3.1 不等式与不等关系(第1课时)

合集下载

3.1不等关系与不等式(一)

3.1不等关系与不等式(一)

生活中的不等关系:
实例1:某天的天气预报报道,最高气温 32℃,最低气温26℃.
实例2:对于数轴上任意不同的两点A、B, 若点A在点B的左边,则xA< xB. 实例3:若一个数是非负数,则这个数大 于或等于零.
生活中的不等关系:
实例4:两点之间线段最短.
实例5:三角形两边之和大于第三边,两 边之差小于第三边. 实例6:限速 40 km/h 的路标,指示司机 在前方路段行驶时,应使汽车速度 v 不超 过 40 km/h.
x 2.5 0.2 x 20 8 0.1
或 2.5 0.1n 8 0.2n 20
比较两种表示
例3 某钢铁厂要把长度为4000mm的钢管 截成500mm和600mm两种,按照生产的 要求,600mm钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关 系的不等式呢?
3.1 不等关系与 不等式(一)
思考1:
回忆初中学过的不等式,比较“不 等关系”与“不等式”有何异同.
不等关系强调的是关系.用符号“<” “>” “≤” “≥ ”和“≠”表示. 不等式就是用不等号将两个代数式连结起 来所成的式子.如﹣7 <﹣5,3 + 4 > 1 + 4, 2x ≤ 6,a + 2 ≥ 0,3 ≠ 4,0 ≤ 5 等.
生活中的不等关系:
实例7:某品牌酸奶的质量检查规定,酸 奶中脂肪的含量 f 应不少于2.5%蛋白质 的含量 p 应不少于2.3%.
思考2:
如何用我们学过的知识来表示 这些不等关系?
应用示例
例1 设点A与平面的距离为d,B为 平面上的任意一点,则d ≤ |AB|.
例2 某种杂志原以每本2.5元的价格销售, 可以售出8万本.根据市场调若单价每提高 0.1元,销售量就可能相应减少2000本.若 把提价后杂志的定价设为 x 元,怎样用不 等式表示销售的总收入仍不低于20万元?

高中数学教学课例《3.1不等关系与不等式(1)》课程思政核心素养教学设计及总结反思

高中数学教学课例《3.1不等关系与不等式(1)》课程思政核心素养教学设计及总结反思
高中数学教学课例《3.1 不等关系与不等式(1)》教学设计 及总结反思
学科
高中数学
教学课例名
《3.、三角等内容有着密切的联系.
在高考题中不等式常与其他知识交汇呈现,因此不等式
在高考中占有比较重要的地位。而本节课是本章的起始
课,学好本节课是学习本章的基础。通过学习有助于学 教材分析
(3)练习巩固 4、联系实际,探索研究 在教学中,我们提倡让学生在问题解决中学习,在问题 探索中学习,从而使学生建构起对知识的理解,因此在 下一环节中,我设计了一个生活实际问题,让学生在问 题探索中学习新知。 能否用所学知识准确表示“糖水加糖甜更甜”的现象? 下面通过复习实数的基本理论,利用数轴数形结合,归 纳总结得出比较两个实数(式)大小的方法,学生容易 接受。 然后给出两组比较简单的作差比较,师生合作完成,教 师板书,学生回答,再总结提炼步骤方法。并变式练习, 一方面可以巩固作差比较法,另一方面,渗透了分类讨 论的数学思想,为课后的能力作业给予一点启示。 例 3、比较下面两组代数式的大小: 步骤:作差→变形→判号→结论. 其中变形是关键,常用的变形手段有提公因式、分解因 式、通分、配方、有理化等. 最后通过例 4,可以先让学生尝试,教师巡视学生解答 情况,最后通过幻灯片展示标准过程,指出学生易错点, 强调关键点。对本题的教学既是对实际探索问题的解 决,前后呼应;也是对作差比较法的进一步巩固,突破
教学策略选 教师的主导作用,主要教会学生清晰的思维和严谨的推 择与设计 理。 为了更好地体现课堂教学中“教师为主导,学生为主 体”的教学关系和“以人为本,以学定教”的教学理 念,在本节课的教学过程中,我将紧紧围绕教师组织— —启发引导,学生探究——交流发现,组织开展教学活 动。我设计了以下六个环节,层层深入,在教学中注意 关注整个过程和全体学生,充分调动学生积极参与教学 过程的每个环节。

不等关系和不等式

不等关系和不等式

a 与n b 的大
n
a > b >0

n
n
a > b (n∈N*)
a ≤ n b ,即
证明:用反证法,假定
n
n n 或 a b , a b
n
根据乘方性质,得 (n a )n (n b )n 或(n a )n (n b )n
即:a<b或a=b,
这都与a>b矛盾,因此
n
a b
n
ac 2)a>b,b>c ____________
思考6:如果a>b>0,c>d>0,那么ac与bd的 大小关系如何?为什么? 性质6:a>b>0,c>d>0
ac>bd
(乘法法则)
思考7:如果a>b>0,n∈N*,那么an与bn的大小 关系如何?
性质7:a>b>0
n>bn (n∈N*) a
(乘方法则)
思考8:如果a>b>0,n∈N*,那么n 小关系如何? (开方法则) 性质8:
=(x-1)2+1, 因为(x-1)2≥0, 所以(x2-x)-(x-2)>0, 因此x2-x>x-2.例 2 已知 x<1,试比较 x-1 与 2x -2x 的大小.
3
2
若去掉x<1这条件,结果还一样吗?
探究:不等式的基本性质
思考1:若甲的身材比乙高,则乙的身材比甲矮, 反之亦然.从数学的观点分析,这里反映了一个不 等式性质。
性质1:如果a > b,那么b < a,如 果b < a,那么a > b.(对称性)
思考2:若甲的身材比乙高,乙的身材比丙高, 那么甲的身材与丙的有什么大小关系? 性质2:如果a > b,且b > c,那么a > c.(传递性) 即:a > b,b > c a > c.

3.1不等关系与不等式(两课时)

3.1不等关系与不等式(两课时)

500x 600y 4000
y 3x
x≥0,y≥0 上面三个不等关系,是“且”的关系,要同时满足的话, 用不等式组表示为:
数学应用
问题3.某钢铁厂要把长度为4000mm的钢管截成 500mm和600mm的两种规格。按照生产的要求, 600mm的钢管的数量不能超过500mm钢管的3倍, 写出满足上述所有不等关系的不等式.
数学应用
问题1:设点A与平面α的距离为d, B为平面α上任意一点,则
d与线段AB的关系?
A
d≤|AB|
d

B
数学应用
问题2.某种杂志原以每本2.5元的价格销售,可以 售出8万本。据市场调查,若单价每提高0.1元销售 量就可能相应减少2000本。若把提价后杂志的定价 设为x元,怎样用不等式表示销售的总收入仍不低 于20万元呢?

(a b) (b c) 0
ac 0

ac
由定理1,定理2可以表示为如果
c b且b a
那么
ca
不等式的性质
性质3.如果
a b,那么 a c b c
不等式的可加性
(即a b a c b c)
证明: ∵

(a c) (b c) a b 0
证明:ac-bc=( a-b )c 因为 a >b 所以 a-b>0, 根据同号相乘得正,异号相乘得负,得 当c>0时,(a-b)c>0, 即 ac>bc 当c<0 时,(a-b)c<0, 即 ac<bc
不等式的性质
性质5: 如果
a b 且 c d ,那么
ac bd
不等式的同向可加性

2014年人教A版必修五课件 3.1 不等关系与不等式

2014年人教A版必修五课件 3.1 不等关系与不等式

例(补充). 用不等式表示下面的不等关系: (3) 某钢铁厂要把长度为 4000 mm 的钢管截成 500 mm 和 600 mm 两种. 按照生产的要求, 600 mm 钢管的数量 x 不能超过 500 mm 钢管数 y 的 3 倍. 写 出满足上述所有不等关系的不等式. 解: ① 600 mm 钢管数 x 不能超过 500 mm 钢管 数 y 的 3 倍: x≤3y, ② 总长度不能大于 4000 mm: 600x500y≤4000 x 3 y, ③ 钢管数不能为负: 600x 500 y 4000, x≥0, y≥0, x 0, 由①②③得: y 0.
2. 有一个两位数大于50而小于60, 其个位数字 比十位数字大 2. 试用不等式表示上述关系, 并求出 这个两位数 (用 a 和 b 分别表示这个两位数的十位数 字和个位数字). 解: 10ab>50, ① 10ab<60, ② ③ b=a2. 48 ; a ③代入①得 ④ 11 58 ③代入②得 a . ⑤ 11 由④⑤得 a = 5, 则 b = 7. ∴这个两位数是 57.
f 2.5%, p 2.3%.
Hale Waihona Puke 例(补充). 用不等式表示下面的不等关系: (1) 设点 A 与平面 a 的距离为 d, B 为平面 a 上 任意一点, 写出 |AB| 与 d 的大小关系. (2) 某种杂志原以每本 2.5 元的价格销售, 可以售 出 8 万本. 据市场调查, 若单价每提高 0.1 元, 销售 量就可能相应减少 2000本. 若把提价后杂志的定价设 为 x 元, 写出销售的总收入不低于20万元的不等式. (3) 某钢铁厂要把长度为 4000 mm 的钢管截成 500 mm 和 600 mm 两种. 按照生产的要求, 600 mm 钢管的数量不能超过 500 mm 钢管的 3 倍. 写出满足 上述所有不等关系的不等式.

3.1不等式与不等关系1

3.1不等式与不等关系1
性质8:如果a>b>0, 那么n
a b ,(n∈N,n≥2).
n
开方法则
c c 已知a > b > 0,c < 0, 求证 > .(课本P83) a b
1 证明: a b 0, ab 0, 0. ab
1 1 于是 a b , ab ab 1 1 c c 即 . 由c 0, 得 a b b a
f 2.5% p 2.3%
一 .新课引入
问题1:设点A与平面α的距离为d,
d
A
B为平面α上任意一点,则
d≤|杂志原以每本2.5元的价格销售,可以销售出8 万本.据市场调查,若单价每提高0.1元,销售量就可以相 应减少200本,若把提价后杂志的定价设为X元,怎样用不 等式表示销售的总收入仍比低于20万元呢?
性质1:如果a>b,那么b<a;如果b<a,那么a>b.即
abba
性质2:如果a>b,b>c,那么a>c.即
(对称性) (传递性)
(可加性)
a b, c 0 ac bc a b, c 0 ac bc
a b, b c a c
性质3:如果a>b,那么a+c>b+c.即
x 2.5 (8 0.2) x 20 0.1
问题3:某钢铁厂要把长度为4000mm的钢管截成
500mm和600mm两种.按照生产的要求,
600mm钢管的数量不能超过500mm钢管的 3倍. 写出满足上述所有不等关系的不等式?
500 x 600 y 4000; 3x y; x 0; y 0.
二、重难点讲解

§3.1.1不等关系与不等式(一)

§3.1.1不等关系与不等式(一)

浓度为 b m ,
am
bm b 可以证明 成立. am a
你能证明吗?预习下一节内容,给出证明.
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 16
§3.1.1不等关系与不等式(一)
小结 1. 两 实数间的大小与两数之差有如下关系:
a>ba–b>0 a=ba–b=0 a<ba–b<0
根据两个正数的和仍是正数,得
(a b) (b c) 0, 即a c 0,
推论: 由a b, 且b c a c.
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 12
a c.
§3.1.1不等关系与不等式(一)
不等式的性质
性质3:
3
§3.1.1不等关系与不等式(一)
问题2 :某种杂志原以每本2.5元的价格销售,可以 销售出8万本。据市场调查,若单价每提高0.1元, 销售量就可能相应减少2000本,若把提价后杂志的 定价设为x元,怎样用不等式表示销售的总收入仍 不低于20万元呢? 分析:若杂志的定价为x元,则销售的总收入为
x 2.5 (8 0.2)x 万元。 0.1
4 x y 10 18 x 15 y 66 x 0 y 0
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 7
§3.1.1不等关系与不等式(一)
练习3、某年夏天,我国遭受特大洪灾,灾区学生 小李家中经济发生困难,为帮助小李解决开学费用 问题,小李所在班级学生(小李除外)决定承担这 笔费用。若每人承担12元人民币,则多余84元;若 每人承担10元,则不够;若每人承担11元,又多出 40元以上。问该班共有多少人?这笔开学费用共多 少元? 分析:设该班除小李外共有x人,这笔开学费用共 y元,则:

3.1不等式与不等关系课(共32张PPT)

3.1不等式与不等关系课(共32张PPT)

探究点1
不等式的性质
(对称性) (1)a > b b < a; (传递性) (2)a > b,b > c a > c;
(可加性) (3) a > b a + c > b + c;
由性质(3)可得:
a + b > c a + b +( - b )> c +( - b ) a > c - b .
解:因为15 < b < 36,所以 - 36 < -b < -15. 又因为12 < a < 60,所以12 - 36 < a - b < 60 - 15, 所以 - 24 < a - b < 45. 1 1 1 12 a 60 因为 < < ,所以 < < , 36 b 15 36 b 15 1 a 所以 < < 4. 3 b
2.某品牌酸奶的质量检查规定,酸奶中脂肪的含量 f应不少于2.5% ,蛋白质的含量p应不少于2.3%,
f≥2.5% 写成不等式组为 p≥2.3% .
【即时练习】 某高速公路对行驶的各种车辆的最大限速为120km/h.
行驶过程中,同一车道上的车间距d不得小于10 m,用不
等式表示为( B )
A.v≤120 (km/h)或 d≥10 (m)
2.设M=x2,N=x-1,则M与N的大小关系为 ( A ) A.M>N C.M<N B.M=N D.与x有关
【解析】 ∵M-N=x2-(x-1)=x2-x+1 1 3 =x -x+ + 4 4
2
12 3 =(x- ) + >0. 2 4 ∴M>N.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章不等式
§3.1不等式与不等关系
第1课时
【授课类型】新授课
【学习目标】
1.理解不等式(组)的实际背景,掌握不等式的基本性质;
2.能用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.
3.能用不等式(组)正确表示出不等关系.
【教学重点】同目标2
【教学难点】同目标3
【教学过程】
1、 情境导入(2min )
在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短,三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系.
2、展示目标
下面我们首先来看在本课时应掌握哪些东西,掌握到什么程度
(1)理解不等式(组)的实际背景,掌握不等式的基本性质;
(2)能用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.
(3)能用不等式(组)正确表示出不等关系.
【自主阅读教材5分钟】
3、检查预习(4min )
(1)用不等式表示不等关系
限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是:
40v ≤
4、合作探究(7min )
(2)用不等式表示不等关系
某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于
2.3%,写成不等式组就是——用不等式组来表示
2.5%2.3%f p ≤⎧⎨≥⎩
5、交流展示(5min )
引例:b 克糖水中有a 克糖(b >a >0),若再加入m 克糖(m >0),则糖水更甜了,试根据这个事实写出一个不等式 .
6、精讲精练(10min )
例题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤.
例题2:某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?
解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1
x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式
2.5(80.2)200.1
x x --⨯≥ 例题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍.怎样写出满足所有上述不等关系的不等式呢?
解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:
(1)截得两种钢管的总长度不超过4000mm ;
(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;
(3)截得两种钢管的数量都不能为负.
要同时满足上述的三个不等关系,可以用下面的不等式组来表示:
7、反馈测评(5min )
(1)试举几个现实生活中与不等式有关的例子.
(2)课本P74的练习1、2、3
8、课时小结(2min )
用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.
9、课时作业
(1)巩固所学知识;(2)课时作业;(3)预习下一课时.
【板书设计】
【授后记】
5006004000;3;0;0.
x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩。

相关文档
最新文档