梅涅劳斯定理入门篇
梅涅劳斯定理

梅涅劳斯定理如果一条直线与ABC ∆的三边AB 、BC 、CA 或其延长线交于F 、D 、E 点, 那么1=⋅⋅EACEDC BD FB AF .等价叙述:ABC ∆的三边AB 、BC 、CA 或其延长线上有三点F 、D 、E ,则F 、D、E 三点共线的充要条件是1=⋅⋅EACEDC BD FB AF 。
三点所在直线称为三角形的梅氏线。
证法1:(平行线分线段成比例)证:如图,过A 作BC AG //交EF 延长线于G ,∵BC AG //,∴BD AG FB AF =,AGCDEA CE =, 又CDBD CD BD =则1=⋅⋅=⋅⋅CD BD AG CD BD AG CD BD EA CE FB AF ∴1=⋅⋅EACEDC BD FB AF 梅涅劳斯定理的逆定理也成立,即如果有三点F 、D 、E 分别在ABC ∆的三边AB 、BC 、CA 或其延长线上,且满足1=⋅⋅EACEDC BD FB AF ,那么F 、D 、E 三点共线。
BG利用梅涅劳斯定理的逆定理可判定三点共线。
梅涅劳斯定理的应用定理1:若ABC ∆的A ∠的外角平分线交边BC 延长线于P ,B ∠的平分线交边AC 于Q ,C ∠的平分线交边AB 于R ,则P 、Q 、R 三点共线。
证:由三角形内、外角平分线定理知,CA BA PC BP =,AB BC QA CQ =,CB CARB AR =, 则1=⋅⋅=⋅⋅ABBCCA BA CB CA QA CQ PC BP RB AR , 故P 、Q 、R 三点共线。
例题赏析:已知:过ABC ∆顶点C 的直线,与边AB 及中线AD 分别交于点F 和E .求证:FBAFED AE 2=. 证明:直线CEF 截ABD ∆, 由梅涅劳斯定理,得:1=⋅⋅EADE CD BC FB AF又CD BC 2=,∴21=⋅EA DE FB AF , 则FBAFED AE 2=BDBC。
第一章梅涅劳斯定理

第一章 梅涅劳斯定理基础知识梅涅劳斯定理:证明:梅涅劳斯定理的逆定理:证明:典型例题与基本方法例1 如图,在四边形ABCD 中,ABD ∆,BCD ∆,ABC ∆的面积比是1:4:3,点N M ,分别在AC ,CD 上,满足CD CN AC AM ::=,并且N M B ,,共线.求证:M 与N 分别是AC 和CD 的中点.例2 如图,圆1O 与圆2O 和ABC ∆的三边所在的3条直线都相切,H G F E ,,,为切点,直线EG 与FH 交于点P .求证:BC PA ⊥.例3 已知ABC ∆的重心G ,M 是BC 边的中点,过G 作BC 边的平行线交AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P .证明:MPQ ABC DD .例4 ABC ∆是一个等腰三角形,AC AB =,M 是BC 的中点;O 是AM 的延长线上的一点,使得AB OB ⊥;Q 是线段BC 上不同于B 和C 的任意一点,E 在直线AB 上,F 在直线AC 上,使得F Q E ,,同一直线上的三个不同点.求证:(Ⅰ)若EF OQ ⊥,则QF QE =;(Ⅱ)若QF QE =,则EF OQ ⊥.例5 在凸四边形ABCD 的边AB 和BC 上取点E 和F ,使线段DE 和DF 把对角线AC 三等分,已知ABCD CDF ADE S S S 41==∆∆. 求证:ABCD 是平行四边形.例6 在ABC ∆中,1AA 为BC 边上的中线交BC 于1A ,2AA 为BAC ∠的平分线交BC 于2A ,K 为1AA 上的点,使AC KA //2. 证明:KC AA ⊥2.例7 给定锐角ABC ∆,在BC 边上取点21,A A (之间与位于C A A 12),在CA 边上取点21,B B (之间与位于A B B 12),在AB 边上取点21,C C (之间与位于B C C 12),使得122112211221C CC C CC B BB B BB A AA A AA ∠=∠=∠=∠=∠=∠,直线111,CC BB AA 与可构成一个三角形,直线222,CC BB AA 与可构成另一个三角形.证明:这两个三角形的六个顶点共圆.例8 以ABC ∆的底边BC 为直径作半圆,分别与边AB ,AC 交于点D 和E ,分别过点ED ,作BC 的垂线,垂足依次为G F ,,线段DG 和EF 交于点M .求证:BC AM ⊥.例9 已知凸四边形ABCD 的一组对边BA 与CD 的延长线交于M ,且//AD BC ,过M 作截线交另一组对边所在直线于L H ,,交对角线所在直线于','L H . 求证:'1'111ML MH ML MH +=+.例10 ABC ∆的内切圆分别切三边AB CA BC ,,于点F E D ,,,点X 是ABC ∆的一个内点,XBC ∆的内切圆在点D 处与BC 边相切,并与CX ,XB 分别相切于点Z Y ,. 证明:EFZY 是圆内接四边形.例11 如图,四边形ABCD 内接于圆,其边DC AB ,的延长线交于点P ,AD 和BC 的延长线交于点Q ,过Q 作该圆的两条切线,切点分别为F E ,.求证:F E P ,,三点共线.例12 已知ABC 的内切圆分别切AB CA BC ,,于点F E D ,,,线段CF BE 、分别与该内切圆交于点Q P 、,若直线BC FE 与交于圆外一点R . 证明:R Q P 、、三点共线.练习。
梅涅劳斯定理入门篇

梅涅劳斯定理(入门篇)雷雨田 (广西师范大学附属外国语学校高50班 541004)梅涅劳斯定理这个定理怎么记最好呢? 个人感觉“顶到分、分到顶、顶到分、分到顶、顶到分、分到顶”这样记忆来得非常容易不过找了很多资料,感觉仅仅是把这个定理(或者后面附一个逆定理)陈述然后证明完了之后,就直接给例题(或者直接讲赛瓦定理),看上去不怎么舒服,所以我把其他的一些东西附在这里,以供参考。
第一角元形式的梅涅劳斯定理(就是把线段比改为正弦值比)其表达式为:1=∠∠∙∠∠∙∠∠BA'B sin 'CBB sin CB 'C sin 'ACC sin AC 'A sin 'BAA sin 证明如下:如图所示,由三角形面积公式(正弦定理)可得:AC 'A sin AC 'BAA sin AB AC 'A sin AC 'AA 'BAA sin 'AA AB S S C 'A 'BA C 'AA 'ABA ∠⋅∠⋅=∠⋅⋅∠⋅⋅==∆∆2121 同理可得CB'C sin BC 'ACC sin AC B 'C 'AC ,BA 'B sin AB 'CBB sin BC A 'B 'CB ∠⋅∠⋅=∠⋅∠⋅=把这三个式子相乘,运用梅氏定理,就可得到这个式子怎么记最好呢?个人感觉根据梅涅劳斯定理中线段所对应的角来记忆最好。
第二角元形式的梅涅劳斯定理设O 是不在三角形ABC 三边所在直线上的任意一点,其他条件不变,则表达式为: 1=∠∠∙∠∠∙∠∠OA'B sin 'COB sin OB 'C sin 'AOC sin OC 'A sin 'BOA sin 现证明如下:B C A’如图,由C'A 'BA S S OC 'A 'BOA =∆∆ 可得A'B 'BA OB OC OC 'A sin 'OA B sin ⋅=∠∠同理得到另外两个对称式,相乘,运用梅氏定理即得证这个式子就这样记吧:先记住原来的梅涅劳斯定理形式,然后在每条线段表达式中间插一个O ,然后再在前面加上∠sin (比如BA'就变成'BOA sin ∠)梅氏定理的用处这个定理是平面几何的一个重要定理(好像所有竞赛书都把他与赛瓦定理放在第一节,不知是惯性还是怎么地),它大概有如下用处:可以用来证明三点共线;可以用来导出线段比例式;可以用来寻求一条线段是另一条线段的几分之几或几倍(即线段倍分);怎么用梅氏定理知道了这个定理,还要会用才行。
梅涅劳斯(Menelaus)定理

补充讲义梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
AFED证明:塞瓦定理ΔABC的三边BC,CA,AB上有点D,E,F.若AD,BE,CF三线交于一点O.求证:. BD/DC*CE/EA*AF/FB=1∵三角形ABC内一点O,AO,BO,CO交对边于D,E,F。
证(AF/FB)*(BD/DC)*(CE/EA)=1。
1)最简单的证法:用面积证。
2)用梅涅劳斯定理:3)用分角定理:证明:塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心MAD ESB M C实际运用:2010年上海中考题25.如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC 相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用) 图11(备DP武汉2010年中考试题24.(本题满分10分) 已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点。
连结AC,BD交于点P.(1) 如图1,当OA=OB,且D为OA中点时,求APPC的值;(2) 如图2,当OA=OB,且AD1AO4时,求tan∠BPC的值.(3) 如图3,当AD∶AO∶OB=1∶n∶tan∠BPC的值.(图1)(图2)(图3)25.(本题满分12分) 如图.抛物线经过A (-1,0),C (2,)两点, 与x 轴交于另一点B .(1) 求此地物线的解析式;(2) 若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上 移动,且∠MPQ=45°,设线段OP=x ,MQ=,求y 2与x 的函数关系式,并直接写出 自变量x 的取值范围;(3) 在同一平面直角坐标系中,两条直线x=m ,x=n 分别与抛物线交于点E ,G ,与(2)中的 函数图象交于点F ,H .问四边形EFHG 能否为平行四边形? 若能,求m ,n 之间的数量关 系;若不能,请说明理由.补充知识点:1、 中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2)AB C212y ax ax b =-+3222yP2、广勾定理:在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.A AB CD C (锐角)证明:AC2=AB2+BC2-2BD*BC (钝角)证明:AC2=AB2+BC2+2BD*BC知识补充:(北京市2010年中考题第25题)1、问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA。
梅涅劳斯定理及其应用

梅涅劳斯定理及其应用
梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
证明定理
过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1。
定义理论:
使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。
梅涅劳斯定理的对偶定理是塞瓦定理。
它的逆定理也成立:若有三点F、D、E分别在三角形的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E 三点共线。
利用这个逆定理,可以判断三点共线。
平面几何的几个重要的定理--梅涅劳斯定理

平面几何的几个重要的定理一、梅涅劳斯定理:定理1:若直线l 不经过 ABC 的顶点,并且与的延长线分别交于 P 、Q 、R,贝U BP CQ AR 1 PC QA RB证:设h A 、h B 、h C 分别是A 、B 、C 到直线l 的垂线的长度,贝u :BP CQ AR h B h C hu 』 1PC QA RB h C h A h B注:此定理常运用求证三角形相似的过程中的线段成比例的条件;例1:若直角 ABC 中,CK 是斜边上的高, 在AK 上,D 是AC 的中点, F 是DE 与CK的交点,证明:KF BK ——=—— FC BE KF BK ——=一 KC KE FKB CKE BF //CECE 是 ACK 的平分线, E 点BF // CE 。
证:在 则:EBC 中,作 B"分线BH EBC ACK HBC ACEHBC HCB ACE HCB 90即:BH CEEBC 为等腰三角形作BC 上的高EP,则:对丁 ACK 和三点D 、 CK EPE 、F 依梅涅劳斯定理有:CD AE KF , 1 DA EK FC匚曰KF EK CK 『是——=一 一FC AE ACEP BP BK AC BC BE依分比定理有: ABC 的三边BC 、CA 、AB 或它们【练习1从点K 引四条直线,另两条直 -一 一 、…AC和 A 1、B 1、C 1、D 1,试证: ------- 1 1 1BC线分别交这四条直线丁 A 、B 、C 、DAD BD定理2:设P 、Q 、R 分别是 ABC 的三边 BC 、CA 、AB 上或它们的延长线上的 P 、Q 、R 三点中,位于 ABC 边上的点的个数为 0或2,这时若 既 PC 三点,并且 CQ AR QA RB 1, 求证:P 、Q 、R 三点共线; 证:设直线PQ 与直线AB 交丁 R ', 丁是由定理 BP CQ AR _ __ ' PC QA R B乂 BP CQ AR PC QA RB 由丁在同一直线上的 _ ' ____ AR AR1,则:^―=—— R B RB P 、Q 、R '三点中,位丁 ABC 边上的点的个数也为 0或2,因此R 与R '或者同在AB 线段上,或者同在 AB 的延长线上; 若R 与R '同在AB 线段上,则R 与R '必定重合,不然的话, 设AR AR ', AR AR BR BR 这时AB AR AB AR ',即BR BR ',丁是可得 _ ____ ' 这与AR =竺 矛盾 BR BR 类似地可证得当 R 与R '同在AB 的延长线上时,综上可得:P 、Q 、R 三点共线; 注:此定理常用于证明三点共线的问题,且常需要多次使用 R 与R '也重合再相乘;例2点P 位丁 ABC 的外接圆上;A 1、B 1、C 1是从点P 向BC 、CA 、AB 引的垂线的垂足, 证明点A 1、B 1、 BA 1BP cos PBC CA 1 CP cos PCB CB 1 CP cos PCA AB 1 AP cos PAC AC 1AP cos PABBC 1 PB cos PBAC i 共线; 证:易得: 将上面三条式子相乘, 且 PAC PBC , PAB PCB , 十曰 BA 1 CB 1 AC 1可得 一111= 1 ,CA 1 AB 1 BC 1依梅涅劳斯定理可知 A 1、B 1、C 1三点共线;PCA PBA 180A 1C 1 A 1D 1B 1C ; :BD【练习2设不等腰 ABC 的内切圆在三边 BC 、CA 、AB 上的切点分别为 D 、E 、F,则EF 与BC , FD 与CA , DE与AB 的交点 X 、Y 、Z 在同一条 直线上;【练习&已知直线 AA i, BB i, CC i 相交于O,直线AB 和A 1B 1的交点为C 2,直线 BC 与B 1C 1的交点是 A 2,直 线AC 与A i C i 的交点是B 2,试证:A 2、B 2、C 2三点共线;【练习M 在一条直线上取点 E 、C 、A,在另一条上取点 B 、F 、D,记直线AB 和ED , CD 和AF ,CD 和AF , EF 和BC 的交点依次为 L 、M 、N,证明:L 、M 、N 共线练习i 的证明练习2的证明乂 AE AF 代人上式可得:BXXC FB =—— CE CY DC AZ EA同理口」彳寸: — —YA AFZB BD将上面三条式子相乘可 得:乳CY J i XC YA ZB 乂 X 、Y 、Z 都不在 ABC 的边上,由定理 2可得X 、Y 、 证: ABC 被直线XFE 所截,由定理 Z 三点共线 证:若AD // A i D^,结论显然成立;若AD 与A i D i 相交与点 AD LD LD BD LD 〔 A i K A i D i AK BK BQ B i K LDi L,则把梅涅劳斯定理分 LC AK A 。
第一章梅涅劳斯定理及应有答

第一章 梅涅劳斯定理及应有习题A1.延长CB ,FE 交于H ,ADB △与截线GEH ,有13122AG DH BE DH GD HB EAHB ⋅⋅=⋅⋅=,有43DHHB=,即74CH HD =.对ACD △及截线FGH ,72141AF CH DG AF FC HD GA FC ⋅⋅=⋅⋅=,求得27AF FC=.2.设CB ,DE 的延长线交于P ,又BP BC =,32FP PB=,对AFB △与截线HEP ,CGE ,有31121AH FP BE AH GF PB EA HF ⋅⋅=⋅⋅=,即23AH HF =;11121AG FC BE AG GF CB EA GF ⋅⋅=⋅⋅=,即21AG GF =.由此求得645AH HG GF =∶∶∶∶. 3.对BDP △于截线CEA ,有1231612BC DA PE BC CD AP EA CD ⋅⋅=⋅⋅=,知BD DC =.对CDP △与截线BFA ,有22111CB DA PF PF BD AP FCFC⋅⋅=⋅⋅=,知14PFFC=.而20CF =,故15CP =. 在PBC △中,由中线长公式2PD =2BC =BD =.又22222269BP PD BD +=+==,即90BPD ∠=︒,27PBD S =△,4108ABC PBD S S ==△△.4.直线OCB 分别与DMF △和AEM △的三边延长线都相交,有1DB MO FC MB FO DC ⋅⋅=,1AB EO MCEB MO AC ⋅⋅=,即OF OE DB FC EB AC OM OM MB DC AB MC⋅⋅⋅=⋅⋅⋅.由EF AD ∥,有DB ABMB EB=,FC MCDC AC=,从而21OF OEOM ⋅=,即22OF OE OM OP ⋅==,有OFP OPE △∽△,故OPF OEP ∠=∠.5.直线截ABC △,有22133CF AD BE BE FA DB ECEC⋅⋅=⋅⋅=,即94BE EC=,故54BC CE=.直线截DBE △,有25154EF AD BC EF FD AB CEED ⋅⋅=⋅⋅=,所以21EF FD =∶∶.6.设AC BC x ==,则AB =,。
梅涅劳斯(Menelaus)定理

梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 证明一:过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1证明二:过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1它的逆定理也成立:若有三点F、D、E分别在△ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/E A)=1,则F、D、E三点共线。
利用这个逆定理,可以判断三点共线。
梅涅劳斯(Menelaus)定理证明三:过ABC三点向三边引垂线AA'BB'CC',所以AD:DB=AA':BB',BE:EC=BB':CC',CF:FA=CC':AA'所以(AF/FB)×(BD/DC)×(CE/EA)=1证明四:连接BF。
(AD:DB)·(BE:EC)·(CF:FA)=(S△ADF:S△BDF)·(S△BEF:S△CEF)·(S△BCF:S△BAF)=(S△ADF:S△BDF)·(S△BDF:S△CDF)·(S△CDF:S△ADF)=1此外,用定比分点定义该定理可使其容易理解和记忆:在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梅涅劳斯定理(入门篇)
雷雨田 (广西师范大学附属外国语学校高50班 541004)
梅涅劳斯定理
这个定理怎么记最好呢? 个人感觉“顶到分、分到顶、顶到分、分到顶、顶到分、分到顶”这样记忆来得非常容易
不过找了很多资料,感觉仅仅是把这个定理(或者后面附一个逆定理)陈述然后证明完了之后,就直接给例题(或者直接讲赛瓦定理),看上去不怎么舒服,所以我把其他的一些东西附在这里,以供参考。
第一角元形式的梅涅劳斯定理
(就是把线段比改为正弦值比)其表达式为:
1=∠∠∙∠∠∙∠∠BA
'B sin 'CBB sin CB 'C sin 'ACC sin AC 'A sin 'BAA sin 证明如下:
如图所示,由三角形面积公式(正弦定理)可得:
AC 'A sin AC 'BAA sin AB AC 'A sin AC 'AA 'BAA sin 'AA AB S S C 'A 'BA C 'AA 'ABA ∠⋅∠⋅=∠⋅⋅∠⋅⋅==∆∆2
121 同理可得CB
'C sin BC 'ACC sin AC B 'C 'AC ,BA 'B sin AB 'CBB sin BC A 'B 'CB ∠⋅∠⋅=∠⋅∠⋅=
把这三个式子相乘,运用梅氏定理,就可得到
这个式子怎么记最好呢?
个人感觉根据梅涅劳斯定理中线段所对应的角来记忆最好。
第二角元形式的梅涅劳斯定理
设O 是不在三角形ABC 三边所在直线上的任意一点,其他条件不变,则表达式为: 1=∠∠∙∠∠∙∠∠OA
'B sin 'COB sin OB 'C sin 'AOC sin OC 'A sin 'BOA sin 现证明如下:
B C A’
如图,由C
'A 'BA S S OC 'A 'BOA =∆∆ 可得A
'B 'BA OB OC OC 'A sin 'OA B sin ⋅=∠∠
同理得到另外两个对称式,相乘,运用梅氏定理即得证
这个式子就这样记吧:
先记住原来的梅涅劳斯定理形式,然后在每条线段表达式中间插一个O ,然后再在前面加上∠sin (比如BA'就变成'BOA sin ∠)
梅氏定理的用处
这个定理是平面几何的一个重要定理(好像所有竞赛书都把他与赛瓦定理放在第一节,不知是惯性还是怎么地),它大概有如下用处:
可以用来证明三点共线;
可以用来导出线段比例式;
可以用来寻求一条线段是另一条线段的几分之几或几倍(即线段倍分);
怎么用梅氏定理
知道了这个定理,还要会用才行。
问题是怎么用?
观察可以发现,用这个的关键是选好三角形,并找到它的截线(或作出截线)。
在题目中,经常会出现三点共线的情况,把这个看成是某个三角形的截线,然后导出一个式子加以运用。
另外要注意灵活应用这个定理(有时要用几次)及其逆定理。
在一些题目中可以找到不少三角形及其截线(不过个人感觉很不好找= =`````),这时就可以多次运用往要证明的东西靠近。
相关试题
最后附上与之相关的全国高中数学联赛两道题
1.1996年联赛题:
2.1999年联赛题:。