状元郎-精准数学:适合二三四年级的速算与巧算技巧
小学数学巧算术快速掌握计算技巧和口诀

小学数学巧算术快速掌握计算技巧和口诀数学在小学阶段是一个重要的学科,它不仅培养孩子的逻辑思维能力,还为他们成长为合格的数学家和科学家奠定坚实的基础。
在小学数学中,巧妙的算术计算技巧和口诀是帮助孩子快速掌握数学知识的重要工具。
本文将介绍一些小学数学的巧算术技巧和口诀,帮助孩子们在数学学习中更轻松地掌握计算。
一、加法巧算术在小学数学中,加法是最基础也是最常用的运算之一。
为了帮助孩子们快速掌握加法计算,以下是一些加法巧算术的技巧和口诀:1. 十位数相同,个位数相加:当两个加数的十位数相同,个位数相加等于10时,可以简化计算。
例如,38+46,可以先将十位数3与4相加得到7,再将个位数8与6相加得到14,最终的结果是74。
2. 逢十进位:当个位数相加超过10时,需要进位。
例如,27+16,将个位数相加得到3,十位数相加得到4,最终结果是43。
3. 变形运算:对于较大的数字计算,可以将其拆分为更小的数字相加,然后再相加得到最终结果。
例如,58+17可以拆分为50+10+7,先计算50+10得到60,再加上7得到67,即58+17=67。
二、减法巧算术减法是小学数学中需要掌握的另一个重要运算。
以下是一些减法巧算术的技巧和口诀:1. 借位法:当减法的被减数个位小于减数个位时,需要借位。
例如,25-16可以先借位,变为15-6,然后计算个位数为9,十位数为1,最终结果是19。
2. 零减法:任何数减去0都等于它本身。
例如,32-0=32。
3. 拆分运算:对于较大的减法计算,可以将其拆分为更小的数字相减,然后再相减得到最终结果。
例如,68-23可以拆分为60-20+8-3,先计算60-20得到40,再减去3得到37,即68-23=37。
三、乘法口诀表在小学数学中,学习乘法口诀表是帮助孩子们快速掌握乘法计算的重要方法。
以下是乘法口诀表:1 × 1 = 11 ×2 = 21 × 3 = 3...9 × 8 = 729 × 9 = 81在学习乘法口诀表时,孩子们可以通过反复背诵和练习来加深记忆,慢慢提高乘法计算的速度和准确性。
小学数学口算速算技巧与常用口诀

小学数学口算速算技巧与常用口诀小学数学口算技巧与常用口诀1、个位数是“1”快速计算口诀:头数相乘,头数相加,尾数为1(如果头数相加超过10,则需要进位)2、十位数是“1”快速计算口诀:头数为1,尾数相加为10,尾数相乘(如果尾数相乘超过10,则需要进位)3、个位数都是“9”快速计算口诀:头数各加1,相乘后再乘以10,减去相加数,最后再加上144、十位数都是9快速计算口诀:用100减去前面的数,再用后面的数去减去这个结果,最后将得到的两个数相乘5、头数相同,尾数相加为10快速计算口诀:头数相乘加1,尾数相乘并占据两位6、头数互补,尾数相同快速计算口诀:头数相乘加上尾数,尾数相乘并占据两位7、互补数相乘快速计算口诀:头数加1后再相乘,尾数相乘并占据两位8、其中一个数为11快速计算口诀:将首尾不变,相加的结果放在中间小学数学知识常用口诀1、乘法口诀儿歌除到被除数的哪一位,商就写在那一位;一只青蛙一张嘴,两只眼睛四条腿;不够商1就写,商中头尾算数位;两只青蛙两张嘴,四只眼睛八条腿;余数要比除数小,这样运算才算对。
三只青蛙三张嘴,六只眼睛十二条腿;2、小数加减法儿歌四只青蛙四张嘴,扑嗵扑嗵跳下水。
计算小数加减法,关键是对齐小数点;3、一个数除以几位数儿歌用补齐末位,便可进行加减。
先看被除数最高位,高位不够多一位;4、小数的大小比较儿歌大小比较很容易,先把它们都竖起;小数点、数位要对齐,然后再把它们比;首先比较最高位,最高位相同下位比;一直比到最后分高低,哪个高来哪个大,牢记在心不忘记。
5、除法是小数的除法除法是小数,移位要记住;移动小数点,使它变成整数;除数移几位,被除数同样多;数位不够时,需要补齐。
6、四则混合运算儿歌通览全题定方案,细看是否能简便;从左到右脱式算,先乘除后加减;括号依次小中大,先算里面后外面;横式计算竖检验,一步一查是关键。
7、解应用题儿歌题目读几遍,从中找关键;先看求什么,再去找条件;合理列算式,仔细来计算;一题求多解,单位莫遗忘;结果要验算,最后写答案。
【精华】小学二三年级数学速算秘诀大全(实用版)

【精华】小学二三年级数学速算秘诀大全(实用版)1“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。
(2)53+36+47=53+47+36 =(53+47)+36=100+36=136因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111把15分拆成15=4+11,这是因为96+4=100,可凑整先算。
(2)52+69=(21+31)+69 =21+(31+69)=21+100=121因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。
3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19)=60+20+20=100将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。
(2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84因为28+2=30可凑整,但最后要把多加的三个2减去。
2改变运算顺序在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44加18减19的结果就等于减1。
3计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9 =5(中间数是5)×9(共9个数)=45(2)计算:1+3+5+7+9 =5(中间数是5)×5 (共有5个数)=25(3)计算:2+4+6+8+10 =6(中间数是6 )×5 (共有5个数)=30(4)计算:3+6+9+12+15 =9(中间数是9)×5(共有5个数)=45(5)计算:4+8+12+16+20 =12(中间数是12)×5(共有5个数)=602. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算: 1+2+3+4+5+6+7+8+9+10 =(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10。
四至六年级小学数学巧算技巧集

四至六年级小学数学巧算技巧集一、加法技巧- 加法交换律:两个数相加的结果不受加数顺序的影响,即$a+b=b+a$。
- 加零律:任何数与零相加等于它本身,即 $a+0=a$。
- 加一律:任何数与一相加等于它本身加一,即 $a+1=a+1$。
- 进位法:在两个数相加时,当某一位的和超过9,就要向前一位进1。
二、减法技巧- 减法与加法的关系:减法可以看作是加法的逆运算。
$a-b=c$ 可以写成 $a=c+b$。
- 减零律:任何数减去零等于它本身,即 $a-0=a$。
- 减一律:任何数减去一等于它本身减一,即 $a-1=a-1$。
- 借位法:当被减数的某一位小于减数的对应位时,要向前一位借1。
三、乘法技巧- 乘法交换律:两个数相乘的结果不受因数顺序的影响,即 $a \times b = b \times a$。
- 乘一律:任何数乘以一等于它本身,即 $a \times 1 = a$。
- 乘零律:任何数乘以零等于零,即 $a \times 0 = 0$。
- 乘法分配律:一个数乘以两个数的和等于这个数分别乘以这两个数再相加,即 $a \times (b + c) = a \times b + a \times c$。
四、除法技巧- 除法与乘法的关系:除法可以看作是乘法的逆运算。
$a \div b = c$ 可以写成 $a = b \times c$。
- 除以一律:任何数除以一等于它本身,即 $a \div 1 = a$。
- 除以自己律:任何数除以它本身等于一,即 $a \div a = 1$。
- 除以零律:任何数除以零没有意义,即 $a \div 0$ 没有定义。
五、其他技巧- 数字规律:观察一组数字的规律,可以帮助解决数学问题。
- 简便计算:利用数的特性,如乘法的交换律、乘法的分配律等,可以简化计算过程,提高计算速度。
以上是四至六年级小学数学巧算技巧集,希望对同学们在数学研究中有所帮助。
(完整版)小学数学三年级速算与巧算技巧

(完整版)小学数学三年级速算与巧算技巧第一讲:速算与巧算关键培养孩子的思维习惯:遇到计算题先观察,再思考,然后选择适合的速算方法!所谓“一看”“二想”“三选择”一、分组法适用于有一定规律的加减混合运算,通过加减重新组合,将原有计算转变为较小数或相同数的计算,从而简便计算过程。
观察:1、数字有一定规律2、符号有一定规律方法:看符号,找周期。
根据符号的规律划分周期,进行分组计算。
切记不要忘了第一个数的符号!1、简单分组例:10 -9 +8 -7 +6 -5 +4 -3 +2 -1+-+-+-+-+-(符号周期为+、-,两个数为一组)则原式=(10-9)+(8-7)+(6-5)+(4-3)+(2-1)=1+1+1+1+1=52、分组有剩余例:20 + 19 –18 + 17 –16 + 15 –14 + 13 –12 + 11 –10++-+-+-+-+-(符号周期为+、-,两个数一组,但第一个数多余出来了)则原式=20 +(19-18)+(17-16)+(15-14)+(13-12)+(11-10)=20+1+1+1+1+1=253、复杂分组例:48 + 47 - 46 -45 + 44 + 43 –42 –41 + 40 + 39 –38 –37 + 36 ++--++--++--+(符号周期为+、+、-,-,四个数一组)则原式=(48 + 47 - 46 -45)+(44 + 43 –42 –41)+(40 + 39 –38 –37)+ 36 =4+4+4+36=48例:15 + 14 –13 + 12 + 11 –10 + 9 + 8 –7 + 6 + 5 –4 + 3 + 2 - 1++-++-++-++-++-(符号周期为+、+、-,三个数一组)则原式=(15 + 14–13)+(12 + 11–10)+(9 + 8–7)+(6 + 5 –4)+(3 + 2–1)=16+13+10+7+4 (这里提醒孩子也要善于观察,每组后两个数先做运算得1,再加第一个数比较简便)=(16+4)+(13+7)+10=20+20+10=504、重新分组(即符号或数字的规律不好用,需要观察重新“排队”分组)例:1-2+3-4+5-6+7-8+9-10+11经观察,数字和符号都是有规律的,可是按照(1-2)+(3-4)……这样分组的话,每个括号里都不够减。
四年级速算、巧算方法

速算与巧算方法随着数学竞赛的蓬勃发展,数值计算充满了活力,除了遵循四则混合运算的运算顺序外,破局部考虑、立整体分析,巧妙、灵活地运用定律和方法,对处理一些貌似复杂的计算题常常有事半功倍的效果,常见适用的巧算方法如下:一、凑整法整数速算与巧算的基础是凑整思想,通过用交换律、结合律和分配律凑出1,10,100,1000,…,将复杂的计算变简便。
运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,应用定律和性质“凑整”运算数据,能使计算比较简便。
1、加法“凑整”。
利用加法交换律、结合律“凑整”,例如:4673+27689+5327+22311=(4673+5327)+(27689+22311)= 10000+50000= 600002、减法“凑整”。
利用减法的性质“凑整”,例如:50-13-7= 50-(13+7)= 303、乘法“凑整”。
利用乘法交换律、结合律、分配律“凑整”,例如:125×4×8×25×78=(125×8)×(4×25)×78= 1000×100×78= 78000004、补充数“凑整”。
末尾是一个或几个0的数,运算起来比较简便。
若数末尾不是0,而是98、51等,我们可以用(100-2)、(50+1)等来代替,使运算变得比较简便、快速。
一般地我们把100叫作98的“大约强数”,2叫做98的“补充数”;50叫作51的“大约弱数”,1叫作51的“补充数”。
把一个数先写成它的大约强(弱)数与补充数的差(和),然后再进行运算,例如:(1)387+99=387+(100-1)=387+100-1=486(2)1680-89=1680-(100-11)=1680-100+11=1580+11=1591(3)69×101=69×(100+1)=6900+69=6969二、基准数法根据数据特征,从诸多数中选择一个做计算基础的数,通过“割”、“补”,采用“以乘代加”的方法速算。
状元郎-精准数学适合二三四年级的速算与巧算技巧 (1)

精准数学:适合二三四年级的速算与巧算技巧例1 计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+79例3计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.3.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+1993例4 计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—2=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5 计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.5.计算92+94+89+93+95+88+94+96+87例6 计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7 计算 9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000.例8 1999+999×999解法1:1999+999×999=1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999=1999+999×(1000-1)=1999+999000-999=(1999-999)+999000=1000+999000=1000000.6.计算(125×99+125)×16有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.17.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?练习1.计算999999×780532.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时内时钟共敲了多少下?3.求出从1~25的全体自然数之和.4.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105+104+103—102—1015.计算 3×999+3+99×8+8+2×9+2+999999×77778+33333×666661966+1976+1986+1996+2006273×4500-45×173001234562-12345523600000÷125÷32÷25习题一解答1.利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)=1988+1986+1984+…+6+4+2-1-3-5…-1983-1985-1987=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)=994.4.1-2+3—4+5-6+…+1991-1992+1993=1+(3-2)+(5-4)+…+(1991-1990)+(1993-1992)= 1+1×996=997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下).6.1+2+3+…+24+25=(1+25)+(2+24)+(3+23)+…+(11+15)+(12+14)+13=26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+…+108+107—106—105+104+103—102—101=(1000+999—998—997)+(996+995—994-993)+…+(108+107—106—105)+(104+103—102—101)解法 2:原式=(1000—998)+(999—997)+(104—102)+(103—101)=2 × 450=900.解法 3:原式=1000+(999—998—997+996)+(995—994 -993+992)+…+(107—106—105+104)+(103—102—101+100)-100=1000—100=900.9.(125×99+125)×16=125×(99+1)×16= 125×100×8×2=125×8×100×2=200000.10.3×999+3+99×8+8+2×9+2+9= 3×(999+1)+8×(99+1)+2×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1)×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111 =11111111108888888889.这个积有10个数字是奇数.。
小学数学速算与巧算方法

在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?在熟练掌握计算法则和运算顺序的前提下,能够根据题目本身的特点,使用速算和巧算,化繁为简,化难为易,算得又快又准确。
1、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。
(2)53+36+47=53+47+36=(53+47)+36=100+36=136因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111把15分拆成15=4+11,这是因为96+4=100,可凑整先算。
(2)52+69=(21+31)+69=21+(31+69)=21+100=121因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。
3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100将63分拆成63=60+2+1就是因为2+18和1+19能够凑整先算。
(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84因为28+2=30可凑整,但最后要把多加的三个2减去。
2、改变运算顺序在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44加18减19的结果就等于减1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精准数学:适合二三四年级的速算与巧算技巧
例1 计算9+99+999+9999+99999
解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.
9+99+999+9999+99999
=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)
=10+100+1000+10000+100000-5
=111110-5
=111105.
例2 计算199999+19999+1999+199+19
解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)
199999+19999+1999+199+19
=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5
=200000+20000+2000+200+20-5
=222220-5
=22225.
1.计算899998+89998+8998+898+88
2.计算799999+79999+7999+799+79
例3计算(1+3+5+...+1989)-(2+4+6+ (1988)
解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:
从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:
从2到1988共有994个偶数,凑成497个1990.
1990×497+995—1990×497=995.
3.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)
4.计算1—2+3—4+5—6+…+1991—1992+1993
例4 计算 389+387+383+385+384+386+388
解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.
389+387+383+385+384+386+388
=390×7—1—3—7—5—6—4—2
=2730—28
=2702.
解法2:也可以选380为基准数,则有
389+387+383+385+384+386+388
=380×7+9+7+3+5+4+6+8
=2660+42
=2702.
例5 计算(4942+4943+4938+4939+4941+4943)÷6
解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.
(4942+4943+4938+4939+4941+4943)÷6
=(4940×6+2+3—2—1+1+3)÷6
=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运
=4940×6÷6+6÷6运用了除法中的巧算方法)
=4940+1
=4941.
5.计算92+94+89+93+95+88+94+96+87
例6 计算54+99×99+45
解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.
54+99×99+45
=(54+45)+99×99
=99+99×99
=99×(1+99)
=99×100
=9900.
例7 计算 9999×2222+3333×3334
解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.
9999×2222+3333×3334
=3333×3×2222+3333×3334
=3333×6666+3333×3334
=3333×(6666+3334)
=3333×10000
=33330000.
例8 1999+999×999
解法1:1999+999×999
=1000+999+999×999
=1000+999×(1+999)
=1000+999×1000
=1000×(999+1)
=1000×1000
=1000000.
解法2:1999+999×999
=1999+999×(1000-1)
=1999+999000-999
=(1999-999)+999000
=1000+999000
=1000000.
6.计算(125×99+125)×16
有多少个零.
总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.
17.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?
练习
1.计算999999×78053
2.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时内时钟共敲了多少下?
3.求出从1~25的全体自然数之和.
4.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105+104+103—102—101
5.计算 3×999+3+99×8+8+2×9+2+9
99999×77778+33333×66666
1966+1976+1986+1996+2006
273×4500-45×17300
1234562-1234552
3600000÷125÷32÷25
习题一解答
1.利用凑整法解.
899998+89998+8998+898+88
=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10
=900000+90000+9000+900+90-10
=999980.
2.利用凑整法解.
799999+79999+7999+799+79
=800000+80000+8000+800+80-5
=888875.
3.(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)
=1988+1986+1984+…+6+4+2-1-3-5…
-1983-1985-1987
=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)
=994.
4.1-2+3—4+5-6+…+1991-1992+1993=1+(3-2)+(5-4)+…+(1991-1990)+(1993-1992)
= 1+1×996
=997.
5.1+2+3+4+5+6+7+8+9+10+11+12
=13×6=78(下).
6.1+2+3+…+24+25
=(1+25)+(2+24)+(3+23)+…+(11+15)+(12
+14)+13
=26×12+13=325.
7.解法1:1000+999—998—997+996+995—994-993+…+108+107—106—105+104+103—102—101
=(1000+999—998—997)+(996+995—994
-993)+…+(108+107—106—105)+(104
+103—102—101)
解法 2:原式=(1000—998)+(999—997)+(104—102)
+(103—101)
=2 × 450
=900.
解法 3:原式=1000+(999—998—997+996)+(995—994 -993+992)+…+(107—106—105+104)
+(103—102—101+100)-100
=1000—100
=900.
9.(125×99+125)×16
=125×(99+1)×16
= 125×100×8×2
=125×8×100×2
=200000.
10.3×999+3+99×8+8+2×9+2+9
= 3×(999+1)+8×(99+1)+2×(9+1)+9
=3×1000+8×100+2×10+9
=3829.
11.999999×78053
=(1000000—1)×78053
=78053000000—78053
=78052921947.
12.1111111111×9999999999
=1111111111×(10000000000—1)
=11111111110000000000—1111111111
=11111111108888888889. 这个积有10个数字是奇数.。