 + 10i + 12i + 15i² = (8-15) + (10+12)i = -7 + 22i4. 复数的除法:将被除数与除数的共轭复数相乘,然后进行合并,得到结果的实部和虚部。

例如:(8+2i) ÷ (3-4i) = (8+2i) × (3+4i) / (3-4i) × (3+4i) =(24+32i+6i+8i²) / (9+12i-12i-16i²) = (24+38i-8) / (9+16) = 16/25 + (38/25)i三、共轭复数1. 定义:两个复数实部相等、虚部互为相反数的复数称为共轭复数。

例如:对于复数a+bi,其共轭复数为a-bi。

2. 性质:- 两个复数的和的共轭等于它们的共轭的和。

- 两个复数的积的共轭等于它们的共轭的积。

- 一个复数与它的共轭的乘积等于它的实部的平方加上虚部的平方。

复数乘除法教案

复数乘除法教案
点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数 与复数 ,相当于我们初中学习的 的对偶式 ,它们之积为1是有理数,而 是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法
【典例分析】
例1计算
引导:可先将前两个复数相乘,再与第三个复数相乘.
点拨:在复数的乘法运算过程中注意将 换成-1.
提示:复数 为纯虚数,故可设 ,再代入求解即可.
【总结提升】
复数的乘法和除法运算是复数的基本运算,在学习时注意运算法则和方法,在乘法运算中注意把 换成-1,在除法运算中注意方法的本质依据,计算时注意准确性.
【作业布置】
习题5-2:2,4题目
反思
3.情感态度价值观
培养学生严密的推理能力,周到细密的计算能力.
重难点
重点:复数代数形式的除法运算
难点:对复数除法法则的运用.
课件名称
复数代数形式的乘除运算
上课时间
教学过程
【知识链接】
1.复数 与 的和的定义: ;
2.复数 与 的差的定义: ;
3.复数的加法运算满足交换律: ;
4.复数的加法运算满足结合律: ;
例4计算
引导:可先将分子化简,再按照除法运算方法计算,注意计算的准确性.
点拨:对于混合运算,注意运算顺序,计算准确.
【目标检测】
1.复数 等于( )
A. B. C. D.
2.设复数 满足 ,则 (ห้องสมุดไป่ตู้)
A. B. C. D.
3.复数 的值是( )
A. B. C. D.1
4.已知复数 与 都是纯虚数,求 .
(2)
(3)
点拨:两个复数相乘,类似两个多项式相乘,在所得的结果中把 换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.

【数学】3.2.2《复数的运算》课件(新人教B版选修2-2)

【数学】3.2.2《复数的运算》课件(新人教B版选修2-2)
3.2 复数的运算 3.2.1复数的加法和减法 3.2.1复数的加法和减法
1
复数的几何意义? 复习 复数的几何意义?
一一对应
复数z=a+bi
一一对应
直角坐标系中的点Z(a,b) 直角坐标系中的点
一一对应
uuu r 平面向量 OZ = ( a, b )
y
z=a+bi Z(a,b)Fra biblioteka bo
x
2
z = a + bi
z1·z2= z2·z1 , z1·z2 ·z3= z1·(z2 ·z3) , z1·(z2 +z3)= z1·z2 +z1·z3
.
13
二、复数除法的法则
复数的除法是乘法的逆运算,满足 (c+di)(x+yi)=(a+bi) (c+di≠0)的复数 x+yi , 叫做复数a+bi除以复数c+di的商, a+bi 记作 c+di .
y
Z(a+c,b+d) Z2(c,d)
Z1(a,b)
o
结论:复数的加法可以按照向量的加法来进行 结论: 复数的和对应向量的和。 复数的和对应向量的和。
x
7
问题探索
z = z1 − z 2 = ( a − c ) + ( b − d ) i
uuuur uuur uuuu r Z1Z 2 = OZ1 - OZ 2 = ( a , b ) - (c, d ) = ( a - c, b - d )
2.复数减法运算的几何意义? 2.复数减法运算的几何意义? 复数减法运算的几何意义 z2 = c + di 复数 z1 = a + bi uuuu r uuur OZ 2 = (c, d ) OZ1 = (a, b)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后练习题 1.复数2+i 1-2i 的共轭复数是( ) A .-35i B.35
i C .-i D .i
解析:选C.2+i 1-2i =(2+i )(1+2i )(1-2i )(1+2i ) =2-2+5i 5
=i , ∴2+i 1-2i
的共轭复数是-i. 2.已知a ∈R ,若(1-a i)(3+2i)为纯虚数,则a 的值为( )
A .-32 B.32
C .-23 D.23
解析:选A.∵(1-a i)(3+2i)=(3+2a )+(2-3a )i 为纯虚数,
∴⎩
⎪⎨⎪⎧3+2a =0,2-3a ≠0,解得a =-32. 3.若复数z 满足z =i(2-z )(i 是虚数单位),则z =________.
解析:∵z =i(2-z ),
∴z =2i -i z ,
∴(1+i)z =2i ,
∴z =2i 1+i
=1+i. 答案:1+i
4.若z 1=a +2i ,z 2=3-4i ,且z 1z 2
为纯虚数,则实数a 的值为________. 解析:z 1z 2=a +2i 3-4i =(a +2i )(3+4i )25=3a -8+(4a +6)i 25
=3a -825+4a +625
i. 因为z 1z 2
为纯虚数,所以3a -8=0且4a +6≠0, 所以a =83
. 答案:83
[A 级 基础达标]
1.已知复数z =1-2i ,那么1z
=( ) A.55+255i B.55-255
i C.15+25i D.15-25
i 解析:选D.1z =11+2i =1-2i (1+2i )(1-2i )=1-2i 5
=15-25
i. 2.若复数z 满足方程z 2+2=0,则z 3等于( )
A .±2 2
B .-2 2
C .-22i
D .±22i
解析:选D.∵z 2+2=0,∴z =±2i ,
∴z 3=±22i. 3.复数z =2-i 2+i
(i 为虚数单位)在复平面内对应的点所在象限为( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限
解析:选D.z =2-i 2+i =(2-i )(2-i )(2+i )(2-i ) =3-4i 5=35-45
i , 所以z 在第四象限.
4.若复数(1+a i)(2-i)的实部与虚部相等,则实数a =__________.
解析:∵(1+a i)(2-i)=(2+a )+(2a -1)i 的实部与虚部相等,∴2+a =2a -1.∴a =3. 答案:3
5.已知z 1=(1+2i )4(3-i )3,z 2=z 12-i
,则|z 2|=________. 解析:|z 2|=⎪⎪⎪⎪⎪⎪(1+2i )4(3-i )3(2-i )=|(1+2i )4||(3-i )3|·|2-i|
=(5)4(10)3×5=122=24
. 答案:
24
6.已知复数z =1+i ,求实数a ,b ,使az +2b =(a +2z )2.
解:因为z =1+i ,
所以az +2b =(a +2b )+(a -2b )i ,
(a +2z )2=(a +2)2-4+4(a +2)i
=(a 2+4a )+4(a +2)i.
因为a ,b 都是实数,
所以由az +2bz -=(a +2z )2,得⎩
⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2). 两式相加,整理得a 2+6a +8=0,解得a 1=-2,a 2=-4.对应求得b 1=-1,b 2=2.
所以所求实数为a =-2,b =-1或a =-4,b =2.
[B 级 能力提升] 7.已知 =2+i ,则复数z =( )
A .-1+3i
B .1-3i
C .3+i
D .3-i
解析:选B.由题意知 =(2+i)(1+i)=1+3i ,∴z =1-3i.
8.已知z 1=-2-3i ,z 2=3-2i (2+i )2
,则z 1z 2=( ) A .-4+3i B .3+4i
C .3-4i
D .4-3i
解析:选D.∵z 1=-2-3i ,z 2=3-2i (2+i )2
, ∴z 1z 2=(-2-3i )(2+i )23-2i =-i (3-2i )(2+i )2
3-2i z z z 2z 2z 1z
i +
=-i(2+i)2=-(3+4i)i =4-3i.
9.已知复数z 1=3+4i ,z 2=t +i ,且z 2的共轭复数与z 1的积是实数,则实数t 的值为________. 解析:由题意知 =t -i(t ∈R), z 1=(t -i)(3+4i)=(3t +4)+(4t -3)i.
∵ z 1∈R ,∴4t -3=0,∴t =34
. 答案:34
10.已知1+i 是方程x 2+bx +c =0的一个根(b 、c 为实数).
(1)求b ,c 的值;
(2)试说明1-i 也是方程的根吗?
解:(1)因为1+i 是方程x 2+bx +c =0的根,
∴(1+i)2+b (1+i)+c =0,
即(b +c )+(2+b )i =0.
∴⎩⎪⎨⎪⎧b +c =02+b =0,得⎩
⎪⎨⎪⎧b =-2c =2. ∴b 、c 的值为b =-2、c =2.
(2)方程为x 2-2x +2=0.
把1-i 代入方程左边得(1-i)2-2(1-i)+2=0,显然方程成立,∴1-i 也是方程的一个根. 11.(创新题)设复数z 满足|z |=5,且(3+4i)z 在复平面上对应的点在第二、四象限的平分线上,|2z -m |=52,求复数z 和实数m 的值.
解:设z =x +y i(x ,y ∈R).
∵|z |=5,∴x 2+y 2=25.
又(3+4i)z =(3+4i)(x +y i)=(3x -4y )+(4x +3y )i ,
且对应的点在第二、四象限平分线上,
∴3x -4y =-(4x +3y ),化简得y =7x .
将它代入x 2+y 2=25得,
x =±22,y =±722
, ∴z =±(22+722
i). 当z =22+722
i 时,|2z -m |=|1+7i -m |=52,解得m =0或2; 当z =-(22+722
i)时,同理解得 m =0或-2.
2z 2z 2z。

相关文档
最新文档