2.5 逆命题和逆定理(1)

合集下载

八年级数学《2.5逆命题和逆定理》基础训练(含答案)

八年级数学《2.5逆命题和逆定理》基础训练(含答案)

2.5 逆命题和逆定理1.下列说法中,正确的是(A)A. 每一个命题都有逆命题B. 假命题的逆命题一定是假命题C. 每一个定理都有逆定理D. 假命题没有逆命题2.下列命题的逆命题为真命题的是(C)A. 直角都相等B. 钝角都小于180°C. 若x2+y2=0,则x=y=0D. 同位角相等3.下列定理中,有逆定理的是(D)A. 对顶角相等B. 同角的余角相等C. 全等三角形的对应角相等D. 在一个三角形中,等边对等角4.下列命题中,其逆命题是假命题的是(B)A. 等腰三角形的两个底角相等B. 若两个数的差为正数,则这两个数都为正数C. 若ab=1,则a与b互为倒数D. 如果|a|=|b|,那么a2=b25.写出下列命题的逆命题,并判断逆命题的真假,若是假命题,请举出反例.(1)若x=y=0,则x+y=0.【解】逆命题:若x+y=0,则x=y=0.这个逆命题是假命题.反例:当x=-1,y =1时,x+y=0,但x≠0,y≠0.(2)等腰三角形的两个底角相等.【解】逆命题:有两角相等的三角形是等腰三角形.这个逆命题是真命题.6.下列定理中,哪些有逆定理?如果有逆定理,请写出逆定理.(1)同旁内角互补,两直线平行.(2)三边对应相等的两个三角形全等.【解】(1)有逆定理,逆定理是“两直线平行,同旁内角互补”.(2)有逆定理,逆定理是“如果两个三角形全等,那么这两个三角形的三边对应相等.”(第7题)7.利用线段垂直平分线性质定理及其逆定理证明以下命题.已知:如图,AB=AC,DB=DC,点E在AD上.求证:EB=E C.【解】连结B C.∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD是线段BC的垂直平分线(两点确定一条直线).又∵点E在AD上,∴EB=E C.8.写出命题“如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等”的逆命题,并判断原命题和逆命题的真假.若是假命题,请举出反例.【解】逆命题:如果两个角相等,那么其中一个角的两边与另一个角的两边分别垂直.原命题是假命题.反例:如解图①,∠CAD的两边与∠EBF的两边分别垂直,但∠CAD=45°,∠EBF=135°,即∠CAD≠∠EBF.(第8题解)逆命题是假命题.反例:如解图②,∠CAD=∠EBF,但显然AC与BE,BF都不垂直.9.写出命题“等腰三角形底边上的中点到两腰的距离相等”的逆命题,并证明该逆命题是真命题.【解】逆命题:如果一个三角形一边上的中点到另两边的距离相等,那么这个三角形是等腰三角形.已知:如解图,在△ABC中,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,且DE=DF.(第9题解)求证:△ABC为等腰三角形.证明:连结A D.∵D是BC的中点,∴S△ABD=S△AC D.∵DE⊥AB,DF⊥AC,∴S△ABD=12AB·DE,S△ACD=12AC·DF.又∵DE=DF,∴AB=AC,∴△ABC为等腰三角形.10.举反例说明定理“全等三角形的面积相等”没有逆定理.【解】逆命题:如果两个三角形的面积相等,那么这两个三角形全等.反例:如解图所示,l1∥l2,△ABC和△BCD同底等高,∴△ABC的面积等于△BCD的面积,但△ABC和△BCD不全等.故此定理没有逆定理.(第10题解)11.已知命题“等腰三角形底边上的中线与顶角的平分线重合”,写出它的逆命题,判断该逆命题的真假,并证明.【解】逆命题:一边上的中线与它所对角的平分线重合的三角形是等腰三角形,是真命题.(第11题解)已知:如解图,在△ABC中,BD=CD,AD平分∠BA C.求证:△ABC是等腰三角形.证明:延长AD到点E,使DE=AD,连结BE,CE.∵BD=CD,DE=DA,∠BDE=∠CDA,∴△BDE≌△CDA(SAS).∴BE=CA,∠BED=∠CA D.∵AD平分∠BAC,∴∠CAD=∠BA D.∴∠BAD=∠BE D.∴AB=BE.∴AB=A C.∴△ABC是等腰三角形.。

八上2.5逆命题和逆定理

八上2.5逆命题和逆定理
易得∠BPC=120°, ∠BPE=∠CPD=60°.
易证△BPE≌△BPQ,△CPD≌△CPQ,
得BQ=BE,CQ=CD,则BC=BE+CD=7.
八年级上 2.5 答案
选择填空题答案
2.5 课前检测 1-6 CDA BAD 2.5 课后检测
1-3 DDC
4. 5
5. 有
6. 两个相等的角是同位角
八上 2.5 课后 No.2
D
八上 2.5 课后 No.3
C
八上 2.5 课后 No.4
5
l P
A
B
八上 2.5 课后 No.5

八上 2.5 课后 No.6
两个相等的角是同位角
八上 Байду номын сангаас.5 课后 No.7
逆命题是:如果a2=b2,那么a=b. 这是假命题. 反例:当a=1,b=-1时,a2=b2,但 a≠b.
D C
F
3 2 S 3= AB , ∵ S1 S2 S3 4
S1
A
S2
B
S3
3 3 3 2 2 ∴ AC BC AB 2 4 4 4
E
∴ AC 2 BC 2 AB 2
∴ ∠ACB=Rt∠.
八上 2.5 课后 No.9


八上 2.5 课后 No.9
解:(1)连结BC.根据△BCD≌△CBE, 得∠ABC=∠ACB,则AB=AC
八上 2.5 课后 No.8
F
逆命题:如图,以△ABC各边 为边向外作等边三角形,若三 个等边三角形的面积S1,S2,S3
D
C
S1
A
S2
B
S3
E
满足S1+S2=S3,则∠ACB=RT∠.

2.5逆命题和逆定理

2.5逆命题和逆定理

B
C D E
举反例说明下列命题的逆命题是假命题:
(1)如果一个整数的个位数字是5, 那么这个整数能被5整除. (2) 对顶角相等.
本节课你学到什么?
作业:
(1)同位角相等; 相等的角是同位角. (假) 0 (2)等边三角形有一个角是600; 有一个角是60 的三角形是等边 (假) 三角形. (真) (3)轴对称图形是等腰三角形;等腰三角形是轴对称图形. (4)飞机是会飞的交通工具. 会飞的交通工具是飞机. (假)
判断下列说法是否正确?请说明理由.
(3)真命题的逆命题是真命题
A
O
B
课内练习2
求证:三角形的三条边的垂直平分线交于一点.
已知: △ABC中, AB和AC边的中垂线交于点P.
求证:点P在BC边的中垂线上.
证明:连接AP,BP,CP. ∵PD、PE分别AB、AC的中垂线 ∴AP=BP, AP=CP ∴BP=CP ∴点P在BC的中垂线上. B D A E
P
C
例2
命题 ⑴两直线平行,同位角相等. 条件 结论 真假 真
两直线平行 同位角相等
⑵同位角相等,两直线平行.
⑶如果a=b,那么a2=b2. ⑷如果a2=b2,那么a=b.
同位角相等 a=b
a2=b2
两直线平行 a2=b2
a=b
真 真

新知学习
在两个命题中,如果第一个命题的条件是第二个命题的 结论,而第一个命题的结论是第二个命题的条件,那么 这两个命题叫做互逆命题.
命题
⑴两直线平行,同位角相等. ⑵同位角相等,两直线平行. ⑶如果a=b,那么a2=b2. ⑷如果a2=b2,那么a=b.
条件
两直线平行 同位角相等 a= b a2=b2

浙教版数学八年级上册2.5《逆命题和逆定理》教学设计

浙教版数学八年级上册2.5《逆命题和逆定理》教学设计

浙教版数学八年级上册2.5《逆命题和逆定理》教学设计一. 教材分析《逆命题和逆定理》是浙教版数学八年级上册第2.5节的内容。

本节内容是在学生已经掌握了命题与定理的基本知识的基础上进行教学的。

通过本节课的学习,使学生掌握逆命题的概念,理解逆定理的含义,并能够运用逆定理解决一些实际问题。

教材通过生活中的实例,引导学生探究逆命题和逆定理,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,他们已经学习了命题与定理的基本知识,对于新的知识有一定的接受能力。

但是,对于一些抽象的概念和理论,学生可能还存在着一定的理解难度。

因此,在教学过程中,需要通过生活中的实例和具体的操作,帮助学生理解和掌握逆命题和逆定理。

三. 教学目标1.知识与技能目标:使学生掌握逆命题的概念,理解逆定理的含义,并能够运用逆定理解决一些实际问题。

2.过程与方法目标:通过探究逆命题和逆定理的过程,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:使学生掌握逆命题的概念,理解逆定理的含义。

2.难点:对于逆定理的理解和运用。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生探究逆命题和逆定理。

2.小组合作学习:让学生在小组内进行讨论和交流,培养团队合作意识。

3.问题驱动法:通过问题的设置和解决,激发学生的学习兴趣和解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示生活中的实例和相关的理论知识。

2.教学素材:准备一些相关的数学题目,用于巩固和拓展学生的知识。

3.教学设备:准备白板和粉笔,用于板书和展示。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,引导学生思考逆命题和逆定理的概念。

例如,假设有一个命题:“如果一个人是学生,那么他喜欢数学。

”那么这个命题的逆命题就是:“如果一个人喜欢数学,那么他是学生。

逆命题和逆定理

逆命题和逆定理

逆命题和逆定理
(原创版)
目录
1.逆命题和逆定理的定义
2.逆命题和逆定理的区别
3.逆命题和逆定理的应用
正文
一、逆命题和逆定理的定义
在数学中,逆命题和逆定理是两个相关但有所区别的概念。

逆命题指的是,如果一个命题的题设和结论互换位置并且同时取反,那么得到的新命题就是原命题的逆命题。

例如,原命题为“若 A,则 B”,那么逆命题为“若非 B,则非 A”。

逆定理则是指,对于一个定理,如果将其结论和条件互换并且同时取反,得到的新命题称为原定理的逆定理。

二、逆命题和逆定理的区别
逆命题和逆定理在形式上有所不同,但它们之间存在一定的联系。

首先,逆命题是针对命题而言的,而逆定理是针对定理而言的。

逆命题是对原命题的题设和结论进行交换和取反,而逆定理是对原定理的结论和条件进行交换和取反。

其次,逆命题和逆定理的真假性质并不一定相同。

逆命题的真假与原命题的真假并无必然联系,而逆定理的真假则与原定理的真假密切相关。

三、逆命题和逆定理的应用
逆命题和逆定理在数学中有广泛的应用。

在证明过程中,有时候可以通过逆命题或逆定理来简化证明过程。

例如,在证明某个定理时,如果直接证明较为复杂,可以尝试先证明其逆定理,再通过逆定理与原定理的等价性来得到原定理的证明。

此外,逆命题和逆定理在解决实际问题中也有
一定的应用,例如在逻辑推理、问题求解等方面都可以利用逆命题和逆定理来简化思考过程。

八年级上册数学 2.5逆命题和逆定理课件(共16张PPT)

八年级上册数学 2.5逆命题和逆定理课件(共16张PPT)
A R P B Q C
命题 ⑴两直线平行,同位角相等 ⑵同位角相等,两直线平行 ⑶如果a=b,那么a2=b2。 ⑷如果a2=b2,那么a=b。 条件 结论 真假 真 真 真 假 两直线平行 同位角相等 同位角相等 a=b a2=b2 两直线平行 a2=b2 a=b
例1:指出下列命题的条件和结论,并说出它们 的逆命题。 如果一个三角形是直角三角形,那么它的 两个锐角互余. 条件:一个三角形是直角三角形. 结论:它的两个锐角互余. 逆命题:如果一个三角形的两个锐角互余, 那么这个三角形是直角三角形.
观察表中的命题,命题⑴与命题⑵的条件 和结论有什么关系?命题⑶与命题⑷呢?
互逆命题
由表中的原命题与逆命题,你有什么发现?
在两个命题中,如果第一个命题的条件是第 二个命题的结论,而第一个命题的结论是第二个 命题的条件,那么这两个命题叫做互逆命题。 我们把其中的一个叫做原命题,另一个叫做 它的逆命题。
如果一个三角形有两个角相等,那么这个三角 形是等腰三角形. (在同一个三角 形中,等角对等边)是互逆定理
做一做:说出两对互逆定理
做一做:下列定理中,哪些有逆定理?如果有逆定理,请
说出逆定理:
(1)内错角相等,两直线平行. 两直线平行,内错角相等. 有逆定理
(2)对顶角相等.
没有逆定理
(3)三角形两边之和大于第三边. 有逆定理
A
O C
B
线段垂直平分线上的点到这条线段两个端点的距离相等
例2 说出定理“线段垂直平分线上的点到线段两端的距离相等”的逆命题,并证明这 个逆命题是真命题.
这个定理的逆命题是: 到线段两端距离相 等的点在线段的垂直平分线上.
解:
已知:如图,AB是一条线段,P是一点,且 P PA=PB 求证:点P在线段AB的垂直 B 平分线上 O

2.5 逆命题和逆定理

2.5 逆命题和逆定理

①∠B=∠D;②∠A=∠C;③AC 垂直平分 BD;④BD 垂直平分 AC.
A.①② B.③④
C.①③ D.②④
4.小明做了一个如图所示的风筝,其中EH=FH,ED=FD,小明说不用 测量就知道DH是EF的垂直平分线.其中蕴含的道理是 .
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上
5.在△ABC中,AD⊥BC,BC的垂直平分线交AC于E,BE交AD于F.求证:E 在AF的垂直平分线上.

逆命题-- 面积相等的两个三角形是全等三角形 . --这是 假 命题.
2.如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,连接AC. (1)若AF∥DC,求证:CA是∠DCF的平分线. (2)命题(1)的逆命题可表述为: 若∠FCAБайду номын сангаас∠DCA,则AF∥DC .该命题 的真假性: 真 (填“真”或“假”).
AB=BC ∴∠ABF=∠CBF,在△AFB 和△CFB 中,∠ABF=∠CBF
BF=BF,
∴△AFB≌△CFB(SAS), ∴AF=CF,∴∠CAF=∠FCA,∵CA 是∠DCF 的平分线,∴∠FCA=∠DCA, ∴∠DCA=∠FAC,∴AF∥DC.
掌握线段垂直平分线性质定理的逆定理
3.如图所示,已知 AB=AD,CB=CD,则在以下各结论中,正确的结论为( C)
证明:∵BC的垂直平分线交AC于E, ∴BE=CE,∴∠EBC=∠C,∵AD⊥BC, ∴∠C+∠CAD=90°,∠EBC+∠BFD=90°,∴∠CAD=∠BFD, ∵∠BFD=∠AFE,∴∠AFE=∠CAD, ∴AE=EF,∴E在AF的垂直平分线上.
本课结束
(1) 证明:∵BF 是∠ABC 的平分线,∴∠ABF=∠CBF,在△AFB 和△CFB 中,

2.5 逆命题和逆定理八年级上册数学浙教版

2.5 逆命题和逆定理八年级上册数学浙教版
(2) 等底等高的三角形的面积相等.
(2)条件是“两个三角形有一边和这条边上的高分别相等”,结论是“这两个三角形的面积相等”.逆命题是“如果两个三角形的面积相等,那么这两个三角形有一边和这条边上的高分别相等”.
敲黑板 写一个命题的逆命题的方法写原命题的逆命题时,先将原命题写成“如果 ,那么 ”的形式,再互换条件与结论,进而写出原命题的逆命题.
解: . 理由如下: ,∴点 在线段 的垂直平分线上. , .∴点 在线段 的垂直平分线上.由“两点确定一条直线”可知线段 所在的直线是线段 的垂直平分线,又 为 上任意一点,<</m> .
例题点拨要证明一点在一条线段的垂直平分线上,只要说明这个点到这条线段的两个端点的距离相等即可.
B
解析:选项A中,其逆命题是两个相等的角是对顶角,是假命题.选项B中,其逆命题是同位角相等,两直线平行,是真命题.选项C中,其逆命题是三组角对应相等的两个三角形全等,是假命题.选项D中,其逆命题是四个角都相等的四边形是正方形.四个角都相等的四边形也可以是长方形,故其逆命题是假命题.
链接教材 本题取材于教材第67页课内练习第1题,考查了判断一个命题的逆命题的真假,需要先写出原命题的逆命题再判断真假.教材习题还需要判断原命题的真假.注意原命题是真命题,它的逆命题不一定是真命题.
逆命题的真假与原命题的真假无关
知识点2 互逆定理 重点
互逆定理:如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理.
注意 (1)任何命题都有逆命题,但不一定每个定理都有逆定理.只有当原定理的逆命题能被证明是真命题时,才能称这个逆命题为原定理的逆定理.(2)互逆命题不一定都是真命题,但互逆定理一定都是真命题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说出下列命题的逆命题,并判定是真命题还是假命题:
(1)两直线平行,同位角相等. 同位角相等,两直线平行. (2)同位角相等 相等的角是同位角 (3)面积相等的三角形全等。 全等三角形的面积相等。
真命题 真命题 假命题
假命题 假命题 真命题
真命题 (4)在一个三角形中,等角对等边。 在一个三角形中,等边对等角。 真命题 (5)磁悬浮列车是一种高速行驶时不接触地面的 交通工具。 真命题 高速行驶时不接触地面的交通工具是磁悬浮列车。 假命题
(3)等边三角形的三个角都是60°
逆命题:三个角都是60°的三角形是等边三角形
做一做
2、举例说明下列命题的逆命题是假命题: (1).如果一个整数的个位数字是5,那么这个整 数能被5整除.
(2).如果两个角都是直角,那么这两个角相等.
例、写出命题“等腰三角形底边上的中点 到两腰的距离相等”的逆命题,并证明逆 命题是真命题。
判断下列说法是否正确?请说明理由
(1)假命题没有逆命题; (2)真命题没有逆命题; (3)每个命题都有逆命题; (4)真命题的逆命题是真命题 思考:每个命题都 有逆命题吗?
× × √ ×
一个命题的逆命题是真命题还是假命题?
请举例说明一个原命题是真命题,逆命题也是真命题的例子;
有没有原命题是真命题,而逆命题是假命题的例子?
两直线平行 a2=b2 a=b
⑴两直线平行,同位角相等 两直线平行
⑵同位角相等,两直线平行 同位角相等 ⑶如果a=b,那么a2=b2。 ⑷如果a2=b2,那么a=b。
a=b a2=b2
观察表中的命题,命题⑴与命题⑵有什么关 系?命题⑶与命题⑷呢?
命题 ⑴两直线平行,同位角相等 ⑵同位角相等,两直线平行 ⑶如果a=b,那么a2=b2。 ⑷如果a2=b2,那么a=b。
条件
结论
两直线平行 同位角相等 同位角相等 a=b a2=b2 两直线平行 a2=b2 a=b
在两个命题中,如果第一个命题的条件是第二个命 题的结论,而第一个命题的结论是第二个命题的条件, 那么这两个命题叫做互逆命题。 我们把其中的一个叫做原命题(original statement), 另一个叫做它的逆命题(converse statement)。
一个命题经证明是真命题,就可称为定理;
定理:两直线平行,内错角相等。
请说出其逆命题,并判断是真命题还是假命题:
内错角相等,两直线平行。
这是一个真命题 如果一个定理的逆命题能被证明是真命题, 那么就叫它是原定理的逆定理,这两个定理叫
互逆定理。 请说出三对互逆定理
下列定理中,哪些有逆定理?如果有逆定理, 请说出逆定理。
(4)真命题的逆命题是真命题。
D
例1、按要求作答:
⑴任意作一条线段,并画出它的中垂线
P
A
O
B
⑵线段的中垂线(垂直平分线)有什么性质?
C
线段垂直平分线上的点到这条线段两个端点的距离相等
⑶请说出它的逆命题,并证明这个逆命题是真命题.
解:
这个定理的逆命题是: 到一条线段两个端点距离
相等的点,在这条线段的垂直平分线上.
已知:如图,AB是一条线段,P是一点,且PA=PB
P
求证:点P在线段AB的垂直平分线上
证明: ⑴当点P不在 线段AB上时, 作PC⊥AB于点O
A
O C P P P P P P
B
∵PA=PB,PO⊥AB, ∴OA=OB(等腰三角形三线合一性质) ∴PC是AB的垂直平分线。
A
B
∴点P在线段AB的垂直平分线上 ⑵当点P在线段AB上,结论显然成立;
显然,上述两个命题可称为互逆定理
线段垂直平分线性质定理: 线段垂直平分线上的点到这条线段两个端点的距离相等 线段垂直平分线性质定理的逆定理: 到一条线段两个端点距离相等的点,在这条线段的垂直 平分线上 几何语言:
P
∵PA=PB
∴点P在AB的垂直平分线上A NhomakorabeaB
做一做
1.写出下列各命题的逆命题,并判断互逆命题的真假: (1)同位角相等; 逆命题:相等的角是同位角, (2)如果|a|=|b|,那么a=b; 逆命题:如果a=b,那么|a|=|b|
对某件事作出正确或不正确判断的句子叫做命题 命题的结构:命题由题设、结论组成 命题有真有假。 正确的命题是真命题,错误的命题是假命题
下列句子是命题的是( D ) A.画∠AOB=45° C.连结CD B. 小于直角的角是锐角吗? D. 三角形的中位线平行且等于第三边的一半
命题
条件
结论 同位角相等
做一做
1、说出一个原命题是真命题和逆命题是 假命题的命题。 2、说出一对互逆定理。
3、说出一个没有逆定理的定理。
做一做
4、已知命题:“P是等边三角形ABC内一点。 若点P到三边的距离相等,则PA=PB=PC。” 证明这个命题,并写出它的逆命题,判断其 逆命题成立吗?
谈谈本节课的收获
⑴平行四边形的两组对边分别相等;
两组对边分别平行的四边形是平行四边形
⑵有三条边对应相等的三角形全等;
全等三角形的三条对应边都相等。
⑶全等三角形的对应角相等。
没有逆定理
辨一辨
下列说法哪些正确,哪些不正确? (1)每个定理都有逆定理。 (2)每个命题都有逆命题。 (3)假命题没有逆命题。
× √ × ×
相关文档
最新文档