平面图形的推导过程及公式

合集下载

平面图形公式

平面图形公式

一.公式:1.长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2面积=长×宽字母公式:S=ab2.正方形:周长=边长×4字母公式:C=4a面积=边长×边长字母公式:S=a3.平行四边形的面积=底×高字母公式: S=ah4.三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母公式: S=ah÷25.梯形的面积=(上底+下底)×高÷2字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】二.平行四边形面积公式推导:剪拼、平移1.三角形面积公式推导:旋转平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高。

因为平行四边形面积=底×高,所以三角形面积=底×高÷22.梯形面积公式推导:旋转两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2 等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。

长方形框架拉成平行四边形,周长不变,面积变小。

平面图形的推导过程及公式

平面图形的推导过程及公式

平面图形的推导过程及公式Prepared on 22 November 2020周长:圆、椭圆或其他闭合的曲线的周界长度。

面积:物体的表面—平面图形的大小,叫做它们的面积。

圆面积推导过程:1、把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/2·2r=πr22、把圆16等份分割后可拼插成近似的等腰三角形。

三角形的底相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr23、把圆分割后,可拼成近似的等腰梯形。

梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2 。

4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。

说明在求圆的面积时,都要知道半径。

三角形面积推导过程:1:把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。

2:把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。

这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。

3:把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷24:把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2梯形面积推导过程:1、用两个完全一样的梯形通过旋转拼成了一个长方形,观察后发现:梯形的上下底之和相当于长方形的长、梯形的高相当于长方形的宽、梯形的面积=长方形的面积÷2(或梯形的面积等于长方形的面积的一半),根据拼成图形的面积公式是:长方形的面积=长×宽,所以:梯形的面积=(上底+下底)×高÷22、梯形的上下底之和相当于平行四边形的底,梯形的高相当于平行四边形的高,梯形的面积相当于平行四边形面积的一半。

平面图形的周长、面积计算公式

平面图形的周长、面积计算公式

平面图形的周长、面积的计算公式1、长方形(a 长、b 宽、c 周长、s 面积) b a二、正方形(s 面积、a 边长、c 周长)1、长方形的周长=(长+宽)×2 2、长=长方形的周长÷2-宽 C=(a+b)2 a=c÷2-b 3、宽=长方形的周长÷2-长 b=c÷2-a 1、长方形的面积=长×宽 2、长=长方形的面积÷宽 S=ab b=s ÷b 3、宽=长方形的面积÷长 b=s ÷aa a3、正方形的面积=边长×边长 s=a ×a 或者s=a21、正方形周长=边长×4 C=4a2、边长=正方形周长÷4 a=c ÷4三、平行四边形(a 底、h 高)a四、三角形 (a 底、h 高、s 面积)ah1、平行四边形的面积=底×高S=ah2、底=平行四边形的面积÷高 a=s ÷h3、高=平行四边形的面积÷底 h=s ÷ah 1、三角形的面积=底×高÷2 S=ah ÷22、底=三角形的面积×2÷高 a=s ×2÷h3、高=三角形的面积×2÷底 h=s×2÷a五、梯形(a 上底、b 下底、h 高、s 面积) a b六、圆(r 半径、d 直径、o 圆心、s 面积、c 周长)h1、梯形的面积=(上底+下底)×高÷2 S=(a+b)×h ÷22、高=梯形的面积÷(上底+下底)×2h=s ÷ (a+b)×23、(上底+下底)=梯形的面积÷高×2 (a+b)=s ÷h ×24、上底=梯形的面积÷高×2-下底 a=s ÷h ×2-brd o1、圆的周长=直径×圆周率 C=d ∏2、圆的周长=半径×2×圆周率 C=2∏r3、圆的面积=圆周率×半径的平方S=∏ r 2七、扇形常见立体图形的表面积、体积计算公式 一、长方体二、正方体面积=圆周率×半径的平方×360nS=∏ r2×360nh a 1、长方体的表面积=(长×宽+长×高+宽×高)×2S 表=(ab+ah+bh)×22、体积=长×宽×高 V=abha a1、长方体的表面积= 棱长×棱长×6 S 表=a ×a×62、体积=棱长×棱长×棱长 V=a ×a×a三、圆柱体三、圆锥体h1、侧面积=半径×2×∏ ×高S 侧=2∏ rh2、底面积=圆周率×半径的平方 S 底=∏r 23、表面积=侧面积+2个底面积, s 表=2∏ rh+2∏r 2。

推导面积计算公式的方法

推导面积计算公式的方法

推导面积计算公式的方法面积是几何学中一个重要的概念,它描述了一个平面图形所占据的空间大小。

在数学中,有许多不同的图形,如矩形、三角形、圆形等,它们都有各自的面积计算公式。

本文将介绍一些常见图形的面积计算方法,并简要推导它们的计算公式。

一、矩形的面积计算方法矩形是最简单的图形之一,它由四条边组成,且相邻两边互相垂直。

矩形的面积计算公式为:面积 = 长 ×宽。

这个公式的推导非常直观,可以通过将矩形划分为若干个小正方形来理解。

假设矩形的长为a,宽为b,我们可以将矩形划分为a ×b个小正方形,每个小正方形的边长都是1。

因此,矩形的面积就等于所有小正方形的面积之和,即a × b。

二、三角形的面积计算方法三角形是另一个常见的图形,它由三条边和三个内角组成。

计算三角形的面积有多种方法,其中最常用的方法是利用底边和高的关系。

三角形的面积计算公式为:面积 = 底边 ×高 / 2。

这个公式的推导可以通过将三角形划分为两个等腰三角形来理解。

假设三角形的底边为a,高为h,我们可以将三角形划分为两个等腰三角形,每个等腰三角形的底边为a,高为h。

因此,三角形的面积就等于两个等腰三角形的面积之和,即a × h / 2。

三、圆形的面积计算方法圆形是一种没有边界的图形,它由一个圆心和一条半径组成。

计算圆形的面积需要用到圆周率π,它是一个无理数,约等于3.14159。

圆形的面积计算公式为:面积= π × 半径²。

这个公式的推导可以通过将圆形划分为许多个小扇形来理解。

假设圆形的半径为r,我们可以将圆形划分为许多个小扇形,每个小扇形的面积可以近似看作是一个三角形的面积,即底边为r,高为r。

因此,圆形的面积就等于所有小扇形的面积之和,即π × r²。

四、其他图形的面积计算方法除了矩形、三角形和圆形,还有许多其他图形,如梯形、正方形、菱形等,它们都有各自的面积计算方法。

平面图形和立体图形的计算公式

平面图形和立体图形的计算公式

平面图形和立体图形的计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a 面积=边长×边长 S=a×a=2a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a=3a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л=π2r9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷3。

附录A 平面图形的几何性质

附录A 平面图形的几何性质

n
同理 I y
I
, Ai
y
i 1
n
I xy
I Ai xy
i 1
§A.2 惯性矩 惯性积 惯性半径
三、惯性积的性质
y -x x
当 x 、 y 轴中有一轴为对称轴
A
A
I xy
xyd A
A
y
y
2n
lim
Ai 0
i 1
xi
yi Ai
O
x
n
lim Ai 0 i 1
xi yi Ai
xi
r2 z2
yC 0 Sz 0
z dA
z dz
dA 2 r2 z2 dz
r
y
Sy
zdA
A
r
z2
2r3 r2 z2 dz
o
0
3
zC
Sy A
2r3
r2
3 2
4r
3
§A.1 形心和静矩
三、组合图形的静矩和形心
组合图形——由几个简单图形(如矩形、圆形等) 组成的平面图形
如:
§A.1 形心和静矩
Ix Iy
2
4
I
2 xy

I I
x0 y0
Ix
2
Iy
1 2
(Ix
I
y
)2
4
I
2 xy
§A.4 转轴公式 主惯性矩
4.主惯性矩的性质
当Ix1取极值时,对应的方位为1
令 dI x1
d
(I x I y )sin 21 2I xy cos 21 0
1
得到
tg21
2I xy Ix I

常见的平面图形常用公式

常见的平面图形常用公式

常见的平面图形常用公式如直线、射线、角、三角形、平行四边形、长方形(正方形)、梯形和圆也差不多上几何图形,这些图形所表示的各个部分都在同一平面内,称为平面图形。

常见平面图形常用公式:长方形S=ab C=(a+b)2正方形S=aa 或对角线对角线2 C=4a平行四边形S=ah三角形S=ah2梯形S=(a+b)h2圆形S=rr C=d椭圆S=rr平面图形名称符号周长C和面积S正方形a边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长-对角线夹角S=dD/2sin平行四边形a,b-边长h-a边的高-两边夹角S=ah=absin菱形a-边长-夹角D-长对角线长d-短对角线长S=Dd/2=a2sin梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2 =mh圆r-半径d-直径C=rS=r2=d2/4扇形r扇形半径a圆心角度数C=2r+2(a/360)S=r2(a/360)弓形l-弧长b-弦长h-矢高r-半径-圆心角的度数S=r2/2(/180-sin)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =r2/360 - b/2[r2-(b/2)2]1/2=r(l-b)/2 + bh/22bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=(R2-r2)=(D2-d2)/4椭圆D-长轴d-短轴S=Dd/4立方图形名称符号面积S和体积V 正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C底面周长S底底面积S侧侧面积S表表面积C=2rS底=r2S侧=ChS表=Ch+2S底V=S底h=r2h空心圆柱R-外圆半径r-内圆半径h-高V=h(R2-r2)直圆锥r-底半径h-高V=r2h/3圆台r-上底半径R-下底半径h-高V=h(R2+Rr+r2)/3球r-半径d-直径V=4/3d2/6球缺h-球缺高r-球半径a-球缺底半径V=h(3a2+h2)/6=h2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=h[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=22Rr2=2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=h(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

平面图形的推导过程及公式

平面图形的推导过程及公式

平面图形的推导过程及公式Document number:NOCG-YUNOO-BUYTT-UU986-1986UT周长:圆、椭圆或其他闭合的曲线的周界长度。

面积:物体的表面—平面图形的大小,叫做它们的面积。

圆面积推导过程:1、把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/2·2r=πr22、把圆16等份分割后可拼插成近似的等腰三角形。

三角形的底相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr23、把圆分割后,可拼成近似的等腰梯形。

梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2 。

4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。

说明在求圆的面积时,都要知道半径。

三角形面积推导过程:1:把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。

2:把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。

这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。

3:把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷24:把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2梯形面积推导过程:1、用两个完全一样的梯形通过旋转拼成了一个长方形,观察后发现:梯形的上下底之和相当于长方形的长、梯形的高相当于长方形的宽、梯形的面积=长方形的面积÷2(或梯形的面积等于长方形的面积的一半),根据拼成图形的面积公式是:长方形的面积=长×宽,所以:梯形的面积=(上底+下底)×高÷22、梯形的上下底之和相当于平行四边形的底,梯形的高相当于平行四边形的高,梯形的面积相当于平行四边形面积的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周长:圆、椭圆或其他闭合的曲线的周界长度。

面积:物体的表面—平面图形的大小,叫做它们的面积。

圆面积推导过程:
1、把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/2·2r=πr2
2、把圆16等份分割后可拼插成近似的等腰三角形。

三角形的底
相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr2
3、把圆分割后,可拼成近似的等腰梯形。

梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2 。

4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。

说明在求圆的面积时,都要知道半径。

三角形面积推导过程:
1:把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。

2:把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。

这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。

3:把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2
4:把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2
梯形面积推导过程:
1、用两个完全一样的梯形通过旋转拼成了一个长方形,观察后发现:梯形的上下底之和相当于长方形的长、梯形的高相当于长方形的宽、梯形的面
积=长方形的面积÷2(或梯形的面积等于长方形的面积的一半),根据拼成图形的面积公式是:长方形的面积=长×宽,所以:梯形的面积=(上底+下底)×高÷2
2、梯形的上下底之和相当于平行四边形的底,梯形的高相当于平行四边形的高,梯形的面积相当于平行四边形面积的一半。

根据拼出图形的面积公式是:平行四边形的面积=底×高,所以:梯形的面积=(上底+下底)×高÷2
平行四边形面积推导过程:
平行四边形:由长方形面积推导而来的,把平行四边形的一角切割平移至另外一角,拼成一个长方形,长方形的长就是平形四边形的底,宽就是平行四边形的高,因为长方形的面积是长*宽,所以平形四边形的面积就是底*高圆形:把一个圆沿半径剪成若干等份,再让一系列圆心角互相咬合,便拼成了一个近似的长方形;而且,平分的份数越多,拼成的与长方形越近似;可以想象,若能无限分割,则就拼成了一个长方形,长相当于圆周长的一半,宽就是圆的半径,所以S长=a*b=πr*r=πr²
所以S圆=πr²
三角形:把两个完全相同的三角形拼成一个平行四边形,拼成的平行四边形的底等于三角形的底,高等于三角形的高,每个三角形的面积是这个拼成的平行四边形面积的一半,因为平行四边形的面积=底×高,所以三角形的面积=底×高÷2.用字母表示为S=ah÷2.
平行四边形:由长方形面积推导而来的,把平行四边形的一角切割平移至另外一角,拼成一个长方形,长方形的长就是平形四边形的底,宽就是平行四边形的高,因为长方形的面积是长*宽,所以平形四边形的面积就是底*高梯形:由平行四边形面积得到。

两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底就梯形的上底+下底,平行四边形的高就是梯形的高,因为平行四边形的面积是底*高,所以梯形的面积为(上底+下底)*高/2。

相关文档
最新文档