CMOS运算放大器设计毕业设计

合集下载

毕业设计(论文)-低压高精度cmos运算放大器设计[管理资料]

毕业设计(论文)-低压高精度cmos运算放大器设计[管理资料]

滨江学院毕业论文(设计)题目低压高精度CMOS运算放大器设计院系电子工程系专业电子科学与技术学生姓名学号指导教师职称讲师二O一一年一月十一日目录摘要: (1)第一章绪论 (2) (2) (3) (3)第二章CMOS放大器的设计基础 (4) (5) (5) (6) (6) (7) (7)第三章CMOS运算放大器的性能指标与基本结构 (8) (8) (9) (9) (10) (10) (11) (12) (12) (13) (13) (14)第四章运算放大器电路的设计与分析 (14) (15) (15) (16) (16) (17)第五章运算放大器的HSHCE仿真 (17) (18) (19) (20) (21)第六章结论与展望 (22)致谢 (23)参考文献 (24)低电压高精度CMOS运算放大器设计南京信息工程大学滨江学院南京 210044摘要:设计了一种采用CMOS 工艺的低电压高精度的运算放大器电路。

在设计中输入级采用两对跨导器件r ail- to- rail 的电路结构,从而实现输入级的跨导在整个共模输入范围内保持恒定。

输出级采用AB 类rail- to-r ail推挽结构, 达到高驱动能力和低谐波失真的目的。

此运放可提供15V 电压降,采用适当的输出负载, 闭环电压增益,单位增益带宽和相位裕度分别达到了80dB, 832kHz 和64。

关键词: CMOS; 低电压高精度; 运算放大器; Rail- to- Rail第一章绪论由于集成技术和大规模系统设计的飞速进步,电子工业在过去的几十年里取得了惊人的发展。

集成电路在高性能计算、通信和消费电子领域中的应用飞快发展。

事实上,正是这些应用所需求的计算和信息处理能力成为电子领域快速发展的驱动力。

当前的前沿技术已经为终端用户提供了一定的处理能力和便捷性,人们希望对这种超大规模集成电路系统设计具有重大影响的趋势延续下去。

对高性能处理能力和带宽不断增加的需求是信息业务最重要的特征之一。

《2024年CMOS高性能运算放大器研究与设计》范文

《2024年CMOS高性能运算放大器研究与设计》范文

《CMOS高性能运算放大器研究与设计》篇一一、引言随着电子技术的飞速发展,运算放大器(Op-Amp)在信号处理和数据分析中的应用越来越广泛。

在众多类型的运算放大器中,CMOS(互补金属氧化物半导体)高性能运算放大器因其低功耗、高速度和高精度的特性而备受关注。

本文旨在研究并设计一款CMOS高性能运算放大器,以适应现代电子系统的需求。

二、CMOS运算放大器的基本原理与特点CMOS运算放大器利用互补金属氧化物半导体技术,通过P 型和N型晶体管的组合,实现高精度、低噪声和低功耗的信号处理。

其基本原理是通过差分输入和共源共栅放大的方式,实现信号的放大和传输。

CMOS运算放大器具有以下特点:1. 高精度:由于采用差分输入方式,CMOS运算放大器具有较高的共模抑制比(CMRR),能够有效抑制共模噪声。

2. 低噪声:CMOS器件的噪声性能优异,能够满足低噪声信号处理的需求。

3. 低功耗:CMOS器件具有较低的电压摆幅和较低的静态电流,从而实现低功耗设计。

三、高性能CMOS运算放大器的设计要求为了满足现代电子系统的需求,高性能CMOS运算放大器的设计应遵循以下要求:1. 宽动态范围:能够处理大信号输入范围,并保持较高的增益和精度。

2. 高带宽:具备较快的响应速度,以适应高速信号处理的需求。

3. 低噪声:在保持高增益的同时,尽可能降低噪声性能,提高信噪比。

4. 低功耗:在保证性能的前提下,尽可能降低功耗,延长电池使用寿命。

四、CMOS高性能运算放大器的设计方法针对上述设计要求,本文提出以下设计方法:1. 优化电路结构:采用差分输入、共源共栅放大的电路结构,提高电路的对称性和稳定性。

同时,通过优化晶体管尺寸和偏置电流,提高电路的增益和带宽。

2. 降低噪声性能:通过优化电路布局、减小晶体管失配以及采用低噪声器件等方法,降低电路的噪声性能。

3. 降低功耗:采用低电压摆幅和低静态电流的设计方法,降低电路的功耗。

同时,通过优化偏置电路和电源管理策略,进一步提高功耗性能。

CMOS运算放大器的分析及设计毕业设计论文(可编辑)

CMOS运算放大器的分析及设计毕业设计论文(可编辑)

摘要随着集成电路工艺的发展,CMOS电路由于其低成本、低功耗以及速度的不断提高,在集成电路中获得越来越广泛的应用。

CMOS运算放大器也因其独特的性能优势常被用于模拟集成系统或子系统中,它的性能的好坏直接决定了整个模拟集成系统性能的好坏。

因此,有必要对用CMOS运算放大器进行深入的学习和研究。

CMOS运算放大器作为模拟集成电路最重要的功能模块,其设计一般包括以下几个步骤:确定设计要求;设计或综合;仿真;几何版图设计;版图后仿真;流片;测试。

本论文主要对两级CMOS运算放大器进行了前端设计及仿真。

论文在确定了两级CMOS运放设计规范要求的基础上,设计了两级CMOS运算放大器的基本电路结构,分析了各组成模块的电路功能,,通过分析性能参数与MOS管几何参数的关系,得到了电路中各MOS管的宽长比。

论文在介绍仿真环境OrCAD的结构特点及其工作性能的基础上,对所设计的电路进行了PSpice软件仿真,得到了设计电路的直流工作点、瞬态以及频率特性的仿真结果。

仿真结果分析表明所设计的电路符合预期的设计要求和设计指标,也验证了设计的两级CMOS运算放大器的可靠性和可行性。

关键词:CMOS;运算放大器;PSpice仿真;小信号放大;频率响应AbstractWith the development of CMOS technique, CMOS integratedcircuits have become the mainstream of integrated circuits techniques, due to its low cost, low power consumption and continuously improved speed. As the CMOS process has good performance merits, therefore the operational amplifier combined with CMOS technique has been widely used because of its unique performance.As the most important functional module in analog integrated circuits, the design of CMOS operational amplifier includes several steps as follows: determination design requirements, design or synthesis, simulation, design geometric layout, post-layout simulation, tape-out and test. The formal steps of the design of the two-stage CMOS operational amplifiers was provided in this paper, and the basic circuit structures of the two-stage CMOS operational amplifier was introduced. Based on determining the op-amp design specifications, the relationship between performance parameters and transistor geometry parameters was analyzed and the ratio of the transistors width to length was calculated. As a kind of simulation tool, the structural characteristics and work performance of OrCAD was described in detail. The feasibility of the design was determined by using PSpice simulation. Analysis of bias point, transient and the frequencycharacteristics of the circuit have been completed in this paper, and the simulation results showed that the designed circuit meets the design requirements and targets, also design the reliability and feasibility of the two-stage CMOS operational amplifier has been comfired.Key words: CMOS;Operational amplifier;Pspice simulation;Small signal amplification;Frequency response 毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

CMOS运算放大器设计

CMOS运算放大器设计

CMOS运算放大器设计一、设计要求:电源电压VDD=3.3V以PMOS为输入管负载电容C out=1pF低频增益:Av>=70dB增益带宽积:GBW>=10MHz相位裕度:PM>=60°输出斜率:SR>=10V/us建立时间:<1us最小沟长:L min=0.5um已知参数:Kn`=89.9uA/V2Kp`=-31.9uA/V2Vthn=0.55VVthp=-0.73V二、放大电路设计为了满足增益要求我们设计了两级放大结构,电路图如下图一所示。

第一级使用差分放大器,由M1~M4组成;第二级由M6~M7组成,其中M6为该级放大管子。

M5、M7、M8构成电流镜,提供电流。

图二、放大电路电路仿真网表如下图一所示。

图一、网表(W/L)1=(W/L)2=77,(W/L)3=(W/L)4=3.5,(W/L)5=30,(W/L)6=14, (W/L)7=59,(W/L)8=15,为了避免短沟效应,取所有晶体管的沟长为L=1um。

取电流源电流为I8=10uA,则根据电流镜原理得流过M5的电流I5=20uA,流过M7的电流为I7=40uA。

从而可得I1=I2=I3=I4=1/2I5=15uA I6=I7=40uA第一级放大倍数为 A v1=g m1(r o2‖r o4)第二级放大倍数为 A v2=-g m6(r o6‖r o7)总的放大倍数为 Av=A v1 A v2=- g m1(r o2‖r o4) g m6(r o6‖r o7)由公式I D=1/2(uC ox)W/LV ov2g m=2I D/V ovr o=V A/I D可得于是计算得Av≈10000=80dB仿真波形如图三所示。

输入振幅为100uV,输出约为1V,放大倍数约为80dB,与理论计算结果基本一致,满足要求。

图三、输入输出仿真波形三、DC仿真DC仿真输入输出波形如图四所示。

取输入电压为Vinn=Vinp=2v。

CMOS高性能运算放大器研究与设计

CMOS高性能运算放大器研究与设计

CMOS高性能运算放大器研究与设计摘要:本文针对CMOS高性能运算放大器的研究与设计进行了探讨。

首先介绍了运算放大器的概念及其在集成电路中的重要性。

随后分析了CMOS技术在运算放大器设计中的优势与挑战。

接着详细讨论了运算放大器的基本电路结构,并针对不同参数要求进行了优化设计。

最后,通过仿真和实验验证了设计的可行性和性能。

一、引言运算放大器(Operational Amplifier,简称Op Amp)是集成电路中一种非常重要的器件。

它具有高增益、高输入阻抗和低输出阻抗等特点,在模拟信号处理、电压比较和滤波等应用中起着关键作用。

随着集成电路技术的发展,CMOS技术成为制作运算放大器的主流方法,其功耗低、噪声小、工艺成熟等优势使得CMOS运算放大器被广泛应用于各种电子系统中。

二、CMOS技术在运算放大器设计中的优势与挑战CMOS技术在运算放大器设计中具有以下优势:首先,它可以实现低功耗设计,适用于电池供电的便携设备;其次,CMOS工艺具有较高的集成度和可靠性,能够实现多功能集成电路的设计;另外,CMOS工艺可实现高增益和高输入阻抗,使得运算放大器在模拟电路中的应用更加广泛。

然而,CMOS技术在运算放大器设计中也面临一些挑战。

首先是增益带宽积(GBW)的限制,由于工艺和电源电压的限制,CMOS运算放大器的GBW相对较低。

此外,温度对CMOS器件的影响较大,容易引起性能参数的变化。

因此,为了提高CMOS运算放大器的性能,需要进行精确的电路设计和优化。

三、CMOS运算放大器的基本电路结构CMOS运算放大器的基本电路结构包括差分放大器和输出级。

差分放大器用于放大输入信号,并实现电路的增益特性,而输出级则用于驱动负载。

差分放大器由一个共模抑制电路、输入级和中间级组成。

其中,共模抑制电路可以有效降低共模信号的干扰,保证运算放大器的差模增益。

输入级则起到放大信号的作用,中间级则用于增大电压幅度。

四、运算放大器设计的优化方法在设计CMOS运算放大器时,需要根据具体应用的要求进行参数优化。

cmos运算放大器设计

cmos运算放大器设计
西南大学本科毕业论文(设计)


摘要 ................................................................... 3 Abstract ................................................................ 4 0 文献综述 ............................................................ 5 0.1 0.2 0.3 0.4 0.5 0.6 1 集成电路概述 ................................................... 5 集成电路的发展 ................................................. 5 集成电路应用领域 ............................................... 6 CMOS 集成电路................................................ 9 运算放大器 ..................................................... 9 CMOS 运算放大器............................................. 10
4
CMOS 运算放大器版图设计 .......................................... 25 4.1 版图设计流程 ................................................... 25 4.2 工艺设计规则 ................................................... 26 4.3 单元器件的绘制——图元 ......................................... 27 4.4 4.5 CMOS 放大器的版图设计........................................ 31 T-Spice 仿真 ................................................... 34

CMOS运算放大器版图设计毕业论文

CMOS运算放大器版图设计毕业论文

CMOS运算放大器版图设计毕业论文目录前言 (5)第1章绪论 (6)1.1 课题背景 (6)1.1.1 研究背景 (6)1.1.2研究容 (7)1.2 电路设计流程 (8)1.3 主要工作以及任务分配 (10)1.3.1主要工作 (10)1.3.2 任务分配 (10)第2章版图基础知识 (11)2.1 版图的设计简介 (11)2.1.1 版图的概念 (11)2.1.2 版图中层的意义 (11)2.2 CMOS工艺技术 (14)2.2.1概述 (14)2.2.2 CMOS工艺的一些主要步骤 (15)2.2.3 CMOS制造工艺的基本流程 (16)2.3 设计规则 (18)2.4 MOS集成运放的版图设计 (22)第3章 CMOS运算放大器简介 (23)3.1 概述 (23)3.2两级CMOS运算放大器的优点 (24)3.3 两级运算放大器原理简单分析 (24)第4章 CMOS运算放大器的仿真 (27)4.1 概述 (27)4.2 MOS运算放大器技术指标总表 (27)4.3仿真数据 (29)4.3.1 DC分析 (29)4.3.2测量输入共模围 (30)4.3.3 测量输出电压围 (31)4.3.4 测量增益与相位裕度 (33)4.3.5 电源电压抑制比测试 (34)4.3.6 运放转换速率和建立时间分析 (36)4.3.7 CMRR的频率响应测量 (38)第5章算放大器版图设计 (40)5.1 Cadence使用说明 (40)5.2 版图设计 (42)5.3 CMOS运放版图 (43)第6章总结 (44)参考文献 (44)致谢词 (45)外文资料原文 (45)外文资料译文 (46)第1章绪论1.1 课题背景1.1.1 研究背景运算放大器(简称运放)是具有很高放大倍数的电路单元。

在实际地电路中,通常结合反馈网络共同组成某种功能模块。

由于早期应用于模拟计算机中,用以实现数字运算,故得名“运算放大器”。

CMOS两级运算放大器-设计分析报告

CMOS两级运算放大器-设计分析报告

CMOS两级运算放大器-设计报告————————————————————————————————作者:————————————————————————————————日期:CMOS两级运算放大器设计及仿真实验报告班级:学号:姓名:日期:一、运算放大器设计简介运算放大器是许多模拟及数模混合信号系统中一个十分重要的部分。

各种不同复杂程度的运放被用来实现各种功能:从直流偏置的产生到高速放大或滤波。

运算放大器的设计可分为两个步骤。

第一步是选择或搭建运放的基本结构,绘出电路结构草图。

确定好的电路结构不能轻易修改。

运算放大器的电路结构确定之后需要选择直流电流,手工设计管子尺寸,以及设计补偿电容等关键参数。

为了满足运放的交流和直流需要,所有管子必须设计出合适尺寸。

在手工计算的基础上,运用CandenceVirtuoso电路设计软件进行图形绘制,参数赋值,仿真分析。

在分析仿真结果的基础上判断电路是否符合设计要求。

若不符合,再回到手工计算,调试电路。

二、设计目标电路参数要求:(1)直流或低频时的小信号差模电压增益Avd = 4000V/V(72dB)(2)增益带宽积GBW = 10MHz(3)输入共模电压范围Vcm,min = 0.4V,Vcm,max = 1.5V(4)输出电压摆幅0.2V < Vout < 1.5V(5)相位裕度PM = 60(6)负载电容CL = 1pF(7)电源电压VDD = 1.8V使用CMOS-90nm工艺库。

三、电路设计1.电路结构最基本的CMOS二级密勒补偿运算跨导放大器的结构如下图所示。

主要包括四大部分:第一级双端输入单端输出差分放大级、第二级共源放大级、直流偏置电路及密勒补偿电路。

2.电路描述输入级放大电路由PM0、PM2、NM1、NM3组成,其中PM0与PM2组成电流源偏置电路,NM1与NM3组成差分放大电路,输入端分别为IN1和IN2,单端输出。

如下图所示。

输出级放大电路由PM1和NM4组成,其中PM1为共源放大级电路,NM4为电流源偏置电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。

除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。

对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。

本人完全意识到本声明的法律结果由本人承担。

2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。

本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。

3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。

4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。

论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。

论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。

对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。

本人完全了解大学有关保存,使用毕业论文的规定。

同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。

本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。

如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。

本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。

本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。

在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。

论文作者签名:日期:指导教师签名:日期:目录摘要 (6)Abstract (7)0 文献综述 (7)0.1 集成电路概述 (8)0.2 集成电路的发展 (8)0.3 集成电路应用领域 (9)0.4 CMOS集成电路 (12)0.5 运算放大器 (12)0.6 CMOS运算放大器 (13)1 引言 (14)1.1 运算放大器简介 (14)1.2 本文研究内容 (15)2 CMOS运算放大器 (15)2.1 CMOS运算放大器简介 (15)2.2 CMOS运算放大器的设计流程 (15)3 CMOS运算放大器电路设计 (16)3.1 电路的PSpice模拟及理论计算 (16)3.2 电路结构分析及参数调试 (18)3.3 电路仿真 (18)4 CMOS 运算放大器版图设计 (28)4.1 版图设计流程 (28)4.2 工艺设计规则 (29)4.3 单元器件的绘制——图元 (30)4.4 CMOS放大器的版图设计 (35)4.5 T-Spice仿真 (38)5 总结 (42)参考文献 (43)致谢 (45)毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日CMOS运算放大器摘要:CMOS全称Complementary Metal Oxide Semiconductor,即互补金属氧化物半导体,是一种大规模应用于集成电路芯片制造的原料。

CMOS加工工艺使得电路拥有低功耗的特点,由于CMOS中一堆MOS组成的门电路在电路工作的瞬间要么是NMOS导通、要么是PMOS导通、要么都截止,因此效率很高,功耗很低。

CMOS运算放大器由于具有可靠性高、成本低廉、调试方便,在电子电路的各个领域中应用都相当广泛,当今99%的数字系统采用CMOS工艺实现。

因此CMOS 运放成为了研究热点。

本文着重论述CMOS运算放大器的设计与仿真,论文中主要研究了以下几方面的关键问题:一、CMOS运算放大器的电路结构;二、CMOS运算放大器的电路参数;三、CMOS运算放大器的L-Edit仿真。

本人对CMOS运放电路采用了pspice软件设计电路结构,计算并调试参数、最后采用了L-Edit软件绘制了版图。

关键词:CMOS、运算放大器、电路模拟、版图设计。

The CMOS operational amplifierHuang HaibinCollege of Engineering and Technology, Southwest University, Chongqing 400715, ChinaAbstract:The full name of CMOS Complementary Metal Oxide Semiconductor, which is complementary metal oxide semiconductor, is a large-scale integrated circuit chip manufacturing raw materials. The characteristics of CMOS technology makes the circuit has low power consumption, because the gate circuit composed of a CMOS MOS in the circuit moments or NMOS conduction, or is the PMOS conduction, or stop, so the efficiency is very high, the power consumption is very low.The CMOS operational amplifier with high reliability, low cost, convenient debugging, in various fields of the electronic circuits are widely used, digital system in 99% with CMOS technology. So the CMOS operational amplifier has become the hot spot of research.This paper focuses on the design and Simulation of CMOS operational amplifier, this paper mainly studies the key problems in the following aspects: the circuit structure, CMOS operational amplifier circuit parameters; two, CMOS operational amplifier; simulation of L-Edit three, CMOS operational amplifier.I use the PSPICE software to design the circuit structure of CMOS operational amplifier circuit, debug the parameters, calculation and finally use the L-Edit software to draw the layout.Keywords: CMOS, operational amplifier, design, simulation.0文献综述0.1 集成电路概述所谓集成电路(IC),就是在一块极小的硅单晶片上,利用半导体工艺制作上许多晶体二极管、三极管及电阻、电容等元件,并连接成完成特定电子技术功能的电子电路。

从外观上看,它已成为一个不可分割的完整器件,集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。

[1] 0.2 集成电路的发展集成电路的发展经历了一个漫长的过程,以下以时间顺序,简述一下它的发展过程。

1906年,第一个电子管诞生;1912年前后,电子管的制作日趋成熟引发了无线电技术的发展;1918年前后,逐步发现了半导体材料;1920年,发现半导体材料所具有的光敏特性;1932年前后,运用量子学说建立了能带理论研究半导体现象;1956年,硅台面晶体管问世;1960年12月,世界上第一块硅集成电路制造成功;1966年,美国贝尔实验室使用比较完善的硅外延平面工艺制造成第一块公认的大规模集成电路。

相关文档
最新文档