化工原理第四版谭天恩液液萃取53页PPT

合集下载

化工原理萃取PPT课件

化工原理萃取PPT课件
第四章 萃 取
Chapter 4 Extraction
第一节 概述(Introduction)
一、液-液萃取的基本原理
在液体混合物中加入与其不完全混溶的液体溶剂
(萃取剂),形成液-液两相,利用液体混合物中 各组分在两液相中溶解度的差异而达到分离的目的。
也称溶剂萃取,简称萃取。
溶质:混合液中被分离出的物质,以A表示; 稀释剂(原溶剂):混合液中的其余部分,以B表 示; 萃取剂:萃取过程中加入的溶剂,以S表示。 萃取剂对溶质应有较大的溶解能力,对于稀释剂则 不互溶或仅部分互溶。
R3 R2 R1 B
E2 E1
S
成,可利用辅助线得出另
一相的组成。
辅助曲线(Auxiliary curve)
方法二:
A
分 别 从 E1、E2、E3、E4 点 引AB平行线,与分别从R1、 R2、R3、R4点引出的AS平 行线相交,连结各交点即
得辅助曲线;
P
E4
E3
辅助曲线延长线与溶解度
R4
E2
曲线的交点即为临界混溶 点P;
联结线 (Tie line):联结E、R两点的直线。
2、获取溶解度曲线的实验方法
恒温条件下,在有纯组分B的实验瓶中逐渐滴加溶剂S并不断摇 动使其溶解,由于B、S仅部分互溶,S滴加到一定数量后,混合 液开始发生混浊,即出现了溶剂相,得到的浓度即S在B中的饱 和溶解度(图中R点)。用类似的方法可得E点。
和半经验的方法来处理萃取过程的设计和放大。
液滴的分散、凝聚、界面扰动
液液传质过程中,分散相既可以是重相,也可以是轻相。分散相 的选择应考虑以下几方面:
(1) 两相体积流率相差不大时,以体积流率大的作为分散相。对同 样尺寸的液滴,可以有较大的接触界面;

化工原理 第十二章 萃取PPT课件

化工原理 第十二章 萃取PPT课件

萃取剂的选择性可用选择性系数 表示,其定义
式为
yA/yB yA/xAkA
xA/xB yB/xB kB
2020/6/6
.
21
2 影响分层的因素
为使两相在萃取器中能较快的分层,要求萃 取剂与被分离混合物有较大的密度差,特别是对 没有外加能量的设备,较大的密度差可加速分层, 提高设备的生产能力。
两液相间的界面张力对萃取操作具有重要影 响。萃取物系的界面张力较大时,分散相液滴易 聚结,有利于分层,但界面张力过大,则液体不 易分散,难以使两相充分混合,反而使萃取效果 降低。界面张力过小,虽然液体容易分散,但易 产生乳化现象,使两相较难分离,因之,界面张 力要适中。
2020/6/6
图12-4 溶解度曲线
.
11
溶解度曲线将三角形相图分为两个区域: 曲线以内的区域为两相区,以外的区域为 均相区。显然萃取操作只能在两相区内进 行。
位于两相区内的混合物分成两个互相平 衡的液相,称为共轭相,联结两共轭液相 相点的直线称为联结线,
临界混溶点是在一定溶质含量下两共轭 相变为一相的临界点,其位置一般并不在 溶解度曲线的最高点,常偏于曲线的一侧, 将溶解度曲线分为左右两支。
实验表明,相同总量的萃取剂以每级加 入的量相等时萃取效果最好。后续的加料方 式均为等量加入。
2020/6/6
.
33
二、多级错流萃取的计算
1、萃取剂和原溶剂部分互溶的体系 采用三角形相图求解
2020/6/6
.
34
(1) 按第1级原料液萃取剂得量和组成,确定第1 级混合也得量和组成,得点M1
(2) 过点M1作联结线得经第一级萃取后得萃取相 E1和萃余相R;
2020/6/6

化工原理(天大版)---(下册)第四章 萃取

化工原理(天大版)---(下册)第四章 萃取

选择性系数与kA、kB有关。 kA越大, kB越小,就越大, 说明:
A、B的分离也就越容易 凡是影响kA、kB的因素都影响(温度、组成) 若 =1,则萃取相和萃余相在脱除溶剂S后将具有相同的 组成,并且等于原料液的组成,故没有分离能力 萃取剂的选择性越高,对A的溶解能力就大,则一定的分离 任务,可越少萃取剂用量,降低回收溶剂操作的能耗,并且 可获得高纯度的产品A 当组分B、S完全不互溶时,则选择性系数趋于无穷大,这 是最理想的情况。
MF FN F ( xF xM ) (4 7) SF F xM y S MS NB
R'
B
(b)
S
EM
M ( xM x R ) 其中yE、xM、xR 由相图读出 y E xR R) 把4-6、4-7代入4-9得: E F ( xF x 其中xF、x' 'R、y''E由相图读出 y E x R R F E
表达了溶质在两个平衡液相中的分配关系。 A值愈大,萃取分离的效果 愈好 A值与联结线的斜率有关 不同的物系具有不同的分配系数 A值 同一物系, A值随温度和组成而变。 一定温度下,仅当溶质组成范围变化不大时, A值才可视为常数 Y KX 式中:Y——萃取相E中溶质A的质量比组成;
X ——萃余相R中溶质A的质量比组成; K——以质量比表示相组成时的分配系数
4.2.2 液-液相平衡关系
3、分配系数和分配曲线
分配曲线:若以xA为横坐标,以yA为纵坐标,则可在x-y直角坐标图上得到
表示互成平衡的一对共轭相组成的点N。将这些点联结起来即可得到曲线 ONP,称为分配曲线
曲线上的P点即为临界混溶点。 分配曲线表达了溶质A在互成平衡的E相与R相中的分配关系。若已知某液相组成, 则可由分配曲线求出其共轭相的组成。 若在分层区内y均大于x,即分配系数 A >1,则分配曲线位于y=x直线的上方,反 之则位于y=x直线的下方。 若随着溶质A组成的变化,联结线倾斜的方向发生改变,则分配曲线将与对角线出 现交点,这种物系称为等溶度体系

化工原理 液液萃取和液固浸取概述 PPT

化工原理 液液萃取和液固浸取概述 PPT
RE
FG
Sm
i
n
=
F
× GS
FH
Sm a x
=
F
× HS
大家好
Smin<S<Smax
32
二、B 与 S不互溶物系
若 B与 S 完全不互溶
萃取相中不含 B,S 的量不变 萃余相中不含 S ,B 的量不变
用质量比 计算方便
XF —原料液中组分A的质量比,kgA / kgB
YE —萃取相中组分A的质量比,kgA / kgS
BS
XF
YS
E
S
YE
R
BX R
34
YE
斜率 –B/S
YS
XR
XF
单级萃取图解计算
ESSEY S(1Y E) R B BRX B (1 X R )
大家好
35
【例10-1】一定温度下测得的A、B、S三元物系 的平衡数据如本题附表所示。
(1)绘出溶解度曲线和辅助曲线;
(2)查出临界混溶点的组成;
(3)求当萃余相中 xA=20%时的分配系数kA 和 选择性系数β ;
XR —萃余相中组分A的质量比,kgA / kgB YS —萃取剂中组分A的质量比,kgA / kgS
大家好
33
二、B 与 S不互溶物系
对溶质 A质量衡算
BF X+SSY=SE Y+BR X
YE- YS =- B S(XR- XF)
操作线 方程
斜率 B
S
过点 (XF ,YS )
直角坐标图图解法
大家好
密度 表面张力 黏度 ❖ 萃取剂的稳定性、安全性、经济性
大家好
28
第十章 液-液萃取和液-固浸取

化工原理4PPT课件

化工原理4PPT课件

d' PC
1 N d PC
可沉降出更细的颗粒。
第20页/共86页
4.沉降室的计算
由层流区的计算式
d pc
18 p
g ut c
18 qVs ( p )g WL
可分为三类计算问题: (1) 已知气体处理量qVs, 物性数据(ρ, μ, ρp ), 临界粒径 dpc ,
求底面积WL; (2) 已知底面积WL, 物性数据, 临界粒径 dpc , 求气体处理
6
d
p 3 r
2
p
4
d
2 p
u
2
2
0
第27页/共86页
此时,颗粒在径向上相对于流体的速度,就是它在这个
位置上的离心沉降速度
dr
d
ur
4d p p r2 3
比较,重力沉降速度
ut
4dP ( p)g 3
g r 2
在一定的条件下,重力沉降速度是一定的,而离心 沉降速度随着颗粒在半径方向上的位置不同而变化。
量qVs ; (3) 已知气体处理量qVs, 物性数据 , 底面积WL, 求临界粒
径 dpc ;
第21页/共86页
例3-2 用高2m 、宽2.5m、长5m的重力降尘室分离空气中的粉尘。 在操作条件下空气的密度为0.779kg/m3,黏度为2.53×10-5Pa.s, 流量为5.0×104m3/h。粉尘的密度为2000 kg/m3。试求粉尘的临界 粒径。
悬浮液 — 含有颗粒直径较大的液体; 溶胶 — 含有颗粒直径小于1 μ m的液体。
为了促进细小颗粒絮凝成较大颗粒以增大沉降速度, 可往溶胶中加入少量电解质。
絮凝剂---凡能促进溶胶中微粒絮凝的物质。 常用的有:明矾(KAl(SO4).12H2O),三氧化铝,

液液萃取

液液萃取

(2)作图方法
①作出x-y图,以萃余相R中溶质A的组成xA为 横标,以萃取相E中溶质A的组成yA的纵标,并作 出对角线或称辅助线,y=x。
②作出分配曲线,根据共轭相R、E中组分A的 组成,在直角坐标x-y图上找出N点,N点即为分配 曲线的轨迹点,由若干个轨迹点连成的平滑曲线 ,即为分配曲线。
(3)特点 ①由于联结线的斜率各不相同,所以分配曲 线总是弯曲的。 ②临界混溶点P在对角线上有交点。 ③分配曲线与对角线的相对位置,取决于联 结线的斜率。若斜率为正值,曲线就在对角线的 上方,若斜率为负值,曲线就在对角线的下方。 斜率的绝对值越大,曲线距对角线越远。参见图 4-8所示。 ④若临界混溶点超越了三角形相图的范围, 分配曲线的上端与对角线没有交点。
五、杠杆规则(比例定律)
杠杆规则是物斜衡算的图解方法,可以 通过物料衡算导出,也可以运用相似三角形的 比例定律推出。
1.物料衡算式(杠杆规则的应用)
将Rkg的R相与Ekg的E相相混合,即得到总 组成为xAM的Mkg的混合混液。参见图4-11所示, 其中M点称为和点,R、E点称为差点。
四、教学要点与关键词
1.教学要点
(1)相平衡与萃取操作原理(三角形相图及组成、 相平衡、萃取过程在三角形相图上的表示)。
(2)萃取过程计算(单级萃取、多级萃取、微分萃 取)。
(3)萃取设备及其选择(槽式、塔式、离心式)。 (4)例题与习题。
2.关键词
(1)相平衡
(2)三角形相图 (3)溶解度曲线
(1)溶解度曲线的形状。 (2)联结线的斜率。 (3)两相区面积。 (4)分配曲线形状。
3.应用举例 (1)对情况(2) 温度变化时,溶解度曲线和联结线斜率 随之变化。如图4-9所示。T1<T2<T3,温度升 高,分层区面积缩小,联结线斜率减小。

大学化学《化工原理 萃取》课件

大学化学《化工原理 萃取》课件

联结线的斜率<0
kA<1, yA<xA
§12.1 萃取的基本概念
11
2)分配曲线
yA f (xA)
§12.1 萃取的基本概念
12
4. 温度对相平衡关系的影响
物系的温度升高,组分间的互溶度加大
温度升高,分层区面积缩小
T1<T2<T3
§12.1 萃取的基本概念
13
四、三角形相图在单级萃取中的应用
1
§12.1 萃取的基本概念 一、液液萃取简介 1. 萃取原理 利用液体混合液中各组分在萃取剂中的溶解度差异 实现分离的一种单元操作。 溶质 A :混合液中欲分离的组分 稀释剂(原溶剂)B:混合液中的溶剂
§12.1 萃取的基本概念
2
萃取剂S: 所选用的溶剂
2. 基本过程描述
原料液 A+B
萃取剂 S
2. 萃取剂S与稀释剂B的互溶度
组分B与S的互溶度影响溶解度曲线的形状和分层面积。
§12.1 萃取的基本概念
16
Em ax
Em ax
B、S互溶度小,分层区面积大,可能得到的萃取液的最 高浓度ymax’较高。 B、S互溶度愈小,愈有利于萃取分离。
§12.1 萃取的基本概念
17
3. 萃取剂回收的难易
对应
最大 萃取
Em ax
液浓 E

S MF F MS
F●
R R
E RF R EF
E R F
E MR
E
R ME
M
§12.1 萃取的基本概念
14
五、萃取剂的选择
1. 萃取剂的选择性和选择性系数
1)萃取剂的选择性
A在萃取相中的质量分率 B在萃取相中的质量分率

化工原理课件12萃取(LiquidExtraction)

化工原理课件12萃取(LiquidExtraction)

05
萃取过程的优化与改进
提高萃取效率的途径
选择合适的萃取剂
根据待分离物质的特点和分离要 求,选择具有高选择性、高溶解
度、低能耗的萃取剂。
优化萃取工艺参数
通过调整温度、压力、浓度等工 艺参数,提高萃取效率和分离效
果。
强化传质过程
采用多级萃取、逆流萃取等工艺, 增加萃取剂与待分离物质接触机
会,提高传质效率。
3
萃取技术的优化
根据不同天然产物的性质和目标成分,选择合适 的萃取剂和工艺条件,提高萃取效率和纯度。
THANKS
感谢观看
它由多个塔板组成,液体在塔 内逐板下降,同时与上升的气 体或液体逆流接触,实现传质 与分离。
塔式萃取器的优点是处理能力 大、分离效果好,但结构复杂、 造价高、操作维护困难。
离心萃取器
离心萃取器利用离心力的作用使两液 相实现分离。
离心萃取器的优点是处理能力大、分 离效果好、结构简单、操作方便,但 制造成本较高。
04
萃取过程的设备
混合-澄清槽
混合-澄清槽是一种简单的萃取 设备,适用于两相接触后能迅速
分离的情况。
它由一个混合室和一个澄清室组 成,混合室用于使不相溶的两液 相混合,澄清室则用于分离两液
相。
混合-澄清槽结构简单,操作方 便,但处理能力较小,且分离效
果不够理想。
塔式萃取器
塔式萃取器是一种常见的萃取 设备,适用于处理大量物料。
双水相萃取技术
利用两种水相间物质分配的差异,实现高效分离和纯化。
06
萃取过程的实例分析
工业废水处理中的萃取应用
工业废水中的有害物质
01
工业废水可能含有重金属、有机污染物等有害物质,对环境和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档