浮动利率债券的定价机制_万正晓
债券定价原理的证明

债券定价原理的证明债券定价原理是金融市场中非常重要的理论,它可以帮助投资者确定债券的合理价格。
以下是对债券定价原理的证明过程。
假设存在一个债券B,它的面值为F,到期时间为T,票面利率为c,市场上相同风险等级的债券的市场利率为r。
在我们进行证明之前,先定义一些变量:n:表示债券到期前的某一时刻(0 ≤ n ≤ T);P:表示债券在时间n的价格;C:表示债券在时间n的票面利息;Y:表示债券在时间n的期望收益率。
根据债券定价原理的假设,我们有以下等式:P = Σ(C / (1+Y)^n) + F / (1+Y)^T (1)现在,我们来证明上述等式。
首先,我们来证明等式(1)右侧的第一项:Σ(C / (1+Y)^n)。
根据债券的定义,债券每年会支付一次利息,即C,所以从时间0到时间T之间,债券会支付T次利息。
将这些利息分别折现到时间n,得到每次利息的现值,即(C / (1+Y)^n)。
将这些现值求和,就得到了等式(1)右侧的第一项,即Σ(C /(1+Y)^n)。
接下来,我们来证明等式(1)右侧的第二项:F / (1+Y)^T。
根据债券的定义,到期时会支付债券的面值F。
我们将这个面值折现到时间T,得到了等式(1)右侧的第二项,即F /(1+Y)^T。
所以,等式(1)右侧的两个部分都得到了证明。
这也意味着等式(1)成立。
现在,我们来证明等式(1)左侧:P。
债券的价格P是在市场上确定的,它是根据债券的特定信息和市场上的债券利率来决定的。
因此,等式(1)左侧所表示的价格P是债券的实际价格。
由于等式(1)左右两侧分别表示了债券的实际价格和根据债券特点和市场利率来计算的价格,且它们是相等的,所以我们证明了债券定价原理的确成立。
综上所述,我们通过对债券定价原理进行证明,验证了等式(1)的正确性,进而证明了债券定价原理的准确性。
这个原理在金融市场中应用广泛,对于投资者来说具有重要的参考价值。
浮动利率债券的基准利率选择及定价

1年期定存利率B_2W FR007国债YTM:1年国债YTM:3个月SHIBOR-3M1年期定存利率1.00B_2W 0.60 1.00FR0070.530.80 1.00表1 基准利率、国债收益率相关系数2%18%79%2007/01/042008/03/202009/06/032010/08/122011/10/272013/01/0712.0010.008.006.004.002.000.002ۨ٪૧୲数据来源:Wind 资讯,国泰君安固定收益部其中,R 为基准利率,r 为固定利差,S 现利差,M 为本金。
(一)久期SHIBOR-3MB_2W 1年期定存利率LIBOR-3M 标准差1.03%2.82%1.32%1.42%表2 基准利率波动率的标准差数据来源:国泰君安固定收益部12.0010.00 8.006.004.002.000.002007-01-042008-01-042009-01-042010-01-042011-01-042012-01-042013-01-04B_2W FR007SHIBOR -3M2ۨ٪૧୲数据来源:Wind 资讯,国泰君安固定收益部利率久期具有较为复杂的形式,因为浮息债定价公式的分子、分母均包含基准利率,这是与固定利率债券十分不同的一点,也正因此,浮息债具有值得注意的是,浮息债的利差久期与其期限可比的固定利率债券久期本质上是相同的。
(二)距下一付息日时间固息债定价公式如下:其中,c为票面利率,y为收益率,M浮息债定价公式如下:其中,R为基准利率,r为固定利差,S 现利差,M为本金。
其中,(R+S)M称为无利差部分,期限(年)预测现金流利率(%)现金流现值0.24930.99 3.05180.98260.50140.8091 3.13590.79670.75340.8276 3.20650.80820.99730.8457 3.2950.81881.24930.8638 3.39140.82851.50140.8822 3.47820.83811.75340.9005 3.54750.84711.99730.9185 3.59560.85592.24930.9363 3.62540.86422.5014100.95453.645692.3053总价99.9454表8 定价示意图7 根据利率模型构件的利率树数据来源:Wind 资讯,国泰君安固定收益部5.48565.14134.80054.45804.11553.77293.43043.08792.74542.40282.0603૧୲)&*ᆀႜक़ࠦۨ૧୲አ֧Ⴀূබቐᅮ୲൸၍)ࡔਸႜ*)ዐቐᅮᇺڦन*\3124.16.14^ᆀႜक़ࠦۨ૧୲አ֧Ⴀূබቐᅮ୲൸၍)ࡔਸႜDž)ዐቐᅮڟᅮ୲൸၍*\3124.16.14^ᆀႜक़ࠦۨ૧୲አ֧Ⴀূබቐᅮ୲൸၍)ࡔਸႜDž)ዐቐᅮनᅮ୲൸၍*\3124.16.14^0m3y5y7y10y15y20y30y数据来源:Wind 资讯其中,等号右侧第一项表示随着时间的推移。
基于附息债券的人民币基准收益曲线_万正晓

第29卷第2期财经研究Vol.29No.2 2003年2月Journal of F inance and Economics Feb.2003 基于附息债券的人民币基准收益曲线万正晓(河南师范大学经济与管理学院,河南新乡453002) 摘 要:本文在阐述基准收益曲线重要性的基础上,构造出一种基于附息债券市场报价的人民币收益率定价模式,并通过可视化定价软件的开发,对人民币收益曲线进行了较为详细的实证研究,拟探索利率市场化改革进程中人民币收益曲线的变动趋势,为企业的融资决策以及金融创新工具的开发提供依据。
关键词:收益曲线;利率期限结构;定价模型 中图分类号:F832 文献标识码:A 文章编号:1001-9952(2003)02-0036-05一、研究基准收益曲线的现实意义 在任何一个充分市场化的经济体系中,都存在一个复杂的利率体系,体系中的各种利率相互作用、相互制约,最终形成一种影响货币市场基础利率变动的重要力量。
为了研究和把握基础利率变动的方向,金融理论中通常采用基准收益率曲线这一直观的数学工具。
所谓基准收益率曲线,是指在以期限和利率分别为坐标轴的平面中绘制的一种反映利率期限结构的曲线。
在不同的经济体系中,尽管存在市场发育程度以及金融监管体制的差异,但影响基准收益曲线的基本因素和数量模型都是相同的。
我国金融市场的市场化程度较低,在市场基准价格判断和确定方面还没有形成一套科学的分析指标和方法体系,要确定一条被普遍接受的收益曲线是一件非常困难的事情。
随着我国利率市场化改革的不断深入,以及中国金融市场国际化进程的加速,人民币利率波幅逐渐增大,市场迫切需要一种被普遍接受的权威性基准收益曲线,这主要体现在如下几个方面: 首先,基准收益曲线能够客观地反映货币市场借贷成本的变动情况,企业和金融机构可以根据自身现金流量的时间结构,合理安排融资计划,尽可能降低融资成本,提升企业资产负债管理水平。
其次,一条设计科学的基准收益曲线不仅可用于有价证券的评估,同时也是各种标准或非标准金融合约定价的基础,因为各种评估模式都离不开由基准收益率确定的贴现因子和远期利率。
浅析新型浮动利率债券的定价

前 时 间 为 t曰,下一 付 息 曰为 t 曰,以后 的 付 息 曰依次 .
为 t 一 t 下 一 付 息 目的 利 息 现 金 流 的 数 值 已 经 确 定 , , 记 为 C 由于 每 年 付 息 I 次 ,所 以 t T 1 曰至 t 目的 每 笔
摘 要
受基准利率期限与债券 的付息 周期在 时间长度上不一致等因素的限制 , 目前 国内银行间市场对浮息偾的定价仍有 一定的 困 难 ,该文受浮息偾现金流分解之思路的宕发 ,通过对 新型浮息偾现金流的重构 ,来尝试对这一类型的浮息偾 进行定价 。
Ab t c sr t a
Atpr en ,h do e t t r an es t te m s i i e b k mare tl astou esi r ig f at g r t on , uet t e r tit fs c a t s cn k tsi r bl n p i n o i ae b ds d h esr i o u hf cor lh c l n o c on ast ip i et e en hmar ner s t er an ner s a he ds ary b w en b c t k it e tr e t m d it e tp ymen r a t equ c ond .Enl t e a o f en yo b f s i en d byt i gh he de f de ompo ig t e c hf c sn h as l o o ig r t on ,hi ap r rc ew o ig r t on y r c nsr tig te c s ow f at e b ds t s p er i t p ie n f l n a t eso l f at e b dsb o n a e tuc n h a h
浮动利率债券的基准利率选择及定价

浮动利率债券的基准利率选择及定价1年期定存利率B_2W FR007国债YTM:1年国债YTM:3个月SHIBOR-3M1年期定存利率1.00B_2W 0.60 1.00FR0070.530.80 1.00表1 基准利率、国债收益率相关系数2%18%79%2007/01/042008/03/202009/06/032010/08/122011/10/272013/01/0712.0010.008.006.004.002.000.002数据来源:Wind 资讯,国泰君安固定收益部其中,R 为基准利率,r 为固定利差,S 现利差,M 为本金。
(一)久期SHIBOR-3MB_2W 1年期定存利率LIBOR-3M 标准差1.03%2.82%1.32%1.42%表2 基准利率波动率的标准差数据来源:国泰君安固定收益部12.0010.00 8.006.004.002.000.002007-01-042008-01-042009-01-042010-01-042011-01-04 2012-01-042013-01-04B_2W FR007SHIBOR -3M2数据来源:Wind 资讯,国泰君安固定收益部利率久期具有较为复杂的形式,因为浮息债定价公式的分子、分母均包含基准利率,这是与固定利率债券十分不同的一点,也正因此,浮息债具有值得注意的是,浮息债的利差久期与其期限可比的固定利率债券久期本质上是相同的。
(二)距下一付息日时间固息债定价公式如下:其中,c为票面利率,y为收益率,M浮息债定价公式如下:其中,R为基准利率,r为固定利差,S 现利差,M为本金。
其中,(R+S)M称为无利差部分,期限(年)预测现金流利率(%)现金流现值0.24930.99 3.05180.98260.50140.8091 3.13590.79670.75340.8276 3.20650.80820.99730.8457 3.2950.81881.24930.8638 3.39140.82851.50140.8822 3.47820.83811.75340.9005 3.54750.84711.99730.9185 3.59560.85592.24930.9363 3.62540.86422.5014100.95453.645692.3053总价99.9454表8定价示意图7根据利率模型构件的利率树数据来源:Wind 资讯,国泰君安固定收益部5.48565.14134.80054.45804.11553.77293.43043.08792.7454 2.40282.0603)&*)???*)?????????*\3124.16.14^))???*\3124.16.14^??))? *\3124.16.14^0m3y5y7y10y15y20y30y数据来源:Wind 资讯其中,等号右侧第一项表示随着时间的推移。
浮动利率债券的定价机制_万正晓

基本利差
பைடு நூலகம்
常的。尽管有偏差的存在, 但这种定价模 式仍然具有重要的参考意义。 最后,浮动利率债券对我国投资者 而言仍然是一个比较陌生的金融工具。 投资者不自觉地使用他们所熟悉的固定 利率债券定价方式来定价浮动利率债 券,即通过确定到期收益率来研究浮动 利率债券的价格,我国权威的债券机构 也公布了针对浮动利率债券的到期收益 率公式。虽然到期收益率能够较好地描 述固定利用职权率债券的收益水平, 但
!
场环境中, 我 们 完 全 可 以 假 设 /0+0 年 1 月 +2 日 投 资 一 年 期 资 本 品 的 机 会 成 本 为 67!6, 此时浮动债券的价格即是 其 面 值 +00 元,因为它是上述现金流量按机 会成本折算的现值:
债券的代表是浮动利率票据。 ;<= 的期 限为中期( , 利率每季度调整一 .>+0 年 ) 次,基准利率是 ? 个月期的伦敦银行间 , 到期归还本金。 同业拆借利率( @ABC< ) 由于是按季付息,所以债券的收益结构 与 @ABC< 的变动基本一致。我国浮动利 率债券每年付息一次, 时间间隔较长, 在 利率波动较大的情况下,市场参与者的 风险较大。 因此, 金融机构在发行浮动利 率债券时应更多地考虑资产负债期限结 构的匹配问题,不能仅从融资的角度去 考虑问题。 其次,我国的浮动利率国债设计以 银行利率为参照利率,并在此基础上再 加一个固定的利差。从收益和风险的匹 配关系来看, 这种安排显然不合理, 因为 国债不仅比银行存款的流动性好,而且 风险比银行存款低。 最近一段时期, 浮动 利率债券的价格普遍上涨,很显然是对 这种不合理的发行定价的一种调整。考 虑到国债的避税效应,即使国债名义利 率等同于银行存款利率,其税后实际利 率也高于银行利率。 此外, 从目前国债发 行利率与同期存款利率的比较看,利差 第三,我们在阐述浮动利率债券定 价机制的过程中, 使用了有效市场环境的 假设, 然而我国资本市场的制度环境和发 育程度离有效市场还有相当的距离, 所以 理论价格与实际市场价格存在偏差是正
如何为浮动利率债券定价_陈力峰

金融时报/2002年/06月/01日/如何为浮动利率债券定价陈力峰从1999年开始,我国浮动利率债券的发行规模不断扩大。
截至2001年底,在银行间债券市场交易的81个债券品种中,有33个浮动利率债券,占总数的41%。
而2001年前11个月发行的32个新债中,浮动利率债券就有9个。
可以预见,浮动利率债券将在债券市场上扮演越来越重要的角色。
但是,目前市场对浮动利率债券的定价缺乏统一和准确的认识。
一般将当前年份的利率水平作为以后所有年份的利率水平,然后参照相同剩余期限的固定利率债券的到期收益率,计算出浮动利率债券当前的理论价格。
这种算法的缺陷在于,如果未来利率逐步升高,则此算法将低估浮动利率债券的价格;反之,则会出现高估的情况。
按照教科书的方法,如果要为浮动利率债券精确定价,则需要利用不同剩余期限的固定利率债券的市场成交价格剥离出一个零息债券的收益率期限结构,然后再推算出未来各年的远期一年期资金收益率,确定出各个年份的利息支付,然后按照标准的债券定价公式算出浮动利率债券的理论定价。
这种算法需要一个流动性很强的现券市场,而且各个剩余期限的固定利率债券品种都要有交易。
这对当前尚处于起步发展阶段的我国债券市场来说,确实存在不小的难度。
特别是对于远期收益率的估计,某些学者使用回归外推的方法,其预测的准确性很难保证。
本文根据浮动利率债券特性,将浮动利率的未来现金流进行分解,推导出一个基于固定票面利差的定价计算方法。
一、浮动利率债券未来现金流的分解标准的浮动利率债券每年的利息支付由两个部分组成,一是根据每年一年期资金收益率确定的当年票面基准利率r,二是每年固定不变的、在债券发行时确定的票面利差d。
在浮动利率债券的兑付日,还有一个一次性的现金流,即债券面值,我们假定为100元。
我们将浮动利率债券所有期限的现金流分解成两个部分:现金流C1,由每年变化的r和兑付日支付的债券面值100元构成;现金流C2,由每年不变的票面利差d构成。
债券定价的五大定理

债券定价的五大定理
定理一:债券的市场价格与到期收益率呈反比关系。
即到期收益率上升时,债券价格会下降;反之,到期收益率下降时,债券价格会上升。
定理二:当债券的收益率不变,即债券的息票率与收益率之间的差额固定不变时,债券的到期时间与债券价格的波动幅度之间成正比关系。
即到期时间越长,价格波动幅度越大;反之,到期时间越短,价格波动幅度越小。
定理三:随着债券到期时间的临近,债券价格的波动幅度减少,并且是以递增的速度减少;反之,到期时间越长,债券价格波动幅度增加,并且是以递减的速度增加。
定理四:对于期限既定的债券,由收益率下降导致的债券价格上升的幅度大于同等幅度的收益率上升导致的债券价格下降的幅度。
定理五:对于给定的收益率变动幅度,债券的息票率与债券价格的波动幅度之间成反比关系。
即息票率越高,债券价格的波动幅度越小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场环境中, 我 们 完 全 可 以 假 设 /0+0 年 1 月 +2 日 投 资 一 年 期 资 本 品 的 机 会 成 本 为 67!6, 此时浮动债券的价格即是 其 面 值 +00 元,因为它是上述现金流量按机 会成本折lt;= 的期 限为中期( , 利率每季度调整一 .>+0 年 ) 次,基准利率是 ? 个月期的伦敦银行间 , 到期归还本金。 同业拆借利率( @ABC< ) 由于是按季付息,所以债券的收益结构 与 @ABC< 的变动基本一致。我国浮动利 率债券每年付息一次, 时间间隔较长, 在 利率波动较大的情况下,市场参与者的 风险较大。 因此, 金融机构在发行浮动利 率债券时应更多地考虑资产负债期限结 构的匹配问题,不能仅从融资的角度去 考虑问题。 其次,我国的浮动利率国债设计以 银行利率为参照利率,并在此基础上再 加一个固定的利差。从收益和风险的匹 配关系来看, 这种安排显然不合理, 因为 国债不仅比银行存款的流动性好,而且 风险比银行存款低。 最近一段时期, 浮动 利率债券的价格普遍上涨,很显然是对 这种不合理的发行定价的一种调整。考 虑到国债的避税效应,即使国债名义利 率等同于银行存款利率,其税后实际利 率也高于银行利率。 此外, 从目前国债发 行利率与同期存款利率的比较看,利差 第三,我们在阐述浮动利率债券定 价机制的过程中, 使用了有效市场环境的 假设, 然而我国资本市场的制度环境和发 育程度离有效市场还有相当的距离, 所以 理论价格与实际市场价格存在偏差是正
BCB(DECDF/D
理论新探
浮动利率债券的定价机制
%万正晓
浮动利率债券是以某种基准利率为 基础设计的一种衍生证券,其价值随着 如果证券的现金流量不确定的话,其定 价过程应该比较复杂。 事实上, 如果认真 推敲其收益结构,我们会发现许多浮动 利率债券的定价并不比固定收益证券困 难。本文通过对我国国债市场的实证研 究, 阐述浮动利率债券的定价原理, 并指 出我国浮动利率债券设计中存在的若干 问题。 一、 金融资产定价的基本原理 现代金融理论的研究结果表明, 任 何金融合约的价值都是其未来各期现金 流量的现值之和。要利用这种相对定价 法评估一种证券的价值,其过程是相当 复杂的,一般需要做如下几个方面的工 作: 首先,在市场上选择一系列具有可 组合中的样本债券必须具有相同的信用 评级、 较大的发行量、 较好的流通性、 不 同的剩余流通期限等特征,而且债券价 格能充分反映货币市场的供求状况。由 于基准债券报价确定的基准利率是以该 债券的剩余流通期限为依据计算的内涵 报酬率, 因此与该债券的票面利率无关。 基准利率的变动代表货币市场利率变动 的方向,它的变动是市场上其它证券价 格变动的参照标准。 其次, 以基准债券组合为基础, 确定 相关的基准收益率曲线。收益率曲线主 要被用来研究利率变动的趋势,同时也 可用于对金融合约价值的评估。为了简 化推演的过程,我们假设基准债券都是 用 8)9* 面值为 #22 元人民币的贴现债券, 表示以时点 9 处为到期日的贴现债券的 市场报价 ( 本文中 9 等于债券的剩余期 限, 以年为单位) ; +)9* 为对应的年内部报 酬率 ; 那 么 8)9* 和 +)9* 之 间 的 关 系 可 以 用 下列模型来确定: 基准利率的变动而变动。 人们一般认为, 比性的债券构成基准债券组合,该债券
()*!"#$%,-#$%
$ * +
#.%
8+007+00#67!6%9 : #+767%*+00
由 于 债 券 在 /0+0 年 1 月 +2 日 的 价格为 +00 元,在此前提下我们可以进 一 步 推 算 前 一 付 息 日 即 /001 年 1 月 +2 日 银 行 的 一 年 期 存 款 利 率 为 6, 利 差 为 则 债 券 在 /0+0 年 1 月 +2 日 的 价 格 !6, 理论上应该是当时的价格 +00 元加上已 所以, 经支付的利息, 即 +007+00#67!6%。 一数值的现值 +00 元。 依次类推, 我们可 以得到这样一个结束论: 在 +0 年中的每 一个付息日,浮动利率债券的价格都等 既然浮动率债券在付息日的价格都 是其面值,那么我们仅需关注它在两个 付息日之间的价值即可。为了计算两个 付息日之间任意时点债券的价值,我们 先用 $ 表示从目前到下一个付息日的时 间, $ 以年为单位,进一步假设债券在下 那么, 如同前面的推理过程, 该债券在 $ 年处理的现金流量为 +007+00#67!6% , 那 么它目前的价格应该是 +007+00 #67!6% 的现值, 即
8)9*"#22 : #;+)9*<9 )2=9$#* 8)9*"#22 : #;+)9*9
计算方法。
)#* )%*
)9>#*
其中, 9 使 用 实 际 天 数 : &5. 的 日 期 第三,根据基准债券收益率推算各 期的贴现因子。如果我们假设第 9 期的 贴 现 因 子 为 ?)9*, 那 以 ?)9* 与 +)9* 之 间 的 关系由下列模型来确定:
根据 ( 对 / 的权重,可得二级评价 向量。
身体 舒适感 心理 满足感
2’&%
身体健康 心理健康 医疗保健
2’&
受教育程度 安全程度 生活及工作 家庭状况 文化娱乐
,"/!+"),#$,%$,&*
将 ,"),#$,%$,&*作归一化处理, 从而得 到生活质量隶属于各级评语级别的模糊 度的大小, 再根据最大隶属度原则, 得到 生活质量的评价结果。 常用的综合评价模型有:主因素决 ) , 主因素突出型( ・ 定型( 0( "$# ) 0( # ) , 加权平均型( , ) 。 1) 0( 1) 根据生活质量测评的特点,不能仅 仅由个别指标来确定人们对生活质量的 满意程度, 所以, 比较适合采用加权平均 出型的评判模型。
一级因素 物质 满足感
权 重
二级因素 食品消费 居住环境 家庭设备 交通及通讯 购物
权 重
模糊关系矩阵 很不满意 不太满意 一般满意 比较满意 很满意
2’&4
! $ ,% % +" " "" ,%# ,%% ,%& ,%- ,%. % " % "% ,&# ,&% ,&& ,&,& . # & , & #&
2’%& 2’%2’%# 2’#5 2’#5 2’&4 2’&4 2’%2’%4 2’#3 2’%2’%% 2’26
2’%% 2’%# 2’%& 2’#. 2’#4 2’22 2’2& 2’%3 2’%# 2’2% 2’24 2’22’%6
2’&& 2’&5 2’&5 2’&2 2’-% 2’2% 2’#4 2’&# 2’-. 2’%% 2’&& 2’#4 2’-3
&’*8+007+00#67!6%9,-#$%
?)9*"# : #;+)9*<9 )2=9$#* ?)9*"# : @#;+)9*A9 )2>#*
)&* )-*
!"#$%$& 。 ! 为广义模糊合成算子。 &’ 进行二级评价 将每个 (! 看成 对 ( 进行综合评价。 一 个 因 素 (")(#$(%$(&*, 这样 ( 又是一个 因数集。 ( 的单因素评价矩阵为: ,# $ ,## ,#% ,#& ,#- ,#. !
基础利率 起息日 到期日
利用模型( 我们可以对任何一种 .) 标准或非标准合约进行定价,但是具体 的定价过程非常复杂。对于一些特殊的 合约,我们可以根据合约现金流量的特 点设计更简单的定价模型。 二、 浮动利率债券定价的方法 一般每年支付一次票息,票息利率取决 于每年付息日开始的一年期银行利率和 债券发行时确定的固定利差。 显然, 要利 除了上述步骤以外,还要预测未来各期 的远期银行利率,用以确定债券未来的 现金流量, 其复杂程度可想而知。 如果我 们仔细推敲这些浮动利率债券的收益结 构, 便会发现还有一种更简单的方法。 我国浮动利率债券的品种比较单 一, 收益结构类似( 参见表 + ) 。为了便于 说明, 我们不妨以国家开发银行 /00+ 年
2’&% 2’&2’%# 2’-2 2’%2’2. 2’& 2’%% 2’%& 2’%. 2’&. 2’&# 2’#&
2’#& 2’26 2’#& 2’#. 2’#5 2’.5 2’& 2’% 2’## 2’&2’26 2’%4 2’##
2’22 2’22 2’22 2’22 2’22 2’&3 2’#6 2’22 2’22 2’#3 2’#. 2’#6 2’22
000D 国债 国开 05 国开 0E 国开 02 国开 +0
+0 年 E年 E年 E年 +0 年
/3504 /35/4 /35/4 /35?4 /35?4
035/4 035D4 035D4 035.4 035.4
+3124 +3124 +3124 +3124 +3124
/00+3.3/+ /00353+E ?003E3/D /00+323/E /00+313+2
型的评判模型;也可以尝试用主因素突 二、 实际应用举例 应用上述模糊综合评价方法,通过 对沈阳化工学院大三级部分学生问卷调 查, 将反馈的信息进行统计整理, 其结果 列于表中。