浙江高考数学三角函数最实用知识点汇编
完整版)三角函数知识点归纳

完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。
2)终边与角α相同的角可写成α+k·360°(k∈Z)。
3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。
弧度与角度可以互相转换。
2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。
3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。
注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。
和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。
二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。
2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。
三角函数最全知识点总结

三角函数、解三角形一、任意角和弧度制及任意角的三角函数1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按__逆时针__方向旋转形成的角.②负角:按__顺时针__方向旋转形成的角.③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}.(3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.象限角轴线角2.弧度制(1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__.(2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__.(3)角度与弧度的换算:360°=__2π__rad,1°=__π180__rad,1rad=(__180π__)≈57°18′.(4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__,面积S=__12|α|r2__=__12lr__.3.任意角的三角函数定义(1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=__yr__,cosα=__xr__,tanα=__yx__.(2)三角函数在各象限的符号是:sinαcosαtanαⅠ__+____+____+__Ⅱ__+____-____-__Ⅲ__-____-____+__Ⅳ__-____+____-__(3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线.4.终边相同的角的三角函数sin(α+k·2π)=__sinα__,cos(α+k·2π)=__cosα__,tan(α+k·2π)=__tanα__(其中k∈Z),即终边相同的角的同一三角函数的值相等.重要结论1.终边相同的角不一定相等,相等角的终边一定相同,在书写与角α终边相同的角时,单位必须一致.2.确定αk(k∈N*)的终边位置的方法(1)讨论法:①用终边相同角的形式表示出角α的围.②写出αk的围.③根据k的可能取值讨论确定αk的终边所在位置.(2)等分象限角的方法:已知角α是第m(m=1,2,3,4)象限角,求αk是第几象限角.①等分:将每个象限分成k等份.②标注:从x轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x轴正半轴.③选答:出现数字m的区域,即为αk所在的象限.如α2判断象限问题可采用等分象限法.二、同角三角函数的基本关系式与诱导公式1.同角三角函数的基本关系式(1)平方关系:__sin2x+cos2x=1__. (2)商数关系:__sin xcos x=tan x__. 2.三角函数的诱导公式1.同角三角函数基本关系式的变形应用:如sin x =tan x ·cos x ,tan 2x +1=1cos 2x ,(sin x +cos x )2=1+2sin x cos x 等. 2.特殊角的三角函数值表“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.4.sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系为(sin x +cos x )2=1+2sin x cos x ,(sin x -cos x )2=1-2sin x cos x,(sin x+cos x)2+(sin x-cos x)2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.三、两角和与差的三角函数二倍角公式1.两角和与差的正弦、余弦和正切公式2.二倍角的正弦、余弦、正切公式(1)sin2α=__2sinαcosα__;(2)cos2α=__cos2α-sin2α__=__2cos2α__-1=1-__2sin2α__;(3)tan2α=__2tanα1-tan2α__(α≠kπ2+π4且α≠kπ+π2,k∈Z).3.半角公式(不要求记忆)(1)sin α2=±1-cosα2;(2)cos α2=±1+cosα2;(3)tan α2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.重要结论1.降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2. 2.升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α. 3.公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). 1-tan α1+tan α=tan(π4-α);1+tan α1-tan α=tan(π4+α)cos α=sin2α2sin α,sin2α=2tan α1+tan 2α,cos2α=1-tan 2α1+tan 2α,1±sin2α=(sin α±cos x )2. 4.辅助角(“二合一”)公式: a sin α+b cos α=a 2+b 2sin(α+φ), 其中cos φ=,sin φ=5.三角形中的三角函数问题在三角形中,常用的角的变形结论有:A +B =π-C ;2A +2B +2C =2π;A2+B 2+C 2=π2.三角函数的结论有:sin(A +B )=sin C ,cos(A +B )=-cos C ,tan(A +B )=-tan C ,sin A +B 2=cos C 2,cos A +B 2=sin C2.A >B ⇔sin A >sin B ⇔cos A <cos B .四、三角函数的图象与性质1.周期函数的定义及周期的概念(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域的每一个值时,都有f(x +T)=f(x),那么函数f(x)就叫做__周期函数__.非零常数T叫做这个函数的__周期__.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小__正周期__.(2)正弦函数、余弦函数都是周期函数,__2kπ(k∈Z,k≠0)__都是它们的周期,最小正周期是__2π__.2.正弦、余弦、正切函数的图象与性质图象定义域 x ∈R x ∈Rx ∈R ,且x ≠π2+k π,k∈Z值域__{y |-1≤y ≤1}____{y |-1≤y ≤1}__ __R __单调性在__ [-π2+2k π,π2+2k π] __,k∈Z 上递增;在__ [π2+2kπ,3π2+2k π] __,k∈Z 上递减在__ [(2k -1)π,2k π] __,k ∈Z 上递增;在__ [2k π,(2k +1)π] __,k ∈Z 上递减在(-π2+k π,π2+k π),k∈Z 上递增最值x =__π2+2k π(k ∈Z )__ 时,y max=1;x =__-π2+2k π(k ∈Z )__时,y min =-1x =__2k π(k ∈Z )__ 时,y max =1;x =__π+2k π(k ∈Z )__ 时,y min =-1无最值奇偶性__奇____偶__ __奇__ 对称性对称中心__(k π,0),k ∈Z ____(k π+π2,0), k ∈Z __(k π2,0),k ∈Z __ 对称轴 __x =k π+π2,k ∈Z ____x =k π,k ∈Z __无对称轴 最小正周期 __2π____2π__ __π__重要结论1.函数y =sin x ,x ∈[0,2π]的五点作图法的五个关键点是__(0,0)__、__(π2,1)__、__(π,0)__、__(3π2,-1)__、__(2π,0)__.函数y =cos x ,x ∈[0,2π]的五点作图法的五个关健点是__(0,1)__、__(π2,0)__、__(π,-1)__、__(3π2,0)__、__(2π,1)__.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为T =2π|ω|,函数y =tan(ωx +φ)的最小正周期为T =π|ω|.3.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.而正切曲线相邻两对称中心之间的距离是半周期.4.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.五、函数y=A sin(ωx+φ)的图象及应用1.五点法画函数y=A sin(ωx+φ)(A>0)的图象(1)列表:(2)描点:__(-φω,0)__,__(π2ω-φω,A)__,(πω-φω,0),(3π2ω-φω,-A)__,(2πω-φω,0)__.(3)连线:把这5个点用光滑曲线顺次连接,就得到y=A sin(ωx+φ)在区间长度为一个周期的图象.(4)扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象2.由函数y=sin x的图象变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤3.函数y =A sin(ωx +φ)(A >0,ω>0,x ∈[0,+∞)的物理意义 (1)振幅为A . (2)周期T =__2πω__.(3)频率f =__1T __=__ω2π__. (4)相位是__ωx +φ__. (5)初相是φ.重要结论1.函数y =A sin(ωx +φ)的单调区间的“长度 ”为T2.2.“五点法”作图中的五个点:①y =A sin(ωx +φ),两个最值点,三个零点;②y =A cos(ωx +φ),两个零点,三个最值点.3.正弦曲线y =sin x 向左平移π2个单位即得余弦曲线y =cos x .六、正弦定理、余弦定理1.正弦定理和余弦定理 定理正弦定理余弦定理容__a sin A =b sin B =c sin C__=2R (其中R 是△ABC 外接圆的半径)a 2=__b 2+c 2-2bc cos A __b 2=__a 2+c 2-2ac cos B __ c 2=__a 2+b 2-2ab cos C __常见变形①a =__2R sin A __,b =__2R sin B __,c =__2R sin C __;②sin A =__a 2R __,sin B =__b2R__,sin C=__c2R __;③ab c =__sin Asin B sin C __④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =__b 2+c 2-a 22bc __;cos B =__a 2+c 2-b 22ac __;cos C =__a 2+b 2-c 22ab__解决解斜三角形的问题(1)已知两角和任一边,求另一角和其他两条边;(2)已知两边和其中一边的对角,求另一边和其他两角(1)已知三边,求各角;(2)已知两边一角,求第三边和其他两个角A 为锐角A 为钝角或直角图形关系式 a < b sin A a =b sin A b sin A < a <b a ≥b a >b a ≤b 解的个数无解一解两解一解一解无解(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为切圆半径).重要结论在△ABC 中,常有以下结论 1.∠A +∠B +∠C =π.2.在三角形边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C2,cosA +B 2=sin C2.5.tan A +tan B +tan C =tan A ·tan B ·tan C . 6.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .7.三角形式的余弦定理sin 2A =sin 2B +sin 2C -2sin B sin C cos A , sin 2B =sin 2A +sin 2C -2sin A sin C cos B , sin 2C =sin 2A +sin 2B -2sin A sin B cos C .8.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.9.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形角之间的关系进行判断.此时注意一些常见的三角等式所体现的角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等.(2)利用正弦定理、余弦定理化角为边,如sin A =a2R ,cos A =b 2+c 2-a 22bc 等,通过代数恒等变换,求出三条边之间的关系进行判断.(3)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.。
高考三角函数知识点总结

高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。
1弧度等于圆周的1/2π。
2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。
4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。
二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。
- sin(x) = a / c,其中a是对边,c是斜边。
- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。
2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。
- cos(x) = b / c,其中b是邻边,c是斜边。
- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。
3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。
- tan(x) = a / b,其中a是对边,b是邻边。
- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。
4.余切函数:余切函数是正切函数的倒数。
- cot(x) = 1 / tan(x)。
5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。
- sec(x) = 1 / cos(x)。
6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。
- csc(x) = 1 / sin(x)。
三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。
三角函数所有知识点归纳总结

三角函数所有知识点归纳总结以下是三角函数的一些重要知识点总结:1. 基本三角函数:正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)、余割函数(csc)。
2. 三角函数的定义:在单位圆上,对于任意角度θ,定义其对应的弧长与半径的比值为sinθ、cosθ,对应的直角边之比为tanθ、cotθ,对应的斜边与直角边之比为secθ、cscθ。
3. 三角函数的周期性:正弦函数和余弦函数的周期均为2π,正切函数和余切函数的周期均为π,正割函数和余割函数不存在周期。
4. 三角函数的性质:正弦函数和余弦函数在单位圆上对称,具有奇偶性;正切函数和余切函数在y轴上对称,具有奇偶性;正割函数和余割函数不存在对称性。
5. 三角函数的值域和定义域:正弦函数和余弦函数的值域为[-1, 1],定义域为实数集;正切函数和余切函数的值域为全体实数,定义域为除了一些特殊值外的实数集;正割函数和余割函数的值域为(-∞, -1]∪[1, +∞],定义域为除了一些特殊值外的实数集。
6. 三角函数的性质关系:三角函数之间存在一系列的恒等式,如正弦函数和余弦函数的平方和为1:sin²θ + cos² θ = 1,正切函数和余切函数的和等于正割函数的倒数:tanθ + cotθ = secθ。
7. 三角函数的图像特点:正弦函数和余弦函数的图像为波形,呈现周期性变化;正切函数和余切函数的图像为无限接近x轴和y轴但不相交的直线;正割函数和余割函数的图像为无限接近y轴但不相交的直线。
8. 三角函数的解析式:三角函数可以通过泰勒级数展开来表示,如正弦函数的泰勒级数展开式为sinx = x - x³/3! + x⁵/5! - x⁷/7! + ...。
这些是三角函数的一些重要知识点总结,希望对你有所帮助。
2024届全国新高考数学精准复习三角函数知识点总结

千里之行,始于足下。
2024届全国新高考数学精准复习三角函数知识点总结2024届全国新高考数学考试中,三角函数是一个重要的知识点。
以下是三角函数的主要内容和考点总结:1. 基本概念:- 弧度与角度的转换:1弧度=180°/π,1度=π/180弧度。
- 正弦、余弦、正切、余切、正割、余割的定义与关系。
2. 三角函数的图像与性质:- 正弦函数和余弦函数的图像特点:周期为2π,在x轴上的零点为kπ,振幅为1。
- 正切函数的图像特点:周期为π,在x轴上的零点为kπ,无振幅。
- 三角函数的奇偶性:正弦函数是奇函数、余弦函数是偶函数、正切函数是奇函数。
- 三角函数的周期性:正弦、余弦函数的周期为2π,正切函数的周期为π。
3. 三角函数的性质与关系:- 三角函数的基本关系:tanx=sinx/cosx,cotx=1/tanx,secx=1/cosx,cscx=1/sinx。
- 三角函数的倒数关系:sinx=1/cscx,cosx=1/secx,tanx=1/cotx。
- 三角函数的平方关系:sin^2x+cos^2x=1,1+tan^2x=sec^2x,1+cot^2x=csc^2x。
4. 三角函数的性质与特殊值:- 正弦函数和余弦函数的取值范围:-1≤sinx≤1,-1≤cosx≤1。
第1页/共2页锲而不舍,金石可镂。
- 正切函数和余切函数的取值范围:tanx属于R,cotx属于R。
- 三角函数的特殊值:sin0=0,cos0=1,sin90°=1,cos90°=0,tan45°=1,cot45°=1。
5. 三角函数的解析式与性质:- sin(x±y)=sinxcosy±cosxsiny。
- cos(x±y)=cosxcosy∓sinxsiny。
- tan(x±y)=(tanx±tany)/(1∓tanxtany)。
高考三角函数知识点总结

高考三角函数知识点总结一、基本概念:1.弧度与角度:弧度是角度的一种衡量方式,1弧度等于所对应的圆心角的半径长所对应的线段长度。
角度是以度为单位的,一个圆等分360度.2.单位圆:半径为1的圆,圆心到任一点所对应的弧长为该点的角度。
二、常用三角函数:1. 正弦函数(sin):在单位圆上,对于一个角的弧度值对应的弧长与半径的比值。
2. 余弦函数(cos):在单位圆上,对于一个角的弧度值对应的横坐标与半径的比值。
3. 正切函数(tan):在单位圆上,对于一个角的弧度值对应的纵坐标与横坐标的比值。
4. 余切函数(cot)、正割函数(sec)、余割函数(csc)的定义与相关计算。
三、三角函数的性质:1. 基本关系式:sin^2x + cos^2x = 1,1 + tan^2x = sec^2x,1 + cot^2x = csc^2x。
2. 函数的周期性:sin(x+2π) = sinx,cos(x+2π) = cosx,tan(x+π) = tanx。
3. 函数的奇偶性:sin(-x) = -sinx,cos(-x) = cosx,tan(-x) =-tanx。
4. 函数的限制性:,sinx,≤ 1,cosx,≤ 1,tanx,< +∞。
5. 函数的单调性:在一个周期内,sinx、cosx、tanx的单调性。
四、三角函数的图像:1.正弦函数的图像特点:在0≤x≤2π内,图像从[0,1]上升至[1,-1],再回升至[-1,0]。
2.余弦函数的图像特点:在0≤x≤2π内,图像从[1,0]下降至[-1,0],再上升至[0,1]。
3.正切函数的图像特点:在0≤x≤2π内,图像在每个π的奇数倍处有垂直渐近线。
五、三角函数的运算:1. 三角函数的和差化积:sin(x±y)、cos(x±y)的展开公式。
2. 三角函数的倍角化简:sin2x=2sinxcosx,cos2x=cos^2x-sin^2x。
三角函数知识点归纳总结

三角函数是高中数学中的重要内容,涉及到三角函数的定义、性质、图像、公式等方面的知识。
下面是对三角函数知识点的归纳总结:一、三角函数的定义1. 正弦函数(sin):在直角三角形中,对边与斜边的比值。
2. 余弦函数(cos):在直角三角形中,邻边与斜边的比值。
3. 正切函数(tan):在直角三角形中,对边与邻边的比值。
4. 余切函数(cot):在直角三角形中,邻边与对边的比值。
5. 正割函数(sec):在直角三角形中,斜边与邻边的比值。
6. 余割函数(csc):在直角三角形中,斜边与对边的比值。
二、三角函数的性质1. 奇偶性:sin和cos函数是奇函数,tan和cot函数是偶函数。
2. 周期性:sin和cos函数的周期为2π,tan和cot函数的周期为π。
3. 值域:sin和cos函数的值域为[-1, 1],tan和cot函数的值域为实数集。
4. 单调性:sin和cos函数在每个周期内单调递增或递减,tan和cot函数在每个周期内单调递增。
5. 对称性:sin和cos函数关于原点对称,tan和cot函数关于坐标轴对称。
三、三角函数的图像1. 正弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
2. 余弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
3. 正切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
4. 余切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
5. 正割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
6. 余割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
四、三角函数的基本公式1. 和差公式:sin(a+b) = sina * cosb + cosa * sinb;cos(a+b) = cosa * cosb - sina * sinb;tan(a+b) = (tana + tanb) / (1 - tana * tanb);cot(a+b) = (1 / tana + 1 / tanb) / (1 / tana * 1 / tanb - 1);sec(a+b) = secab / (cosa * cosb - sina * sinb);csc(a+b) = cscab / (cosa * cosb + sina * sinb)。
高考数学-三角函数核心知识点(全)

三角函数核心内容一、角的概念的推广、弧度制●1.任意角:角是由射线绕端点旋转而成的,它有正角、负角与特殊的零角。
●2.终边相同的角:所有与角α终边相同的角,连同角α在内,称为终边相同的角,记为{360,}S k k Z ββα==+⋅∈o●3.象限角:把角置于直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合,那么角的终边落在第几象限,我们就说这个角是第几象限角。
例如:第二象限角的集合:{36090360180,}S k k k Z αα=⋅︒+︒<<⋅︒+︒∈●4.坐标轴上的角终边在x 轴上的角的集合:{180,}S k k Z αα==⋅︒∈ 终边在y 轴上的角的集合:{18090,}S k k Z αα==⋅︒+︒∈ 终边在坐标轴上的角的集合:{90,}S k k Z αα==⋅︒∈ ●5.角的度量:弧度制,角度制。
1rad 角:弧长与圆半径长相等的弧所对的圆心角的大小称为1rad 角。
弧度和角度的换算:180()rad π︒=10.01745180rad rad π︒=≈1801()()57.305718rad π'=︒≈︒=︒●6.弧长和扇形面积公式 l R α=⋅ 21122S l R R α=⋅=⋅二、任意角的三角函数●1.任意角的三角函数的定义:设点(,)P x y 是角α终边上一点,点O 是坐标原点,22||r OP x y ==+,那么角α的正弦、余弦、正切分别是sin ,cos ,tan (0)y yx x r r xααα===≠。
●2.三角函数值的符号:正弦、余弦、正切函数值在各象限的符号是: ++--xy +-- +xy +-+ -xyOOO●3.三角函数线:正弦线sin MP α=,余弦线cos OM α=,正切线tan AT α=。
三、同角三角函数的基本关系式与诱导公式●1.同角三角函数的基本关系式,注意公式的变形使用。
(1)22sin cos 1αα+= (2)sin tan cos ααα= ●2.诱导公式:与角“32,,,,22k πππααπααα+-±±±”有关的诱导公式的记忆口诀是“奇变偶不变, 符号看象限”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4知识点总结第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为__________________终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=. 6、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭. 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:鸡便偶不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:鸡便偶不变,符号看象限. 13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x =图象定义域 RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2π π奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称对称中心对称中心对称中心函数性 质性()(),0k k π∈Z对称轴()2x k k ππ=+∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.baC BAa b C C -=A -AB =B设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、定比分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
)1=λ 23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③ab a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y=+,或2a x y =+. 设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.第三章 三角恒等变换24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-. 26、⇒(后两个不用判断符号,更加好用)27、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。