【各种速算巧算技巧总结】(经典资料)

合集下载

各种速算巧算技巧总结经典

各种速算巧算技巧总结经典

各种速算巧算技巧总结(部分)——张老师1、头同尾合十:适用条件:两位数乘两位数,首数相同,尾数相加得十。

例题实战:(2008年,迎春杯,初赛)53×57-47×43=[(5×5+5)×100+3×7]-[(4×4+4)×100+7×3]=1000运算说明:首数相乘,再加上一次相同的首数,得到一个一位数或者两位数,作为数1。

个位数字和个位数字相乘,得到一个一位数或者两位数,作为数2。

最后把数1和数2按顺序拼在一起即是结果。

2、尾同头合十:适用条件:两位数乘两位数,尾数相同,首数相加得十。

例题实战:28×88=[(2×8+8)×100]+8×8=2464运算说明:首数相乘,再加上一次相同的尾数,得到一个一位数或者两位数,作为数1。

个位数字和个位数字相乘,得到一个一位数或者两位数,作为数2。

最后把数1和数2按顺序拼在一起即是结果。

3、规律三:3×4=1233×34=1122333×334=1112223333×33333×333333×……运算说明:全是数字3的乘数里有几个3,结果里就有几个1和2,1在前,2在后。

4、零一数:101×12=12121001×12=1201210001×12=1200121001×123=12312310001×123=1230123100001×……运算说明:使零一数外的乘数的末位数字和零一数的1对其,该乘数的其他数字按次往前排,没有数字对齐的零直接写到结果里即可。

5、11与一个数相乘:78×11=85825×11=27539×11=429123×11=1353274×11=3014……运算说明:一个数与11相乘,两边一拉,中间相加。

万能速算法口诀大全

万能速算法口诀大全

万能速算法口诀大全一、速算乘法口诀1.一位数乘法口诀a×b=c当a=9时,c的十位是9减b,个位是10减b 当a≠9时,c的十位是a减1,个位是10减b 例如:7×8=56,9×7=63,4×6=242.两位数乘法口诀ab×cd=efghef=c×dg=ad+bch=ab×cd例如:23×15=345,67×89=59633.三位数乘以两位数abc×de=fgfg=abc×d×10+abc×e例如:345×23=79354.舍十进一法乘法中的舍十进一法指的是当个位加数的数字大于等于5时,十位数加1例如:48×6=288,57×89=5073二、速算除法口诀1.除以1~12的口诀a(不大于9)÷b=cc×b=a例如:56÷7=8,9÷3=32.乘法倒除法a×b=cc÷a=b例如:6×8=48,48÷6=8三、速算加减法口诀1.对于两位数的加法ab+cd=efe=a+cf=b+d例如:34+56=902.对于两位数的减法ab-cd=efe=a-cf=b-d例如:72-35=373.九九加减法口诀a+b=a加b例如:5+7=12a-b=a减b例如:8-3=5四、速算平方口诀1.平方公式a²=a×a例如:6²=362.竖式平方法(1)十位是个位的平方(2)十位的平方后加本身例如:32²=10243.公式x²-y²=(x-y) (x+y)例如:12²-7²=(12-7) (12+7)=5×19=95五、速算立方口诀1.立方公式a³=a×a×a例如:4³=642.竖式立方法(1)个位的立方(2)前两位立方后乘10(3)前两位的立方后乘100(4)加上三个数的乘积例如:23³=12167六、速算开平方口诀1.整数的平方根a²=ba为b的平方跟例如:25的平方根为52.数根的平方根√a=√(b×c)a的平方根等于b和c的平方根之积例如:√72=√(4×18)=2√18七、速算百分比口诀1.百分比基本口诀百分数=分数×100%例如:0.6=60%2.百分比的转换百分数×某数=a例如:60%×8=0.6×8=4.83.百分比问题的快速算法a:b::c:x其中a:b表示比例,c:x表示相应的数例如:3:4::5:x,x=20/3八、速算平行四边形口诀1.面积公式S=ab×sinθS表示面积,a、b表示两条边长,θ表示夹角例如:S=6×8×sin60°=242.能量平行四边形如果一个平行四边形的两对角对应的边相等,则它是一个菱形例如:对角线相等的菱形是一个正方形九、速算三角形口诀1.三角形面积公式S=1/2×底×高例如:底为6,高为8的三角形,S=1/2×6×8=24 2.等腰三角形(1)底边的长度(2)底边的高度例如:底边为5,高为6的等腰三角形十、速算矩形口诀1.矩形面积公式S=长×宽例如:长为6,宽为8的矩形,S=6×8=482.对角线的长度a²+b²=c²例如:3²+4²=5²十一、速算正方形口诀1.正方形面积公式S=边长×边长例如:边长为5的正方形,S=5×5=252.对角线的长度a²+a²=c²例如:3²+3²=6²3.周长P=4×边长例如:边长为6的正方形,P=4×6=24综上所述,以上为万能速算法口诀大全。

十大速算技巧(完整版)

十大速算技巧(完整版)

十大速算技巧(完整版)★【速算技巧一:估算法】“估算法”毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。

所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。

估算的方式多样,需要各位考生在实战中多加训练与掌握。

进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了“估算”时候的精度要求。

★【速算技巧二:直除法】李委明提示:“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。

“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。

“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

【例1】中最大的数是()。

【解析】直接相除:=30+,=30-,=30-,=30-,明显为四个数当中最大的数。

【例2】32409/4103、32895/4701、23955/3413、12894/1831中最小的数是()。

【解析】32409/4103、23955/3413、12894/1831都比7大,而32895/4701比7小,因此四个数当中最小的数是32895/4701。

李委明提示:即使在使用速算技巧的情况下,少量却有必要的动手计算还是不可避免的。

【例3】6874.32/760.31、3052.18/341.02、4013.98/447.13、2304.83/259.74中最大的数是()。

在本节及以后的计算当中由于涉及到大量的估算,因此我们用a+表示一个比a大的数,用a-表示一个比a小的数。

小学数学常用的巧算和速算方法集锦

小学数学常用的巧算和速算方法集锦
(三)拆数凑整法
根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。例:998+1413+9989,给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和,按照拆数凑整法,原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400。
第二部分例题解析
一、“凑整”先算1.计算:
(1)24+44+56
(2)53+36+47
解:(1)24+44+56=24+(44+56)=24+100=124
这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.
(2)53+36+47=53+47+36=(53+47)+36=100+36=136
=9×5中间数是9
=45共有5个数 (5)计算:4+8+12+16+20
=12×5中间数是12
=60共有5个数2.等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成: (1)计算:1+2+3+4+5+6+7+8+9+10
=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.
②式=1000-(90+80+20+10) =1000-200=800
2.先减去那些与被减数有相同尾数的减数。 例4①4723-(723+189)②2356-159-256

各种速算巧算技巧总结经典

各种速算巧算技巧总结经典

各种速算巧算技巧总结经典一、加法速算巧算技巧1.去十法:将两位数相加,个位数保持不变,十位数去掉十位数的数再加1、例如:23+36=592.补数法:将两位数相加,若个位数相加等于10,则结果的十位数等于两个原数的十位数之和加1,个位数等于0。

例如:47+63=110。

3.同进法:将两个相同两位的数相加,在结果的十位数加1、例如:56+56=1124.十进法:将两个相邻的两位数相加,减10得到个位数,结果的十位数不变。

例如:56+57=10+56=1135.单位法:将两个相邻的两位数相加,结果的个位数等于个位数之和的个位数,结果的十位数等于个位数之和的十位数加上原来的十位数。

例如:54+67=(4+7)(5+6)=21+5=266.整十法:将个位数之和减去10,结果的个位数不变,结果的十位数加1、例如:56+49=(6+9)(5+4)=15+5=20+1=21二、减法速算巧算技巧1.补数法:相减的两个数差的绝对值等于减数加上被减数的补数,结果的符号取决于减数和被减数之间的关系。

例如:35-18=35+82=1172.同进法:减数的个位数与被减数的个位数相等,十位数大1,结果的个位数等于个位数之差,结果的十位数等于原数的十位数。

例如:57-25=323.进位借位法:被减数的个位数小于减数的个位数,从十位和百位依次向左借位。

例如:45-38=(40-8)(5-3)=74.破折法:将减数加上或减去10的倍数,使减数的个位数和百位数与被减数的个位数和百位数相等,然后计算,得到结果。

例如:147-86=147-80+6=675.近值法:如果两个数的个位数相等,差的绝对值为10的倍数,并且两个数的十位数的差不超过1,那么可以近似地认为差等于个位数之差乘以10。

例如:67-53≈(7-3)×10=40。

三、乘法速算巧算技巧1.移项法:将减数的个位数分别乘以被乘数的十位数和个位数,十位数的结果向左移动一位,个位数保持不变。

28种速算技巧范文

28种速算技巧范文

28种速算技巧范文速算技巧是在计算过程中,利用一些简单的技巧来快速完成计算的方法。

下面将介绍28种常用的速算技巧。

一、整数加减法1.相邻数相加:当两个数相邻时,可以直接将它们的个位数相加,例如:37+38=752.乘以1、10、100等:将一个整数乘以1、10、100等,只需要将该数末尾加上相应个数个0。

3.整数相加:如果两个整数相加时,个位数相加的和大于9,则合并十位数时要进位,例如:25+38=634.十位数的加减:在一个整数加或减一个以0结尾的数时,只需将个位数保持不变,十位数加或减15.加9减1:一个整数加9等于该整数加10再减1,例如:24+9=34,等同于24+10-16.转化成加减法:当一个整数减去另一个整数时,可以将减法转化为加法,例如:35-13=35+(-13)。

二、乘法技巧7.末尾为5的数乘法:将5乘以任意一个数字,除了个位为5以外,其他位数是通过原数乘以10再加上个位的5得到。

8.平方尾数:一个数的末两位是25,它的平方等于百位数是下一个整数、末两位是259.乘以11:一个两位数乘以11,只需将十位数和个位数相加得到的个位数插入两个原数的中间。

10.乘以9:将一个整数乘以9等于将该整数乘以10再减去该整数本身。

11.副位数交叉相乘:当两个数都有个位和十位时,先将个位相乘,再将十位相乘,最后相加。

12.乘法交换律:两个数相乘,交换两数的位置,结果不变。

三、除法技巧13.除以5:一个整数除以5,只需将该整数的个位数除以5得到的商作为商的十位数,商的个位数加上214.除以9:一个整数除以9,只需将该整数的个位数除以9得到的商作为商的十位数,商的个位数等于1减去百位数。

15.除以11:一个整数除以11,将该数的个位数减去十位数,得到的差就是商的个位数,商十位数为被除数的十位数。

16.除法中的乘法:如16÷4,可以转化为4的2倍是8,4的4倍是16,所以16除以4等于4四、分数技巧17.分数的加减:分数的加减运算可以通过找到它们的最小公倍数来消除分母,然后进行数值的加减。

小学数学巧算术快速掌握计算技巧

小学数学巧算术快速掌握计算技巧

小学数学巧算术快速掌握计算技巧数学是小学阶段的基础学科之一,在数学学习中,掌握快速和准确的计算技巧非常重要。

本文将介绍一些小学数学巧算术技巧,帮助学生能够更快速地解决计算问题。

一、乘法计算技巧1. 九九乘法口诀:乘法运算中,依靠记忆九九乘法口诀可以快速得出结果。

例如,需要计算8乘以7,可以参考九九乘法口诀中“八七是56”,直接得出结果。

2. 分解乘法运算:对于较复杂的乘法运算,可以使用分解乘法的方法。

例如,计算12乘以5,可以将12分解为10和2,然后分别与5相乘再相加,即(10 × 5)+(2 × 5)= 50 + 10 = 60。

3. 交换律的应用:在乘法运算中,乘法满足交换律。

例如,计算7乘以4和4乘以7得到的结果是相等的。

二、除法计算技巧1. 分解法:在整除运算中,可以使用分解法简化计算过程。

例如,计算48除以6,可以将48分解为40和8,然后分别除以6,得到(40 ÷ 6)+(8 ÷ 6)= 6 + 1.33 ≈ 7.33。

2. 近似法:在除法运算中,可以使用近似法快速得出结果。

例如,计算345除以25,可以近似到最接近的整数,即345 ÷ 25 ≈ 14。

三、加法计算技巧1. 补数法:在计算两位数相加时,可以使用补数法来简化运算。

例如,计算46加7,可以将7补足为10,然后将46加10得到56,最后减去补足的数,即56 - 3 = 53。

2. 单位延拓法:在计算带有单位的加法问题时,可以先将相同单位的数相加,然后再计算不同单位的数相加。

例如,计算2小时45分钟加上3小时20分钟,先将小时相加得到5小时,然后将分钟相加得到65分钟,最后将分钟转换为小时,即65 ÷ 60 = 1小时,所以最后结果为6小时5分钟。

四、减法计算技巧1. 整数减法的补数法:在计算整数相减时,可以使用补数法。

例如,计算76减去38,可以将38补足为40,然后将76减去40得到36,最后加上补足的数,即36 + 2 = 38。

速算技巧(总结5篇)

速算技巧(总结5篇)

速算技巧(总结5篇)速算技巧(总结5篇)速算技巧(一):十大速算技巧1、巧妙运用首同末合十利用首同末合十的方法来训练。

首同末合十法是两个两位数,它们的十位数相同,而个位数相加的和是10。

利用首同末合十的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。

例如,54×56=3024,81×89=7209。

2、充分利用五大定律教师要扎实开展好现行教材四年级数学下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不一样题型灵活选择简便方法正确而快捷地进行计算。

3、数字颠倒的两、三位数减法巧算形如73与37、185与581等的数称为数字颠倒的两、三位数,巧算方法为:1。

数字颠倒的两位数减法,可用两位数字中的大数减去小数,再乘以9,积就是它们的差。

如73-37=(7-3)×9=36,82-28=(8-2)×9=54。

2。

数字颠倒的三位数减法,可用三位数中最大数减去最小数,再乘以9,乘积分两边,中间填上9,就是它们的差。

比如,581-158=(8-1)×9=63,所以851-158=693。

4、利用分数与除法的关系来巧算在一个仅有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。

比如,24÷18×36÷12=(24÷18)×(36÷12)=2418×3612=4。

5、利用扩大缩小的规律进行简算有些除法计算题直接计算比较繁琐,并且容易算错,利用扩缩规律进行合理的变形能够找到简便的解决方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种速算巧算技巧总结(部分)
——张老师
1、头同尾合十:
适用条件:两位数乘两位数,首数相同,尾数相加得十。

例题实战:(2008年,迎春杯,初赛)
53×57-47×43=[(5×5+5)×100+3×7]-[(4×4+4)×100+7×3]=1000
运算说明:首数相乘,再加上一次相同的首数,得到一个一位数或者两位数,作为数1。

个位数字和个位数字相乘,得到一个一位数或者两位数,作为数2。

最后把数1和数2按顺序拼在一起即是结果。

2、尾同头合十:
适用条件:两位数乘两位数,尾数相同,首数相加得十。

例题实战:
28×88=[(2×8+8)×100]+8×8=2464
运算说明:首数相乘,再加上一次相同的尾数,得到一个一位数或者两位数,作为数1。

个位数字和个位数字相乘,得到一个一位数或者两位数,作为数2。

最后把数1和数2按顺序拼在一起即是结果。

3、规律三:
3×4=12
33×34=1122
333×334=111222
3333×3334=11112222
33333×33334=1111122222
333333×333334=111111222222
……
运算说明:全是数字3的乘数里有几个3,结果里就有几个1和2,1在前,2在后。

4、零一数:
101×12=1212
1001×12=12012
10001×12=120012
1001×123=123123
10001×123=1230123
100001×123=12300123
……
运算说明:使零一数外的乘数的末位数字和零一数的1对其,该乘数的其他数字按次往前排,没有数字对齐的零直接写到结果里即可。

5、11与一个数相乘:
78×11=858
25×11=275
39×11=429
123×11=1353
274×11=3014
……
运算说明:一个数与11相乘,两边一拉,中间相加。

6、轮回数(张老师叫它投胎数):
142857×1=142857
142857×2=285714
142857×3=428571
142857×4=571428
142857×5=714285
142857×6=857142
142857×7=999999
运算说明:数字都是乘数中的数字,规律则直接需要记住,规律是乘数到7截止。

7、规律6:
1×1=1
111×111=12321
1111×1111=1234321
11111×11111=123454321
111111×111111=12345654321
1111111×1111111=1234567654321
……
运算说明:一个乘数里含有多少个1,那么结果就最高升到几,结果是先升后降,规律明显。

8、规律7:
1×9=9
11×99=1089
111×999=110889
1111×9999=11108889
11111×99999=1111088889
111111×999999=111110888889
1111111×9999999=11111108888889
……
运算说明:结果里的1比乘数里的1的个数少1,8的个数比乘数里的9的个数少1,相应位置是零和9,具体位置见上式即可。

9、首位相同的两位数相乘:
适用条件:两位数乘两位数,首位数字相同,尾数随意。

(所以头同尾合十规律也包含在此规律内)
例题实战:
84×81=(84+1)×80+4×1=6804
运算说明:一个乘数加上另一个乘数的个位数字,结果乘以乘数的整十数,结果为数1。

乘数的个位数和个位数相乘,结果作为数2。

最后,数一和数二按照顺序拼在一起即是结果。

10、和上述规律相关的结论则需要直接记住掌握,以便更好的与上述规律结合运用:
37×3=111
7×11×13=1001
世上没有一件工作不辛苦,没有一处人事不复杂。

不要随意发脾气,谁都不欠你的。

相关文档
最新文档