正比例与反比例

合集下载

正比例和反比例

正比例和反比例

正比例和反比例一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

二、正比例1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。

2.应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

三、画一画正比例的图像是一条直线。

四、反比例1.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。

2.判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。

五、观察与探究当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。

六、图形的放缩一幅图放大或缩小,只有按照相同的比来画,画的图才像。

七、比例尺1.比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。

图上距离=实际距离×比例尺实际距离=图上距离÷比例尺2.比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。

根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。

3.比例尺的应用:(1)已知比例尺和图上距离,求实际距离比例尺=图上距离÷实际距离图上距离=实际距离×比例尺实际距离=图上距离÷比例尺(北师大版)六年级数学下册第二单元检测试卷班级_____姓名_____得分_____一、想一想,填一填。

正比例和反比例总结

正比例和反比例总结
比例;
6、当 a × b = c( a、b、c 为三种量, 且均不为0)。
( )一定,( )与( )成( )比例; ( )一定,( )与( )成( )比例;
( )一定,( )与( )成( )比例;
7、判断。
(1)、工作总量一定,工作效率和工作时间成反比例。( )
(2)、图上距离和实际距离成正比例。( )
= 4 …… 因为 = 单价(一定),所以单价一定时,总价和数量成正比例。 表格2 单价/元1.523456……总价/元6812162024…… = 4, = 4, =
4 …… 因为 = 数量(一定),所以数量一定时,总价和单价成正比例。 表格3 用60元钱购买笔记本,笔记本的单价和可以购买的数 量如下表: 单价/元1.523456……数量/本403020151210……1.5 × 40 = 60 ,2 × 30 = 60 ,4 × 15 = 60 …… 因为单价 × 数量 = 总价(一定),所以总价一定时,单价和
(2)根据表中的数据,在下图中描出造纸时间和造纸吨数对应 的点,再把它们连起来。吨数/吨
6 5 4 3 2 1 0
1 2 3 4 5 6 7 时间/时
(3)造纸吨数与造纸时间成正比例吗?为什么? (4)根据图像判断, 5小时造纸多少吨?
【试题答案】 1、仔细观察每张表格,思考表格中两种量之间有关系吗?有 什么关系?为什么? 表格1 数量/本13681020……总价/元41224324080…… = 4, = 4,
(8)在400米赛跑中,跑步的速度和所用时间成反比例。 ( )
(9)工作总量一定,已完成的量和未完成的量成反比例。 ( )
(10)正方体的棱长和体积成正比例。
()
(11)被除数一定,除数和商成反比例。

六年级数学课件正比例和反比例

六年级数学课件正比例和反比例

正比例的意义
定义:两个量之间的比值相等 性质:当一个量增加时,另一个量也按相同的比例增加 举例:速度、路程和时间之间的关系 应用:在生活和生产中的实际应用
正比例的应用
定义:两个量之间 的比值保持不变, 即为正比例关系
应用场景:速度、 时间、距离等
Hale Waihona Puke 实例:汽车匀速行 驶,速度与时间成 正比
数学模型:y=kx ,其中k为比例系 数
题目:一辆汽车从甲地开往乙地,3小时行了150千米。照这样的速度,再行5小时到达乙地, 甲地到乙地相距多少千米?
反比例的练习题及解析
题目:一个工厂生产了200台机器,每台机器需要10个零件。如果该工厂决定生产更多的机器,但零件数量不变,那么每台新机器的 成本将会如何变化?
解析:这道题目考察了反比例的概念。当一个变量增加时,如果另一个变量保持不变,那么第一个变量与第二个变量之间 的比率将会保持不变。因此,如果该工厂生产的机器数量增加,但零件数量保持不变,那么每台新机器的成本将会降低。
生活中的反比例实例
汽车油箱:油箱容 量固定,行驶距离 与耗油量成反比
速度与时间:速度 越快,所需时间越 短,成反比关系
价格与需求量:价 格上涨,需求量减 少,成反比关系
杠杆原理:动力×动 力臂=阻力×阻力臂 ,当动力臂增加, 阻力臂减少时,动 力作用效果越不明 显
正比例和反比例在数学中的应用实例

反比例:两个 量之间的乘积 是一定的,当 一个量变化时, 另一个量也按 相反的比例变

区别:正比例 是比值一定, 反比例是乘积
一定
联系:正反比 例都是成比例 关系,当其中 一个量变化时, 另一个量也按 一定的比例变

应用上的区别与联系

正比例与反比例比例尺

正比例与反比例比例尺
线段比例尺 如:
0 30 60 90km
1. 生活中有哪些成正比例的例子? 2. 生活中有哪些成反比例的例子?
判断下列各题中的两个量是否成比例,成什么比例? 并说明理由。 1 用砖块铺地,每块砖的大小和所需的块数。 ( 反比例 ) 2 比的前项一定,比的后项与比值。( 反比例 ) 3 圆柱的侧面积一定,底面周长和高。 ( 反比例 ) 4 六一班的出勤率一定,出勤人数和总人数 。 ( 正比例 ) 5 一条绳的长度一定,剪去部分和剩下的部分.( 不成比例 ) 6 圆锥的体积一定,底面积和高 。( 反比例 ) 7 长方形的周长一定,长和宽 。( 不成比例 ) 8 订阅<少年报>的份数和总价 。 ( 正比例 ) 9 正方形的面积和边长 。( 不成比例 ) 10 圆的直径和周长。( 正比例 )
4.一间大厅,用边长为4分米的方砖铺地,需要用324块。如果改 用边长为3分米的方砖铺,需要多少块?
• 小明家正东方向600米处有座图书大厦,图书大厦西 偏北70度方向400米处有个科技馆,科技馆的东偏南 25度方向800米处有个邮局。选择合适的比例尺,再 平面图上画出这些地点。

小明家
正比例、反比例、比例尺
基础知识
(1)正比例的意义:两种相关联的量,一种量 变化,另一种量也随着变化,如果这两种量中 的对应的两个量的比值(或者说商)一定,这 两种量就叫做成正比例的量,它们的关系叫做 正比例关系。 字母公式: y÷x=k(一定) (2)当两个变量成正比例关系时,所绘出的 图 是一条直线,也就是说所有的点都在同 一条直线上。
1.一张精密零件图上的比例尺是5:1,一个零件实际长3毫米,图 上应画多少厘米? 2.在比例尺为1:6000000的地图上,量得两地相距5厘米。甲、 乙两辆汽车同时从两地相向而行,3小时后相遇。已知甲与乙的 速度比是2:3,求甲、乙两辆车的速道,5天安装240米,如果每天安 装的长度一样,那么完成此项任务需要多少天?

正比例和反比例

正比例和反比例

正比例和反比例1、成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

字母关系式:(一定)k xy2、正比例的图像正比例关系的图像是一条从(0,0)出发的无线延伸的射线,线上所有点对应的两个数的比值都相等。

3、成反比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

字母关系式:xy=k (一定) 4、反比例的图像反比例关系的图像是一条平滑的曲线,线上所有点所对应的两个数的乘积都相等。

5、判断两种量成正比例还是成反比例的方法:(1)先看是不是相关联的两种量:一种变化,另一种也随着变化 (2)看两种变量的关系:①正比例关系——比值一定(商一定) ②反比例关系——乘积一定 练习:(1)判断下面各题中的两种量是否成比例,在括号里写上“成正比例”、“成反比例”或“不成比例”。

在没有余数的除法中,商一定,被除数和除数。

( )一根绳子,用去的米数和剩下的米数。

()李叔叔从家到工厂,骑自行车的速度和所需的时间。

()每小时织布米数一定,织布的米数和时间。

()小明的身高和体重。

()长方形的面积一定,它的长和宽。

()苹果的单价一定,购买苹果的数量和总价。

()轮船行驶的速度一定,行驶的路程和时间。

()每小时织布米数一定,织布的米数和时间。

()小红做了30题数学题,做完的题和没做完的题。

()种子的总量一定,每公顷的播种量和播种的公顷数。

()幼儿园老师分给每个小朋友的饼干的块数一定,小朋友的人数和所需的饼干数。

()订阅《中国小年报》的份数和钱数。

()一袋大米吃剩的千克数一定,剩下的大米的千克数和一袋大米。

()小新跳高的高度和他的身高。

()小明的身高和影长。

()在同一时刻,小明的身高和影长。

()一个人的身高和年龄。

()长方形的面积一定,它的长和宽。

(完整版)正比例反比例

(完整版)正比例反比例

知识要点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

二、正比例(正比例好脾气,同缩同扩好兄弟,比值永远不变异)1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:yx=k(一定)。

2.判断两种量是否成正比例:(1)两种量相关联。

(2)它们的比值一定。

备注:可以将两个量的关系写成yx=k(一定)的形式,再进行判断。

三、反比例1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。

2.判断两个量是不是成反比例:(1)两种量相关联。

(2)它们的乘积一定。

经典例题1例题1 判断两种量是否成正比例的方法判断下面各题中的两种量是否成正比例比例,并说明理由。

(1)每袋大米的质量一定,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽一定,长方形的周长与长。

解答:(1)每袋大米的质量一定,大米的总质量和袋数成正比例。

理由:大米的总质量随袋数的变化而变化,它们是相关联的量。

大米的总质量/袋数=每袋大米的质量(一定),所以它们成正比例。

(2)一个人的身高和年龄不成正比例。

理由:一个人的身高随年龄的增长而增高,但身高在不同年龄段增长幅度不同,且到了一定年龄后便不再增长,即两种量的比值不固定,所以它们不成正比例。

(3)宽一定,长方形的周长与长不成正比例,理由:宽一定,长方形的周长随着长的增减变化而变化,但长方形的周长是由两个长和两个宽组成的,即周长=(长十宽)×2,则周长/2-长=宽(一定),周长和长之间是加减关系,所以它们不成正比例。

【数学知识点】正比和反比的概念

【数学知识点】正比和反比的概念

【数学知识点】正比和反比的概念
两个事物或一事物的两个方面,一方发生变化,其另一方随之起相反的变化,如老年
人随着年龄的增长,体力反而逐渐衰弱,就是反比。

两种相关联的量,一种量变化,另一
种量也随着变化。

且一种量随着另一种量的增大而增大。

如果这两种量相对应的两个数的
比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系,
我们就称这两个变量成正比例。

正比例的图像是在一条过原点的射线上。

就是从统计表的横坐标、纵坐标交汇处沿左
下角到右上角的对角线发展,延伸至表格外,在这里正比例的意义上它可以向下延伸,所
以认为它是直线。

反比例关系在应用题中属于归总问题。

反映在除法中,当被除数一定,除数和商成反
比例关系。

在分数中,当分数的分子一定,分母与分数值成反比例关系。

正比例与反比例的关系如下:
相同之处:1、事物关系中都有两个变量,一个定量。

2、在两个变量中,当一个变量
发生变化时,则另一个变量也随之发生变化。

3、相对应的两个变数的积或商都是一定的。

相互转化:当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为
正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例。

感谢您的阅读,祝您生活愉快。

正比例函数与反比例函数(含图像)

正比例函数与反比例函数(含图像)

1、正比例函数
定义:
形如y=kx(k为常数,且k≠0),我们就说y是x的正比例函数。

正比例函数是特殊的一次函数【一次函数的一般形式为y=kx+b(b不为0,k为常数)】。

图象作法:
a.列表(待定系数)
b.描点
c.连线
正比例函数的图象是一条直线,一定经过坐标的原点;
当k>0时,图象经过一、三象限,y随x的增大而增大;
当k<0时,图象经过二、四象限,y随x的增大而减小。

具体图像:
正比例函数y=x的函数图像
2、反比例函数
定义:
形如y=k/x(k为常数且k≠0)的函数,我们就说y是x的反比例函数。

(自变量x的取值范围是不等于0的一切实数)
图像作法:
反比例函数的图像为双曲线。

它可以无限地接近坐标轴,但永不相交;
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小;
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。

具体图像:
反比例函数y=1/x的函数图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船行驶的速度一定,行驶的路程和时间。

成正比例
2、每小时织布米数一定,织布总米数和时间。

成正比例
3、长方形的宽一定,它的面积和长。

成正比例
二、判断是否成反比例,【并说明理由】
1、煤的总量一定,每天的烧煤量和能够烧的天数。


2、种子的总量一定,每公顷的播种量和播种的公顷数。


3、李叔叔从家到工厂,骑自行车的速度和所需时间。


4、华容做12道数学题,做完的题和没有做完的题。

不是
反比例
1.百米赛跑,路程100米不变,速度和时间是反比例;
2.排队做操,总人数不变,排队的行数和每行的人数是反比例;
3.做纸盒子,总个数一定,每人做的个数和人数;
4.买东西(实际就用文具用品),总钱数一定,它的单价和数量是反比例;
5.长方形的面积一定,长和宽是反比例;
6.长方体的体积一定,底面积和高是反比例。

7.等分一块蛋糕,每人分到的蛋糕与人数成反比例。

8.总价一定,单价与数量成反比例.
9.长方体体积一定,底面积与高成反比例
10.总纸盒一定,每人做的个数与人数成反比例
正比例
1走路时,速度不变,花的时间越多,走的路越长
2买苹果时,单价一定,付的钱越多,买的苹果越多
3农民种庄稼,效率一定,种的田越多,收的庄稼越多
4正方形的周长与边长
5圆的周长与直径
6打字速度一定,打字时间与总字数
7每份数量一定,每份数辆与总数辆
8工作效率一定,工作时间与工作总量
9时间一定,速度与路程
10 坐车时,每小时单价不变,路程越远,
11一个自然数和它的倒数成反比例。

12小麦的斤数一定,出粉率和面粉的斤数成反比例。

正比例:行驶路程和时间
反比例速度和时间。

相关文档
最新文档