福建省龙岩市一级达标学校联盟2014届高三数学毕业班5月联合考试试题 理
福建省龙岩市一级达标学校联盟2014届高三下学期5月联合考试数学文试题(扫描版)

2014年龙岩市一级达标学校联盟高中毕业班联合考试数学(文科)参考答案及评分标准一、选择题 1~5 ABCDA6~10 CCDDA11~12 BA二、填空题13.2 14.1- 15. 16.1 三、解答题 17.(命题意图:本题考查茎叶图,中位数、平均数、方差以及用列举法计算随机事件的概率,考查了学生数据处理能力) 解:(Ⅰ)甲、乙两个班所抽8名学生的中考数学成绩的中位数分别为137. 5分和132. 5分.……………………………………………………2分由茎叶图得甲班的8名学生的中考数学平均成绩为134=甲x 分, 乙班的8名学生的中考数学平均成绩为134=乙x 分 ……4分 从茎叶图中看出,乙班数据集中在130分段,甲班数据较分散, 所以乙班数学成绩更集中. ……………………6分(Ⅱ)由茎叶图可知甲班140分以上的学生有3名,分别记为321,,a a a ,乙班140分以上的学生有2名,分别记为,,21b b 从这5名中随机抽取两名学生参加“希望杯”数学邀请赛的基本事件有1213231112212231321(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a a a a a a a b a b a b a b a b a b b b 共10种,…………………8分其中抽取的2名学生至少有一名自乙班的基本事件有11122122(,),(,),(,),(,),a b a b a b a b313212(,),(,),(,)a b a b b b 共7种. ………………………………………10分∴所求事件的概率为710P =. …………………………………12分 18.(命题意图:本题考查数列与方程、不等式交汇,考查等差、等比数列的定义和通项公式,等比数列的前n 项和等知识,考查运算求解能力,考查化归与转化思想) 解:(Ⅰ)设公差为d ,则由11a =,6421=+d a 得1d = n a n =∴ ………5分 (Ⅱ)由(Ⅰ)得11a =,22a =,33a =,44a =而{}n b 是公比大于1的等比数列∴1b =1,2b =2,3b =4,∴2q = …8分∴122112nn n S -==--,又对任意n N *∈,使得λ≥n S 成立, 而n S 的最小值为1 ∴1≤λ ………………………………12分19.(命题意图:本题考查三角函数的定义、二倍角公式、两角差的正弦公式等三角函数的知识,考查了运算求解能力、化归与转化思想)解:(Ⅰ)1cos ,sin 2x y r r αα==-==, ………………………2分sin 22sin cos ααα=⋅12()2=-=. ………………4分(Ⅱ)因为(cos 2,sin 2),(1,0)P A θθ,所以(1cos 2,sin 2)OQ OA OP θθ=+=+, ……………………6分1()(1cos 2)22f OB OQ θθθ=⋅=-++1sin(2)62πθ=--, (9)分5,262666πππππθθ≤≤∴≤-≤,1sin(2)126πθ≤-≤ ………11分所以10()2f θ≤≤,()f θ的取值范围1[0,]2. …………………12分20.(命题意图:本题考查线线、线面、面面关系,考查线线垂直的判定、面面垂直的性质、线面平行的判定及几何体高与体积的计算,考查空间想象能力、推理论证能力、运算求解能力及分析探究问题和解决问题的能力.) 解:(Ⅰ)证明:在△AOD 中,∵3OAD π∠=,OA OD =,∴△AOD 为正三角形,又∵E 为OA 的中点,∴DE AO ⊥ …………………………………1分∵两个半圆所在平面ACB 与平面ADB 互相垂直且其交线为AB , ∴DE ⊥平面ABC . ……………………………………………3分 又CB ⊂平面ABC ,∴CB DE ⊥. ………………………… (Ⅱ)由(Ⅰ)知DE ⊥平面ABC ,∴DE 为三棱锥D BOC -的高.D 为圆周上一点,且AB 为直径, ∴2ADB π∠=,在△ABD 中,由BD AD ⊥,3BAD π∠=,2AB =, 得1AD =,DE =……………………………6分∵1111222BOCABCSS ==⨯⨯∴13C BOD D BOCBOC V V S DE --∆==⋅23=81. …………8分 (Ⅲ)存在满足题意的点G ,G 为劣弧BD 的中点. …………………9分证明如下:连接,,OG OF FG ,易知OG BD ⊥,又AD BD ⊥ ∴OG ∥AD ,∵OG ⊄平面ACD , ∴OG ∥平面ACD . …………………10分 在△ABC 中,,O F 分别为,AB BC 的中点,∴OF ∥AC ,OF ⊄平面ACD ,∴OF ∥平面ACD , ………11分 ∵OG ∩OF O =, ∴平面OFG ∥平面ACD .又FG ⊂平面OFG ,∴FG ∥平面ACD . ……………………12分21.(命题意图:本题考查曲线与方程、椭圆与圆的方程及简单的几何性质、直线与圆锥曲线的位置关系等基础知识,考查运算求解和分析探究问题能力,考查数形结合思想、化归与转化思想.)解:(Ⅰ)设(,)Px y ,则(,2)A x y代入122=+y x 得1422=+y x(第20题图)∴曲线C 的标准方程为14122=+y x ………4分 (Ⅱ)设(,)P x y ,则(,)A x my ,代入122=+y x曲线C 的方程为1222=+y m x …………6分由题意设),(00y x M ,),(11y x H 则),(00y x N --,)0,(0x G ,,N G H 三点共线,∴NG NH k k = ∴0101002x x yy x y ++=, 0100102()MN y y y k x x x +==+ ……………………7分 又,M H 在曲线C 上∴120220=+y m x ,121221=+y m x ,两式相减得:=MHk )(102100101y y m x x x x y y ++-=-- …………………………8分 ∴NM MH k k ⋅=0010210)(x y y y m x x ⋅++-=)(10210y y m xx ++-10102()y y x x +⋅+=22m -…10分又MN MH ⊥ ∴1-=⋅NM MH k k∴221m-=-又0m >且1m ≠∴m =∴存在实数m =,使得对任意0k >,都有MN MH ⊥. ……12分22.(命题意图:本题考查函数、导数等基础知识,利用导数求切线方程、函数单调区间等方法,考查运算求解、分类讨论、探究解决问题的能力,考查函数与方程、不等式思想、转化思想.) 解:(Ⅰ)2'()33(1)3f x x t x t =-++, ……………………………1分因为函数()f x 在点(2,(2))f 处的切线与直线92y x =-平行,所以'(2)9f =,2323(1)239t t ⨯-+⨯+=,1t =-,t 的值为1-. …………4分(Ⅱ)2()'()3ln 3g x f x x x =+- 2233(1)33ln 3x t x t x x =-+++-3(1)33ln t x t x =-+++ 31'()3(1)3[(1)]g x t t x x=-+=-+, ………………5分① 当 10t +≤时,即 1t ≤-时 ,'()0g x >,函数()g x 在(0,)+∞上单调递增 ;② 当 10t +>时,即 1t >-时 ,1(0,)1x t ∈+时,'()0g x >;1(,)1x t ∈+∞+时,'()0g x <,即函数()g x 在1(0,)1t +上单调递增,函数()g x 在1(,)1t +∞+上单调递减,综上,当1t ≤-时 ,函数()g x 在(0,)+∞上单调递增 ;当1t >-时 ,函数()g x 在1(0,)1t +上单调递增,函数()g x 在1(,)1t +∞+上单调递减 ……………………………………8分(Ⅲ)2'()33(1)3f x x t x t =-++,令'()0f x =得1,x x t ==①当0t ≤时,()f x 在(0,1)单调递减,在(1,2)单调递增,01x ∴∃=,使(1)f 是()f x 在[0,2]x ∈上的最小值,min 13()(1)22f x f t ==+ ……………………………………………9分②当01t <<时,()f x 在(0,)t 和(1,2)单调递增,在(,1)t 单调递减,(1)(0)01f f t ≤⎧∴⎨<<⎩,3(1)1311201t t t +⎧-++≤⎪⎨⎪<<⎩,解得103t <≤ 当103t <≤时,使(1)f 是()f x 在[0,2]x ∈上的最小值; ……………10分③当1t =时,2'()3(1)0f x x =-≥,()f x 在(0,2)单调递增,不存在0(0,2)x ∈,使得0()f x 是()f x 在[0,2]x ∈上的最小值; ………11分 ④当12t <<时,()f x 在(0,1)和(,2)t 单调递增,在(1,)t 单调递减,()(0)12f t f t ≤⎧⎨<<⎩,3223(1)311212t t t t t +⎧-++≤⎪⎨⎪<<⎩,312t t ≥⎧⎨<<⎩无实数解; ……12分 ⑤当2t ≥时,()f x 在(0,1)单调递增,在(1,2)单调递减,0(0,2)x ∴∈函数()f x 没有最小值. ……………………………13分综上,1(,]3t ∈-∞时,存在0(0,2)x ∈,使得0()f x 是()f x 在[0,2]x ∈上的最小值. ………………………14分。
2014年高考福建理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试〔福建卷〕数学〔理科〕第Ⅰ卷〔选择题 共50分〕一、选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项符合题目要求. 〔1〕【2014年福建,理1,5分】复数(32i)i z =-的共轭复数z 等于〔 〕〔A 〕23i -- 〔B 〕23i -+ 〔C 〕23i - 〔D 〕23i +【答案】C【解析】由复数()32i i 23i z =-=+,得复数z 的共轭复数23i z =-,故选C .【点评】此题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.〔2〕【2014年福建,理2,5分】某空间几何体的正视图是三角形,则该几何体不可能是〔 〕 〔A 〕圆柱 〔B 〕圆锥 〔C 〕四面体 〔D 〕三棱柱【答案】A【解析】由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形,故选A .【点评】此题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.〔3〕【2014年福建,理3,5分】等差数列{}n a 的前n 项和n S ,假设132,12a S ==,则6a =〔 〕 〔A 〕8〔B 〕10 〔C 〕12 〔D 〕14【答案】C 【解析】设等差数列{}n a 的公差为d ,由等差数列的前n 项和公式,得33232122S ⨯=⨯+=,解得2d =, 则()616125212a a d =+-=+⨯=,故选C .【点评】此题考查等差数列的通项公式和求和公式,属基础题.〔4〕【2014年福建,理4,5分】假设函数log (0,1)a y x a a =>≠且的图像如右图所示,则以下函数图象正确的选项是〔 〕〔A 〕 〔B 〕 〔C 〕 〔D 〕【答案】B【解析】由函数log a y x =的图像过点()3,1,得3a =.选项A 中的函数为13x y ⎛⎫= ⎪⎝⎭,则其函数图像不 正确;选项B 中的函数为3y x =,则其函数图像正确;选项C 中的函数为()3y x =-,则其函 数图像不正确;选项D 中的函数为()3log y x =-,则其函数图像不正确,故选B .【点评】此题考查对数函数的图象和性质,涉及幂函数的图象,属基础题.〔5〕【2014年福建,理5,5分】阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于〔 〕 〔A 〕18 〔B 〕20 〔C 〕21 〔D 〕40【答案】B【解析】输入0S =,1n =,第一次循环,0213S =++=,2n =;第二次循环,23229S =++=,3n =;第三次循环,392320S =++=,4n =,满足15S ≥,结束循环,20S =,故选B .【点评】此题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键. 〔6〕【2014年福建,理6,5分】直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的〔 〕〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充分必要条件 〔D 〕既不充分又不必要条件【答案】A【解析】由直线l 与圆O 相交,得圆心O 到直线l 的距离1d =<,解得0k ≠.当1k =时,d =,AB =OAB ∆的面积为1122=; 当1k =-时,同理可得OAB ∆的面积为12,则“1k =”是“OAB ∆的面积为12”的充分不必要条件,故选A . 【点评】此题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决此题的关键.〔7〕【2014年福建,理7,5分】已知函数()21,0cos ,0x x f x x x ⎧+>=⎨≤⎩,则以下结论正确的选项是〔 〕 〔A 〕()f x 是偶函数 〔B 〕()f x 是增函数 〔C 〕()f x 是周期函数 〔D 〕()f x 的值域为[)1,-+∞【答案】D【解析】由函数()f x 的解析式知,()12f =,()()1cos 1cos1f -=-=,()()11f f ≠-,则()f x 不是偶函数;当0x >时,令()21f x x =+,则()f x 在区间()0,+∞上是增函数,且函数值()1f x >;当0x ≤时,()cos f x x =,则()f x 在区间(),0-∞上不是单调函数,且函数值()[]1,1f x ∈-;∴函数()f x 不是单调函数,也不是周期函数,其值域为[)1,-+∞,故选D .【点评】此题考查分段函数的性质,涉及三角函数的性质,属基础题.〔8〕【2014年福建,理8,5分】在以下向量组中,可以把向量()3,2a =表示出来的是〔 〕〔A 〕12(0,0),(1,2)e e ==〔B 〕12(1,2),(5,2)e e =-=-〔C 〕12(3,5),(6,10)e e ==〔D 〕12(2,3),(2,3)e e =-=-【答案】B【解析】由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B .【点评】此题主要考查了向量的坐标运算,根据12a e e λμ=+列出方程解方程是关键,属于基础题.〔9〕【2014年福建,理9,5分】设,P Q 分别为()2262x y +-=和椭圆22110x y +=上的点,则,P Q 两点间的最大距离是〔 〕〔A 〕 〔B 〔C 〕7 〔D 〕【答案】D【解析】设圆心为点C ,则圆()2262x y +-=的圆心为()0,6C ,半径r 设点()00,Q x y 是椭圆上任意一点,则2200110x y +=,即22001010x y =-,∴CQ ,当023y =-时,CQ 有最大值,则P ,Q 两点间的最大距离为r =D . 【点评】此题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题.〔10〕【2014年福建,理10,5分】用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出假设干个球的所有取法可由()()11a b ++的展开式1a b ab +++表示出来,如:“1”表示一个球都不取.“a ”表示取出一个红球,而“ab ”则表示把红球和篮球都取出来.依此类推,以下各式中,其展开式可用来表示从5个无区别的红球.5个无区别的蓝球5个有区别的黑球中取出假设干个球,且所有的篮球都取出或都不取出的所有取法的是〔 〕 〔A 〕()()()523455111a a a a a b c +++++++ 〔B 〕()()()552345111a b b b b b c +++++++ 〔C 〕()()()523455111a b b b b b c +++++++ 〔D 〕()()()552345111a b c c c c c +++++++【答案】A【解析】从5个无区别的红球中取出假设干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为23451a a a a a +++++;从5个无区别的蓝球中取出假设干个球,由所有的蓝球都取出或都不取出,得其所有取法为51b +;从5个有区别的黑球中取出假设干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为122334455555551C c C c C c C c C c +++++=()51c +,根据分步乘法计数原理得,适合要求的取法是()()()523455111a a a a a b c +++++++,故选A . 【点评】此题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.第Ⅱ卷〔非选择题 共100分〕二、填空题:本大题共5小题,每题4分,共20分.把答案填在答题卡的相应位置.〔11〕【2014年福建,理11,4分】假设变量,x y 满足约束条件102800x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则3z x y =+的最小值为 . 【答案】1 【解析】作出不等式组表示的平面区域(如下图),把3z x y =+变形为3y x z =-+,则当直线3y x z =-+经过点()0,1时,z 最小,将点()0,1代入3z x y =+,得min 1z =,即3z x y =+的最小值为1.【点评】此题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.〔12〕【2014年福建,理12,4分】在ABC ∆中,60,4,23A AC BC =︒==,则ABC ∆的面积等于 . 【答案】23【解析】由sin sin BC AC A B =,得4sin 60sin 123B ︒==,∴90B =︒,()18030C A B =︒-+=︒, 则11sin 423sin302322ABC S AC BC C ∆=⋅⋅⋅=⨯⨯︒=,即ABC ∆的面积等于23. 【点评】此题着重考查了给出三角形的两边和其中一边的对角,求它的面积.正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题.〔13〕【2014年福建,理13,4分】要制作一个容器为43m ,高为1m 的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 〔单位:元〕.【答案】160【解析】设底面矩形的一边长为x ,由容器的容积为4m 3,高为1m 得,另一边长为4xm .记容器的总造价为y 元,则4444202110802080202?160y x x x x x x ⎛⎫⎛⎫=⨯++⨯⨯=++≥+⨯= ⎪ ⎪⎝⎭⎝⎭(元),当且仅当4x x =,即2x =时,等号成立.因此,当2x =时,y 取得最小值160元,即容器的最低总造价为160元.【点评】此题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题.〔14〕【2014年福建,理14,4分】如图,在边长为e 〔e 为自然对数的底数〕的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为 .【答案】22e【解析】因为函数ln y x =的图像与函数x y e =的图像关于正方形的对角线所在直线y x =对称,则图中的两块阴影部分的面积为112ln d 2(ln )2[(ln )(ln11)]2ee S x x x x x e e e ==-=---=⎰, 故根据几何概型的概率公式得,该粒黄豆落到阴影部分的概率22P e =. 【点评】此题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.〔15〕【2014年福建,理15,4分】假设集合{,,,}{1,2,3,4}a b c d =,且以下四个关系:①1a =;②1b ≠;③2c =;④4d ≠有且只有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是 __.【答案】6【解析】假设①正确,则②③④不正确,可得b ≠1不正确,即b =1,与a =1矛盾,故①不正确;假设②正确,则①③④不正确,由④不正确,得4d =;由1a ≠,1b ≠,2c ≠,得满足条件的有序数组为3a =,2b =,1c =,4d =或2a =,3b =,1c =,4d =.假设③正确,则①②④不正确,由④不正确,得4d =;由②不正确,得1b =,则满足条件的有序数组为3a =,1b =,2c =,4d =;假设④正确,则①②③不正确,由②不正确,得1b =,由1a ≠,2c ≠,4d ≠,得满足条件的有序数组为2a =,1b =,4c =,3d =或3a =,1b =,4c =,2d =或4a =,1b =,3c =,2d =;综上所述,满足条件的有序数组的个数为6.【点评】此题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本大题共6题,共80分.解答应写出文字说明,演算步骤或证明过程.〔16〕【2014年福建,理16,13分】已知函数1()cos (sin cos )2f x x x x =+-. 〔1〕假设02πα<<,且2sin 2α=,求()f α的值; 〔2〕求函数()f x 的最小正周期及单调递增区间. 解:解法一: 〔1〕因为02πα<<, 2sin 2α=,所以2cos 2α=.所以22211()()22222f α=+-=. 〔2〕2111cos 21112()sin cos cos sin 2sin 2cos 2sin(2)22222224x f x x x x x x x x π+=+-=+-=+=+,22T ππ∴==. 由222,242k x k k Z πππππ-≤+≤+∈,得3,88k x k k Z ππππ-≤≤+∈. 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈. 解法二:2111cos 21112()sin cos cos sin 2sin 2cos 2sin(2)22222224x f x x x x x x x x π+=+-=+-=+=+, 〔1〕因为02πα<<,2sin 2α=,所以4πα=,从而2231()sin(2)sin 24242f ππαα=+==. 〔2〕22T ππ==,由222,242k x k k Z πππππ-≤+≤+∈得3,88k x k k Z ππππ-≤≤+∈. 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈. 【点评】此题主要考查了三角函数恒等变换的应用.考查了学生对基础知识的综合运用.〔17〕【2014年福建,理17,13分】在平行四边形ABCD 中,1AB BD CD ===,,AB BD CD BD ⊥⊥.将ABD∆沿BD 折起,使得平面ABD ⊥平面BCD ,如图.〔1〕求证:AB CD ⊥;〔2〕假设M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.解:〔1〕因为ABD ⊥平面BCD ,平面ABD 平面,BCD BD AB =⊂平面,ABD AB BD ⊥,所以AB ⊥平面.BCD 又CD ⊂平面BCD ,所以AB CD ⊥.〔2〕过点B 在平面BCD 内作BE BD ⊥,如图.由〔1〕知AB ⊥平面,BCD BE ⊂平面,BCD BD ⊂平面BCD ,所以,AB BE AB BD ⊥⊥.以B 为坐标原点,分别以,,BE BD BA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得11(0,0,0),(1,1,0),(0,1,0),(0,0,1),(0,,)22B C D A M .则11(1,1,0),(0,,),(0,1,1)22BC BM AD ===-. 设平面MBC 的法向量000(,,)n x y z =.则00n BC n BM ⎧⋅=⎪⎨⋅=⎪⎩,即00000102x y y z +=⎧⎪⎨+=⎪⎩. 取01z =,得平面MBC 的一个法向量(1,1,1)n =-.设直线AD 与平面MBC 所成角为θ,则6sin cos ,3n ADn AD n AD θ⋅=<>==,即直线AD 与平面MBC 所成角的正弦值为63.【点评】此题综合考查了面面垂直的性质定理、线面角的计算公式sin cos ,n AD n AD n AD θ⋅==⋅,考查了推理能力和空间想象能力,属于中档题. 〔18〕【2014年福建,理18,13分】为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.〔1〕假设袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;〔2〕商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾 客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解:〔1〕设顾客所获的奖励为X .①依题意,得1113241(60)2C C P X C ===.即顾客所获得的奖励额为60元的概率为12. ②依题意,得X 的所有可能取值为20,60.232411(60),(20)22C P X P X C =====. 即X 的分布列为X20 60 P0.5 0.5 所以顾客所获得的奖励额的期望为()200.5600.540E X =⨯+⨯=〔元〕. 〔2〕根据商场的预算,每个顾客的平均奖励为60元.所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不 可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可 能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同 理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励为1X ,则1X 的分布列为:1X 20 60 100P16 23 161X 的期望为1121()206010060636E X =⨯+⨯+⨯=, 1X 的方差为22211211600()(2060)(6060)(10060)6363D X =-⨯+-⨯+-⨯=. 对于方案2,即方案(20,20,40,40),设顾客所获的奖励为2X ,则2X 的分布列为: 2X 40 60 80P16 23 162X 的期望为2121()40608060636E X =⨯+⨯+⨯=, 2X 的方差为2222121400()(4060)(6060)(8060)6363D X =-⨯+-⨯+-⨯=. 由于两种方案的奖励额都符合要求,但方案2奖励的方差比方案1的小,所以应该选择方案2.【点评】此题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想.〔19〕【2014年福建,理19,13分】已知双曲线2222:1(0,0)x y E a b a b -=>>的两条渐近线分别为12:2,:2l y x l y x ==-.〔1〕求双曲线E 的离心率;〔2〕如图,O 为坐标原点,动直线l 分别交直线12,l l 于,A B 两点〔,A B 分别在第一,四象限〕,且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?假设存在,求出双曲线E 的方程;假设不存在,说明理由.解:〔1〕因为双曲线E 的渐近线分别为和2,2y x y x ==-.所以222,2,5b c a c a a a -=∴=∴=, 从而双曲线E 的离心率5e =. 〔2〕由〔1〕知,双曲线E 的方程为222214x y a a-=.设直线l 与x 轴相交于点C .当l x ⊥轴时,假设直线l 与双曲线E 有且只有一个公共点,则,4OC a AB a ==,又因为OAB ∆的面积为8,所以118,48,222OC AB a a a =∴⋅=∴=.此时双曲线E 的方程为221416x y -=. 假设存在满足条件的双曲线E ,则E 的方程只能为221416x y -=. 以下证明:当直线l 不与x 轴垂直时,双曲线E :221416x y -=也满足条件. 设直线l 的方程为y kx m =+,依题意,得2k >或2k <-.则(,0)m C k-,记1122(,),(,)A x y B x y . 由2y x y kx m =⎧⎨=+⎩,得122m y k =-,同理得222m y k =+.由1212OAB S OC y y ∆=-得:1228222m m m k k k -⋅-=-+即222444(4)m k k =-=-.由221416y kx m x y =+⎧⎪⎨-=⎪⎩得,222(4)2160k x kmx m ----=.因为240k -<, 所以22222244(4)(16)16(416)k m k m k m ∆=+-+=---,又因为224(4)m k =-.所以0∆=,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为221416x y -=. 【点评】此题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想.〔20〕【2014年福建,理20,14分】已知函数()x f x e ax =-〔a 为常数〕的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.〔1〕求a 的值及函数()f x 的极值;〔2〕证明:当0x >时,2x x e <;〔3〕证明:对任意给定的正数c ,总存在0x ,使得当()0x x ∈+∞,,恒有2x x ce <. 解:解法一:〔1〕由()x f x e ax =-,得'()x f x e a =-.又'(0)11f a =-=-,得2a =.所以()2,'()2x x f x e x f x e =-=-.令'()0f x =,得ln 2x =.当ln 2x <时, '()0,()f x f x <单调递减;当ln 2x >时,'()0,()f x f x >单调递 增.所以当ln 2x =时,()f x 取得极小值,且极小值为ln 2(ln 2)2ln 22ln 4,()f e f x =-=-无极大值.〔2〕令2()x g x e x =-,则'()2x g x e x =-.由〔1〕得'()()(ln 2)0g x f x f =≥>,故()g x 在R 上单调递增,(0)10g =>,因此,当0x >时,()(0)0g x g >>,即2x x e <.〔3〕①假设1c ≥,则x x e ce ≤.又由〔2〕知,当0x >时,2x x e <.所以当0x >时,2x x ce <.取00x =,当0(,)x x ∈+∞时,恒有22x cx <.②假设01c <<,令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立.而要使2x e kx >成立,则只 要 2ln()x kx >,只要2ln ln x x k >+成立.令()2ln ln h x x x k =--,则22'()1x h x x x-=-=.所以当2x > 时, '()0,()h x h x >在(2,)+∞内单调递增.取01616x k =>,所以()h x 在0(,)x +∞内单调递增.又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+.易知ln ,ln 2,50k k k k >>>.所以0()0h x >.即存在016x c=,当0(,)x x ∈+∞时,恒有2x x ce <. 综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2x x ce <.解法二:〔1〕同解法一.〔2〕同解法一.〔3〕对任意给定的正数c,取o x =,由〔2〕知,当0x >时,2x e x >, 所以2222,()()22x x x x x e e e =>,当o x x >时,222241()()()222x x x x e x c c>>= 因此,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2x x ce <.【点评】此题主要考查基本初等函数的导数、导数的运算及导数的应用、全称量词、存在量词等基础知识,考查运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、划归与转化思想、分类与整合思想、特殊与一般思想.属难题.此题设有三个选考题,每题7分,请考生任选2题作答.总分值14分,如果多做,则按所做的前两题计分,作答时,先用2B 铅笔在答题卡上所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.〔21〕【2014年福建,理21〔1〕,7分】〔选修4-2:矩阵与变换〕已知矩阵A 的逆矩阵12112-⎛⎫= ⎪⎝⎭A . 〔1〕求矩阵A ;〔2〕求矩阵1-A 的特征值以及属于每个特征值的一个特征向量.解:〔1〕因为矩阵A 是矩阵1-A 的逆矩阵,且1221130-=⨯-⨯=≠A ,所以232113 2121333⎛⎫- ⎪-⎛⎫ ==⎪ ⎪- ⎪⎝⎭-⎪ ⎭⎝A . 〔2〕矩阵1-A 的特征多项式为221() 43(1)(3)12f λλλλλλλ--==-+=----,令()0f λ=,得矩阵1-A 的特 征值为11λ=或23λ=,所以111ξ⎛⎫= ⎪-⎝⎭是矩阵1-A 的属于特征值11λ=的一个特征向量.211ξ⎛⎫= ⎪⎝⎭是矩阵 1-A 的属于特征值23λ=的一个特征向量.【点评】此题考查逆变换与逆矩阵,考查矩阵特征值与特征向量的计算等基础知识,属于基础题.〔21〕【2014年福建,理21〔2〕,7分】〔选修4-4:坐标系与参数方程〕已知直线l 的参数方程为24x a t y t=-⎧⎨=-⎩,〔t 为参数〕,圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩,〔θ为参数〕. 〔1〕求直线l 和圆C 的普通方程;〔2〕假设直线l 与圆C 有公共点,求实数a 的取值范围.解:〔1〕直线l 的普通方程为220x y a --=.圆C 的普通方程为2216x y +=.〔2〕因为直线l 与圆有公共点,故圆C 的圆心到直线l的距离4d =≤,解得a -≤≤【点评】熟练掌握点到直线的距离公式和直线与圆有公共点的充要条件是解题的关键.〔21〕【2014年福建,理21〔3〕,7分】〔选修4-5:不等式选讲〕已知定义在R 上的函数()12f x x x =++-的最小值为a .〔1〕求a 的值;〔2〕假设p q r ,,为正实数,且p q r a ++=,求证:2223p q r ++≥.解:〔1〕因为12(1)(2)3x x x x ++-≥+--=,当且仅当12x -≤≤时,等号成立,所以()f x 的最小值等于3,即3a =.〔2〕由〔1〕知3p q r ++=,又因为,,p q r 是正数,所以22222222()(111)(111)()9p q r p q r p q r ++++≥⨯+⨯+⨯=++=,即2223p q r ++≥.【点评】此题主要考查绝对值不等式、柯西不等式等基础知识,考查运算求解能力,考查化归与转化思想.。
2014年福建省高考数学试卷及解析(理科)

2014年福建省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分、在每个题给出的四个选项中,只有一项是符合要求的、1、(5分)复数z=(3﹣2i)i的共轭复数等于()A、﹣2﹣3iB、﹣2+3iC、2﹣3iD、2+3i2、(5分)某空间几何体的正视图是三角形,则该几何体不可能是()A、圆柱B、圆锥C、四面体D、三棱柱3、(5分)等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A、8B、10C、12D、144、(5分)若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A、B、C、D、5、(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A、18B、20C、21D、406、(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB 的面积为”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分又不必要条件7、(5分)已知函数f(x)=,则下列结论正确的是()A、f(x)是偶函数B、f(x)是增函数C、f(x)是周期函数D、f(x)的值域为[﹣1,+∞)8、(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A、=(0,0),=(1,2)B、=(﹣1,2),=(5,﹣2)C、=(3,5),=(6,10)D、=(2,﹣3),=(﹣2,3)9、(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q 两点间的最大距离是()A、5B、+C、7+D、610、(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来、以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A、(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B、(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C、(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D、(1+a5)(1+b)5(1+c+c2+c3+c4+c5)二、填空题:本大题共5小题,每小题4分,共20分、把答案填在答题卡的相应位置11、(4分)若变量x,y满足约束条件,则z=3x+y的最小值为、12、(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于、13、(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(单位:元)14、(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为、15、(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是、三、解答题:本大题共4小题,共80分、解答应写出文字说明,证明过程或演算步骤16、(13分)已知函数f(x)=cosx(sinx+cosx)﹣、(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间、17、(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD 沿BD折起,使得平面ABD⊥平面BCD,如图、(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值、18、(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额、(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成、为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由、19、(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x、(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由、在21-23题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修4-2:矩阵与变换20、(14分)已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1、(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<ce x、21、(7分)已知矩阵A的逆矩阵A﹣1=()、(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量、五、选修4-4:极坐标与参数方程22、(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数)、(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围、六、选修4-5:不等式选讲23、已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a、(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3、参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分、在每个题给出的四个选项中,只有一项是符合要求的、1、(5分)复数z=(3﹣2i)i的共轭复数等于()A、﹣2﹣3iB、﹣2+3iC、2﹣3iD、2+3i分析:直接由复数代数形式的乘法运算化简z,则其共轭可求、解答:解:∵z=(3﹣2i)i=2+3i,∴、故选:C、点评:本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题、2、(5分)某空间几何体的正视图是三角形,则该几何体不可能是()A、圆柱B、圆锥C、四面体D、三棱柱分析:直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可、解答:解:圆柱的正视图为矩形,故选:A、点评:本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题、3、(5分)等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A、8B、10C、12D、14分析:由等差数列的性质和已知可得a2,进而可得公差,可得a6解答:解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C、点评:本题考查等差数列的通项公式和求和公式,属基础题、4、(5分)若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A、B、C、D、分析:由题意可得a=3,由基本初等函数的图象和性质逐个选项验证即可、解答:解:由题意可知图象过(3,1),故有1=log a3,解得a=3,选项A,y=a﹣x=3﹣x=()x单调递减,故错误;选项B,y=x3,由幂函数的知识可知正确;选项C,y=(﹣x)3=﹣x3,其图象应与B关于x轴对称,故错误;选项D,y=log a(﹣x)=log3(﹣x),当x=﹣3时,y=1,但图象明显当x=﹣3时,y=﹣1,故错误、故选:B、点评:本题考查对数函数的图象和性质,涉及幂函数的图象,属基础题、5、(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A、18B、20C、21D、40分析:算法的功能是求S=21+22+…+2n+1+2+…+n的值,计算满足条件的S值,可得答案、解答:解:由程序框图知:算法的功能是求S=21+22+…+2n+1+2+…+n的值,∵S=21+22+1+2=2+4+1+2=9<15,S=21+22+23+1+2+3=2+4+8+1+2+3=20≥15、∴输出S=20、故选:B、点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键、6、(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB 的面积为”的()A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分又不必要条件分析:根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论、解答:解:若直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=,d=,则△OAB的面积为×=成立,即充分性成立、若△OAB的面积为,则S==×2×==,即k2+1=2|k|,即k2﹣2|k|+1=0,则(|k|﹣1)2=0,即|k|=1,解得k=±1,则k=1不成立,即必要性不成立、故“k=1”是“△OAB的面积为”的充分不必要条件、故选:A、点评:本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键、7、(5分)已知函数f(x)=,则下列结论正确的是()A、f(x)是偶函数B、f(x)是增函数C、f(x)是周期函数D、f(x)的值域为[﹣1,+∞)分析:由三角函数和二次函数的性质,分别对各个选项判断即可、解答:解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确、故选:D、点评:本题考查分段函数的性质,涉及三角函数的性质,属基础题、8、(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A、=(0,0),=(1,2)B、=(﹣1,2),=(5,﹣2)C、=(3,5),=(6,10)D、=(2,﹣3),=(﹣2,3)分析:根据向量的坐标运算,,计算判别即可、解答:解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能、选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能、选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能、故选:B、点评:本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题、9、(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q 两点间的最大距离是()A、5B、+C、7+D、6分析:求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离、解答:解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6、故选:D、点评:本题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题、10、(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来、以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A、(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B、(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C、(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D、(1+a5)(1+b)5(1+c+c2+c3+c4+c5)分析:根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决、解答:解:从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a+a2+a3+a4+a5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+c+c2+c3+c4+c5=(1+c)5,根据分步乘法计数原理得,适合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5、故选:A、点评:本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题、二、填空题:本大题共5小题,每小题4分,共20分、把答案填在答题卡的相应位置11、(4分)若变量x,y满足约束条件,则z=3x+y的最小值为1、分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值、解答:解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A(0,1)时,直线y=﹣3x+z的截距最小,此时z最小、此时z的最小值为z=0×3+1=1,故答案为:1点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法、12、(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于2、分析:利用三角形中的正弦定理求出角B,再利用三角形的面积公式求出△ABC 的面积、解答:解:∵△ABC中,A=60°,AC=4,BC=2,由正弦定理得:,∴,解得sinB=1,∴B=90°,C=30°,∴△ABC的面积=、故答案为:、点评:本题着重考查了给出三角形的两边和其中一边的对角,求它的面积、正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题、13、(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元)分析:此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求、解答:解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,故当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故答案为:160点评:本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题、14、(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为、分析:利用定积分计算阴影部分的面积,利用几何概型的概率公式求出概率、解答:解:由题意,y=lnx与y=e x关于y=x对称,∴阴影部分的面积为2(e﹣e x)dx=2(ex﹣e x)=2,∵边长为e(e为自然对数的底数)的正方形的面积为e2,∴落到阴影部分的概率为、故答案为:、点评:本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到、15、(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是6、分析:利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论、解答:解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个、点评:本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键、三、解答题:本大题共4小题,共80分、解答应写出文字说明,证明过程或演算步骤16、(13分)已知函数f(x)=cosx(sinx+cosx)﹣、(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间、分析:(1)根据题意,利用sinα求出cosα的值,再计算f(α)的值;(2)化简函数f(x),求出f(x)的最小正周期与单调增区间即可、解答:解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z、点评:本题考查了三角函数的化简以及图象与性质的应用问题,是基础题目、17、(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD 沿BD折起,使得平面ABD⊥平面BCD,如图、(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值、分析:(1)利用面面垂直的性质定理即可得出;(2)建立如图所示的空间直角坐标系、设直线AD与平面MBC所成角为θ,利用线面角的计算公式sinθ=|cos|=即可得出、解答:(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD、(2)解:建立如图所示的空间直角坐标系、∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M、∴=(0,1,﹣1),=(1,1,0),=、设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1、∴=(1,﹣1,1)、设直线AD与平面MBC所成角为θ、则sinθ=|cos|===、点评:本题综合考查了面面垂直的性质定理、线面角的计算公式sinθ=|cos|=,考查了推理能力和空间想象能力,属于中档题、18、(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额、(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成、为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由、分析:(1)根据古典概型的概率计算公式计算顾客所获的奖励额为60元的概率,依题意得X得所有可能取值为20,60,分别求出P(X=60),P(X=20),画出顾客所获的奖励额的分布列求出数学期望;(2)先讨论,寻找期望为60元的方案,找到(10,10,50,50),(20,20,40,40)两种方案,分别求出数学期望和方差,然后做比较,问题得以解决、解答:解:(1)设顾客所获取的奖励额为X,①依题意,得P(X=60)=,即顾客所获得奖励额为60元的概率为,②依题意得X得所有可能取值为20,60,P(X=60)=,P(X=20)=,即X的分布列为X6020P所以这位顾客所获的奖励额的数学期望为E(X)=20×+60×=40(2)根据商场的预算,每个顾客的平均奖励额为60元,所以先寻找期望为60元的可能方案、对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以数学期望不可能为60元,如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元的组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50)设顾客所获取的奖励额为X1,则X1的分布列为X16020100PX1的数学期望为E(X1)=、X1的方差D(X1)==,对于方案2,即方案(20,20,40,40)设顾客所获取的奖励额为X2,则X2的分布列为X2406080PX2的数学期望为E(X2)==60,X2的方差D(X2)=差D(X1)=、由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2、点评:本题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想、19、(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x、(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由、分析:(1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;(2)由(1)知,双曲线E的方程为﹣=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为﹣=1、当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方=|OC|•|y1﹣y2|=8可证得:双曲线E的方程为﹣=1,程联立,利用由S△OAB从而可得答案、解答:解:(1)因为双曲线E的渐近线分别为l1:y=2x,l2:y=﹣2x,所以=2、所以=2、故c=a,从而双曲线E的离心率e==、(2)由(1)知,双曲线E的方程为﹣=1、设直线l与x轴相交于点C,当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,所以|OC|•|AB|=8,因此a•4a=8,解得a=2,此时双曲线E的方程为﹣=1、以下证明:当直线l不与x轴垂直时,双曲线E的方程为﹣=1也满足条件、设直线l的方程为y=kx+m,依题意,得k>2或k<﹣2;则C(﹣,0),记A(x1,y1),B(x2,y2),由得y1=,同理得y2=,=|OC|•|y1﹣y2|得:由S△OAB|﹣|•|﹣|=8,即m2=4|4﹣k2|=4(k2﹣4)、由得:(4﹣k2)x2﹣2kmx﹣m2﹣16=0,因为4﹣k2<0,所以△=4k2m2+4(4﹣k2)(m2+16)=﹣16(4k2﹣m2﹣16),又因为m2=4(k2﹣4),所以△=0,即直线l与双曲线E有且只有一个公共点、因此,存在总与直线l有且只有一个公共点的双曲线E,且E的方程为﹣=1、点评:本题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想、在21-23题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修4-2:矩阵与变换20、(14分)已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1、(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<ce x、分析:(1)利用导数的几何意义求得a,再利用导数的符号变化可求得函数的极值;(2)构造函数g(x)=e x﹣x2,求出导数,利用(1)问结论可得到函数的符号,从而判断g(x)的单调性,即可得出结论;(3)首先可将要证明的不等式变形为x2<e x,进而发现当x>时,x2<x3,因此问题转化为证明当x∈(0,+∞)时,恒有x3<e x、解答:解:(1)由f(x)=e x﹣ax,得f′(x)=e x﹣a、又f′(0)=1﹣a=﹣1,解得a=2,∴f(x)=e x﹣2x,f′(x)=e x﹣2、由f′(x)=0,得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=e ln2﹣2ln2=2﹣ln4、f(x)无极大值、(2)令g(x)=e x﹣x2,则g′(x)=e x﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=e ln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<e x;(3)首先证明当x∈(0,+∞)时,恒有x3<e x、证明如下:令h(x)=x3﹣e x,则h′(x)=x2﹣e x、由(2)知,当x>0时,x2<e x,从而h′(x)<0,h(x)在(0,+∞)单调递减,所以h(x)<h(0)=﹣1<0,即x3<e x,取x0=,当x>x0时,有x2<x3<e x、因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<ce x、点评:该题主要考查导数的几何意义、导数的运算及导数的应用等基础知识,考查学生的运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、化归与转化思想、属难题、21、(7分)已知矩阵A的逆矩阵A﹣1=()、(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量、分析:(1)利用AA﹣1=E,建立方程组,即可求矩阵A;(2)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量、解答:解:(1)设A=,则由AA﹣1=E得=,解得a=,b=﹣,c=﹣,d=,所以A=;(2)矩阵A﹣1的特征多项式为f(λ)==(λ﹣2)2﹣1,令f(λ)=(λ﹣2)2﹣1=0,可求得特征值为λ1=1,λ2=3,设λ1=1对应的一个特征向量为α=,则由λ1α=Mα,得x+y=0得x=﹣y,可令x=1,则y=﹣1,所以矩阵M的一个特征值λ1=1对应的一个特征向量为,同理可得矩阵M的一个特征值λ2=3对应的一个特征向量为、点评:本题考查逆变换与逆矩阵,考查矩阵特征值与特征向量的计算等基础知识,属于基础题、五、选修4-4:极坐标与参数方程22、(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数)、(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围、分析:(1)消去参数,把直线与圆的参数方程化为普通方程;(2)求出圆心到直线的距离d,再根据直线l与圆C有公共点⇔d≤r即可求出、解答:解:(1)直线l的参数方程为,消去t可得2x﹣y﹣2a=0;圆C的参数方程为,两式平方相加可得x2+y2=16;(2)圆心C(0,0),半径r=4、由点到直线的距离公式可得圆心C(0,0)到直线L的距离d=、∵直线L与圆C有公共点,∴d≤4,即≤4,解得﹣2≤a≤2、点评:熟练掌握点到直线的距离公式和直线与圆有公共点的充要条件是解题的关键、六、选修4-5:不等式选讲23、已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a、(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3、分析:(1)由绝对值不等式|a|+|b|≥|a﹣b|,当且仅当ab≤0,取等号;(2)由柯西不等式:(a2+b2+c2)(d2+e2+f2)≥(ad+be+cf)2,即可证得、解答:(1)解:∵|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,当且仅当﹣1≤x≤2时,等号成立,∴f(x)的最小值为3,即a=3;(2)证明:由(1)知,p+q+r=3,又p,q,r为正实数,∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=32=9,即p2+q2+r2≥3、点评:本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算求解能力,考查化归与转化思想、。
【2014龙岩市5月质检】福建省龙岩市一级达标学校联盟2014届高三毕业班5月联合考试理科数学试题

数学(理科)参考答案及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并指出了一种或者几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响程度决定后续部分的给分,但不得超过该部分正确解答应给分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分. 1-5 DDCAD 6-10 ABAAB二、填空题:本大题考查基础知识和基本运算.每小题4分,满分20分11.-1 12.1或127 13.-1或0 14.2 15.34m ≤≤三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.16.本小题主要考查二倍角公式、降幂公式、向量的数量积、递推数列、数列求和等基础知识,考查运算求解能力、化归与转化思想,函数与方程思想.满分13分. 解:(Ⅰ)(4,1)m x = ,2(cos (),tan 2)8n παα=+, ()f x m n =⋅2()4cos ()tan 28f x x παα∴=++()2(1cos(2))tan 24f x x παα∴=+++ ………………………………4分由1)12(1)12(2tan 1tan 22tan 22=---=-=ααa α 是锐角, 42πα=∴cos(2)04πα∴+= 12)(+=∴x x f . ………………………7分(Ⅱ))(,111n n a f a a ==+ ,121+=∴+n n a a , ………………………9分)1(211+=+∴+n n a a , 2111=+++n n a a , {}1+∴n a 是首项为11+12a ==,公比2=q 的等比数列,12-=∴n n a …11分n n S n n n --=---=+2212)12(21. …………………………………13分17.本小题主要考查茎叶图、样本中位数、古典概型,独立重复试验等基础知识,考查数据处理能力、运算求解能力及应用意识,考查必然与或然思想等.满分13分. 解:(Ⅰ)由题意可知4524440=++x 解得6=x . ……………………3分(Ⅱ)没有一天空气质量超标的概率为37310724C C =至少有一天空气质量超标的概率为71712424-=. …………………7分(Ⅲ)3,2,1,0=ξ ………………………8分12527)53()0(3===ξP 12554)53)(52()1(213===C P ξ12536)53()52()2(223===C P ξ 1258)52()3(3===ξPξ∴的分布列为P 0123ξ1252712554125361258∴数学期望 2754368601231251251251255E ξ=⨯+⨯+⨯+⨯=. …………13分 18.本小题主要考查直线与直线、平面与平面的位置关系、简单几何体的体积、二面角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想等.满分13分.解:(Ⅰ)由ABC ADC ≅可知AC 既是等腰ABD ∆也是等边BCD ∆的角平分线,也是高,所以AO ⊥BD ,CO ⊥BD …………………………2分由于在平面图形中,AO ⊥BD ,CO ⊥BD ,折起后这种关系不变,且AO CO O ⋂= 所以折起后BD ⊥平面AOC , ……………………………4分 又AC ⊂平面AOC ,故BD ⊥AC ,即不论(0,)θπ在内为何值,均有AC BD ⊥. …………………5分 (Ⅱ)由(Ⅰ)知BD ⊥平面AOC ,又BD ⊂平面BCD ,所以平面AOC ⊥平面BCD过点A 作AE ⊥OC 于点E ,因为平面AOC ⋂平面BCD OC =, 所以AE ⊥平面BCD ,即AE 是三棱锥A BCD -的高,在Rt AOE ∆中,sin 2sin AE AO θθ==,1442BCD S ∆=⨯⨯故三棱锥A BCD -的体积为12sin 3V θθ=⨯=,当三棱锥A BCD -sin 1θ=,此时点E 与点O 重合.…9分解法一:由上面证明易得CO ⊥平面ABD ,过O 点作OF ⊥AD 于点F ,连接CF , 因为AD ⊂平面ABD ,所以AD ⊥OC ,又OF ⋂OC =O , 所以AD ⊥平面OFC ,所以AD ⊥CF ,则∠OFC 就是二面角B AD C --的平面角. ………11分在Rt OFC ∆中,OF OC =CF所以cos OF OFC CF ===∠所以二面角B AD C --的余弦值为7. …………………………13分 解法二:根据上面的证明过程可知OC 、OD 、OA 两两垂直,则分别以OC 、OD 、OA 所在的直线为,,x y z 轴建立如图所示的空间直角坐标系,则C (0,0),D (0,2,0),A (0,0,2),(23,2,0),(0,2,2)CD AD =-=-,设平面ACD 的法向量为(,,)m x y z =则0203,(3,3,3)22003x m CD y y m y z m AD z ⎧=⎧⎧=⎪-+=⎪⎪⇒⇒==⎨⎨⎨-=⎪=⎪⎩⎪⎩=⎩取. …………11分 又平面ABD 的一个法向量(1,0,0)n=, 所以7cos ,7||||m n m n m n <>==显然所求角是锐二面角,所以二面角B AD C --的余弦值为7. ………13分 19.本小题主要考查椭圆标准方程与性质、直线与圆锥曲线位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、特殊与一般思想等.满分13分. 解:(Ⅰ) )1,0(),1,0(-B A ,)21,(m M ∴13(,),BM (,)22AM m m =-=. ………2分又BM AM ⊥∴0=⋅即432=m ,解得23±=m . ……5分 (Ⅱ)直线AM 的斜率为m k 211-=,直线BM 斜率为m k 232=.∴直线AM 的方程为121+-=x m y ,直线BM 的方程为123-=x my .…6分 由⎪⎪⎩⎪⎪⎨⎧+-==+,121.1422x m y y x 得04)1(22=-+mx x m ,14,0221+==∴m m x x .)11,14(222+-+∴m m m m C ……………………………………8分由⎪⎪⎩⎪⎪⎨⎧-==+1231422x m y y x 得012)9(22=-+mx x m , 912,0221+==∴m m x x )99,912(222+-+∴m m m m D ……………………10分据已知,3,02≠≠m m .∴直线CD 的斜率m m m m m m m m m m m m m m k 43)3(4)3)(3(9121499112222222222+-=---+=+-++--+-=∴直线CD 的方程为)14(43112222+-+-=+--m mx m m m m y . ………12分 令0=x ,得,2=y ∴CD 与y 轴交点的位置与m 无关. …………13分(第18题图)20.本小题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等.满分14分. 解:(Ⅰ)2()33(1)33(1)()f x x t x t x x t '=-++=--,又()f x 在(0,2)无极值 1t ∴= …………………………………………3分(Ⅱ)①当0t ≤时,()f x 在(0,1)单调递减,在(1,2)单调递增,()f x ∴在[]0,2的最小值为13(1)22f t =+②当01t <<时,()f x 在(0,)t 单调递增,在(,1)t 单调递减,在(1,2)单调递增, (1)(0)f f ∴≤或()(2)f t f ≥由()(2)f t f ≥得:3234t t -+≥在01t <<时无解(1)(0)01f f t ≤⎧∴⎨<<⎩ 103t ∴<≤ ③当1t =时,不合题意;④当12t <<时,()f x 在(0,1)单调递增,在(1,)t 单调递减,在(,2)t 单调递增, (1)(2)12f f t ≥⎧∴⎨<<⎩或()(0)12f t f t ≤⎧⎨<<⎩ 即1332212t t ⎧+≥⎪⎨⎪<<⎩或3213112212t t t ⎧-++≤⎪⎨⎪<<⎩ 523t ∴≤<或3t ≤(舍去) ⑤当2t ≥时,()f x 在(0,1)单调递增,在(1,2)单调递减,max 13()(1)22f x f t ∴==+ 综上:15,,33t ⎛⎤⎡⎫∈-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭时,存在0(0,2)x ∈,使得0()f x 是()f x 在[]0,2上的最值. …………………………………………………8分 (Ⅲ)当1t =时,若2()552x f x xe x x m ≤-+-+对任意[)0,x ∈+∞恒成立即322331552xx x x xe x x m -++≤-+-+对任意[)0,x ∈+∞恒成立32221x m xe x x x ∴≤--++, 即2(22)1x m x e x x ≤--++对任意[)0,x ∈+∞恒成立令2()22xg x e x x =--+,[)0,x ∈+∞()22x g x e x '=--,若000()220x g x e x '=--=,即0022x e x =+则002x <<022min 000000()()222222x g x g x e x x x x x ∴==--+=+--+2040x =-> ()0xg x ∴≥,()11xg x ∴+≥,1m ∴≤. ……………………14分21.(1)本小题主要考查矩阵的运算等基础知识,考查运算求解能力,考查化归与转化思想.满分7分.(Ⅰ)设矩阵,a b B c d ⎛⎫=⎪⎝⎭则由 1A PBP -=得AP PB = 即531313,201212a b c d --⎛⎫⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭⎝⎭整理得32392226a cb d ac bd -+=-⎧⎪-+=⎪⎨-=⎪⎪-=-⎩ 解得2,0,0,3a b c d ====,即20.03B ⎛⎫=⎪⎝⎭………………4分 (Ⅱ)由(1)知2202040,030309B ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以324020800903027B B B ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. ……………………7分 (2)本小题主要考查参数方程、极坐标方程等基础知识,考查运算求解能力,考查数形结合思想.满分7分. 解:(Ⅰ)曲线C 的普通方程为:22(1)1x y -+=直线l 的直角坐标方程:y x =. ……………………3分(Ⅱ)圆心(1,0)到直线l的距离d =, 则圆上的点到直线的最大距离为d r +=+12||AB == 所以ABM ∆面积的最大值为11(1)222ABM S ∆=+=.……7分 (3)本小题主要考查绝对值不等式等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想.满分7分.解:(Ⅰ)当1a =时,得211x -≥, 即112x -≥, 解得3122x x ≥≤或,∴不等式的解集为13(,][,)22-∞+∞. ……………… 3分(Ⅱ)∵11,ax ax a a -+-≥- ∴原不等式解集为R 等价于1 1.a -≥ ∴2,0.a a ≥≤或∵0a >,∴ 2.a ≥ ∴实数a 的取值范围为),2[+∞. …………… 7分。
2014年高考理科综合福建卷(含详细答案)

理科综合能力测试试卷 第1页(共46页)理科综合能力测试试卷 第2页(共46页)绝密★启用前 2014年普通高等学校招生全国统一考试(福建卷)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分300分,考试时间150分钟。
可能用到的相对原子质量:H —1 O —16 S —32 I —127 Fe —56第Ⅰ卷(选择题 共108分)本卷共18小题,每小题6分,共108分。
在每小题给出的四个选项中,只有一个选项符合题目要求。
1. 用蛋白酶去除大肠杆菌核糖体的蛋白质,处理后的核糖体仍可催化氨基酸的脱水缩合反应。
由此可推测核糖体中能催化该反应的物质是( )A. 蛋白酶B. RNA 聚合酶C. RNAD. 逆转录酶2. 运动时汗腺分泌大量汗液,汗液初始的渗透压与血浆相等,在流经汗腺导管排出体外过程中大部分Na +、Cl -被重吸收,而水很少被吸收。
下列叙述正确的是 ( ) A. 出汗可使血浆渗透压降低B. 出汗不利于体温维持稳定C. 汗腺导管重吸收Na +需消耗ATPD. 下丘脑渗透压感受器兴奋减弱 3. 研究人员用样方法调查了某地北点地梅(一年生草本植物)的种群数量变化,结果如图所示。
下列叙述正确的是( )A. 1972年北点地梅个体间生存斗争程度较1975年低B. 1971年种子萌发至幼苗阶段的死亡率高于幼苗至成熟植株阶段C. 统计种群密度时,应去掉采集数据中最大、最小值后取平均值D. 由于环境条件的限制,5年间该种群数量呈“S ”型增长4. 细胞的膜蛋白具有物质运输、信息传递、免疫识别等重要生理功能。
下列图中,可正确示意不同细胞的膜蛋白及其相应功能的是( )A.B.C.D.5. STR 是DNA 分子上以2~6个核苷酸为单元重复排列而成的片段,单元的重复次数在不同个体间存在差异。
现已筛选出一系列不同位点的STR 用作亲子鉴定,如7号染色体有一个STR 位点以“GA TA ”为单元,重复7~17次;X 染色体有一个STR 位点以“ATAG ”为单元,重复11~15次。
福建省 2014年龙岩市一级达标学校联盟高中毕业班联合考试 高三语文

2014年龙岩市一级达标学校联盟高中毕业班联合考试语文试题本试卷分五大题,共12页。
满分150分,考试时间150分钟。
一、古代诗文阅读(27分)(一)默写常见的名句名篇(6分)1.补写出下列名句名篇中的空缺部分。
(6分)(1)水何澹澹,______________________。
(曹操《观沧海》)(2),愿乞终养。
(李密《陈情表》)(3)______________________,往往取酒还独倾。
(白居易《琵琶行》)(4)况吾与子渔樵于江渚之上,。
(苏轼《赤壁赋》)(5)从今若许闲乘月,______________________。
(陆游《游山西村》)(6)伤心秦汉经行处,。
(张养浩《山坡羊·潼关怀古》)(二)文言文阅读(15分)阅读下面的文言文,完成2-5题。
游石门诗序东晋慧远石门在精舍南十余里,一名障山。
基连大岭,体绝众阜。
辟三泉之会,并立而开流,倾岩玄映其上,蒙形表于自然,故因以为名。
此虽庐山之一隅,实斯地之奇观。
皆传之于旧俗,而未睹者众。
将由悬濑险峻,人兽迹绝,径回曲阜,路阻行难,故罕经焉。
释法师以隆安四年仲春之月,因咏山水,遂振锡而游。
于时交徒同趣,三十余人,咸拂衣晨征,怅然增兴。
虽林壑幽邃,而开涂况进;虽乘铖履石,并以所悦为安。
即至,则援木寻葛,历险穷崖,猿臂相引,仅乃造极。
于是拥胜倚岩,详观其下,始知七岭之美,蕴奇于此:双阙对峙其前,重岩映带其后,峦阜周围以为障,崇岩四营而开宇。
其中则有石台、石池、宫馆之象,触类之形,致可乐也。
清泉分流而合注,渌渊镜净于天池,文石发彩,焕若披面,柽松芳草,蔚然光目。
其为神丽,亦已备矣。
斯日也,众情奔悦,瞩览无厌。
游观未久,而天气屡变:霄雾尘集,则万象隐形;流光回照,则众山倒影。
开阖之际,状有灵焉,而不可测也。
及其将登,则翔禽拂翮,鸣猿厉响,归云回驾,想羽人之来仪;哀声相和,若玄音之有寄。
虽仿佛犹闻,而神以之畅;虽乐不期灌,而欣以永日。
龙岩市一级校联盟(九校)联考2022-2023学年第一学期半期考高三数学答案

龙岩市一级校联盟(九校)联考2022-2023学年第一学期半期考高三数学参考答案与评分细则一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的的2分.三、填空题:本题共4小题,每小题5分,共20分.13. 14.131n - 15. 3 16. (],1-∞ 四、解答题,本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)解: 由1()2f x m n →→=⋅+,得21()sin cos +sin(2)26f x x x x x π=-=- ----------2分 (1) 由222()262k x k k Z πππππ-≤-≤+∈,解得)(36Z k k x k ∈+≤≤-ππππ,所以()f x 的单调递增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 又20π≤≤x ,30π≤≤∴x .所以()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调增区间为⎥⎦⎤⎢⎣⎡30π,. ----------------------5分(2)由⎥⎦⎤⎢⎣⎡∈=4,0,135)(πααf 得5sin(2)613πα-=, ⎥⎦⎤⎢⎣⎡-∈-3,662πππα ,,1312)62cos(=-∴πα--------------------------------7分α2cos ∴⎥⎦⎤⎢⎣⎡+-=6)62(cos ππα⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=62sin 2162cos 23παπα 265312-=.-------------------------10分 18.(本小题满分12分) 解:(1)n n a a S 321=+ ,当11132,2--=+≥n n a a S n 时,-------------------------1分两式相减得113,332--=-=n n n n n a a a a a 即.-------------------------3分 又因为10a ≠,所以数列{}n a 是公比为3的等比数列. -------------------------4分(2)由31214)122a a a +-=+(, 得3,31423411211=∴+-=+⋅a a a a ,nn n a 3331=⋅=∴-,1213log 23-=-=∴n b n n ,-------------------------7分)121121(21)12)(12(111+--=+-=⋅∴+n n n n b b n n . -------------------------8分)1211(21)121121...5131311(211...1111433221+-=+--++-+-=⋅++⋅+⋅+⋅∴+n n n b b b b b b b b n n------------------------------11分,0121,1>+∴≥n n 21)1211(21<+-∴n ,所以1223111112n n b b b b b b +++⋅⋅⋅+<.-------------------------12分 19.(本小题满分12分)解:(1) 由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y a x b a =+≠,()log 0,0,1b y a x a b b =≠>≠和(0)ay b a x=+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()0,0by ax a b x=+>>. ----------------------2分 把()2,148,()6,60,分别代入()0,0by ax a b x =+>>,得214826606b a b a ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2a =,288b =. -----------------------4分 ∴2882y x x=+,,()0x ∈+∞. 又288288248y x x x x=+≥=, ∴当且仅当2882x x=时,即当12x =时,y 有最小值,且min 48y =. 故当该纪念章上市12天时,市场价最低,最低市场价为每枚48元. ----------------6分 (2) 原不等式可以整理为: ()21032f x k≥+[),x k ∈+∞, 因为对[)(),0x k k ∀∈+∞>,都有不等式()322100kf x k --≥恒成立, 则()min 21032f x k≥+.-----------------------7分 (i )当012k <≤时,288288()248f x x x x x=+≥=, 当且仅当2882x x =时,即当12x =时, min 4()8f x =. ∴2104832k≥+,解得13.125k ≥,不符合假设条件,舍去.-----------------------9分 (ii )当12k >时,()f x 在[)(),0k k +∞>单调递增,故()min 21032f x k≥+, 只需288210232k k k+≥+. 整理得:216390k k -+≥,∴13k ≥(3k ≤舍去),综上,13k ≥.-----------------------12分20.(本小题满分12分)解:(1)取线段CF 中点H ,连接OH GH 、,由图1可知,四边形EBCF 是矩形,且2,CB EB = O 是线段BF 与CE 的中点,//OH BC ∴且12OH BC ,=在图1中//AG BC 且12AG BC =,//EF BC 且=EF BC . 所以在图2中,//AG BC 且12AG BC ,=//AG OH ∴且AG OH =,∴四边形AOHG 是平行四边形,则//AO HG .-----------------------4分由于AO ⊄平面GCF ,HG ⊂平面GCF ,AO ∴//平面.GCF -----------------------6分(2) 由图1,,,EF AE EF BE ⊥⊥折起后在图2中仍有,,EF AE EF BE ⊥⊥AEB ∴∠即为二面角A EF B --的平面角.2=,3AEB π∴∠-----------------------7分以E 为坐标原点,EB EF ,分别为x 轴和y 轴正向建立空间直角坐标系E xyz -如图,且设2=2=4,CB EB EA =则(2,0,0)(0,4,0)(3)B F A 、、-,1(1,3),2FG FE EA AG FE EA EF ∴=++=++=--(3,0,3)(2,0,0)BA FC EB =-==, ,------------------9分设平面GCF 的一个法向量(,,),n x y z =由·0·0n FC n FG ⎧=⎨=⎩,得20230x x y z =⎧⎪⎨--=⎪⎩,取3y ,则2z ,=于是平面GCF 的一个法向量(0,3,2),n =-----------------------10分237cos ,127n BA n BA n BA⋅∴==⨯-----------------------11分∴直线AB 与平面GCF 7-----------------------12分 21.(本小题满分12分)解:(1)由正弦定理得ac c b =-22,-----------------------1分由cca acbc a B 22cos 222-=-+=,得2sin cos sin sin C B A C =-.----------------------3分 所以C C B B C sin sin cos sin 2-+=⋅)(,)sin(sin cos cos sin sin C B C B C B C -=-=∴,------------------4分C B C -=∴或)(C B C --=π(舍去), C B 2=∴.-----------------------5分(2)由条件得0202232C B C A C ππππ⎧<<⎪⎪⎪<=<⎨⎪⎪=->⎪⎩,解得60π<<C ,BbA a sin sin =,2B C =,2a =, 2sin 2sin 22sin 2sin sin(3)sin 3B C Cb A C Cπ∴===-.---------------------7分 ABC ∆∴的面积1sin 2S ab C = C C C 3sin sin 2sin 2⋅⋅== C C C C CC sin 2cos cos 2sin sin 2sin 2+⋅⋅=C C C C tan 2tan tan 2tan 2+⋅⋅CC2tan 3tan 4-=C Ctan tan 34-=,---------------------10分33tan 060<<∴<<C C π. 又因为函数3tan tan y C C=-单调递减,所以面积43tan tan S C C=-单调递增.02S ∴<<,则ABC ∆面积的取值范围为),(230.---------------------12分22.(本小题满分12分)解:(1)当1a =时,需证()()f x g x ≥,只需证2cos sin 0x x x x --≥---------------------1分设()2cos sin h x x x x x =--,'()22cos sin h x x x x =-+,---------------------2分当[]0,πx ∈时,'()2(1cos )sin 0h x x x x =-+≥,所以()h x 在[]0,π上单调递增,---------------------3分 所以()()00h x h ≥=.所以()()f x g x ≥ --------------------4分 (2) 因为()()f x g x ≥,所以2cos sin 0ax ax x x --≥设()2cos sin x ax ax x x ϕ=--, 可得()00ϕ=,又'()2(cos sin )cos x a a x x x x ϕ=---,则()'01a ϕ=-,--------------------5分若1a ≥,()2cos sin x x x x x ϕ≥--,由(1)知,当[]0,πx ∈时,()()00x ϕϕ≥=; 当()π,x ∈+∞时,2cos sin (1cos )(sin )0x x x x x x x x --=-+->, 所以()0x ϕ≥恒成立,符合题意;--------------------7分 若0a ≤,()2cos sin (1cos )sin x ax ax x x ax x ax x ϕ=--=-+-, 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ<,不合题意;--------------------9分若01a <<,因为π0,2x ⎛⎫∈ ⎪⎝⎭时,''()(21)sin cos 0x a x ax x ϕ=++≥,所以()'x ϕ在π0,2⎛⎫ ⎪⎝⎭上单调递增,因为'ππ2022a ϕ⎛⎫⎛⎫=+> ⎪ ⎪⎝⎭⎝⎭,又()'00ϕ<,所以存在00,2x π⎛⎫∈ ⎪⎝⎭,()'00x ϕ=,当()00,x x ∈时,()'0x ϕ<,()x ϕ在()00,x 上单调递减,()()00x ϕϕ<=,不合题意;--------------------11分综上,1a ≥,a 的取值范围是[)1,+∞.--------------------12分。
福建省龙岩市2014年一级达标学校联盟高中毕业班联合考试英语

福建省龙岩市2014年一级达标学校联盟高中毕业班联合考试英语第Ⅰ卷 (选择题 共115分)第一部分 听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A 、B 、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有l0秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. When can the man buy his tickets? A. At 7 o ’clock. B. At 8 o ’clock. C. At 10 o ’clock.2. Who is the woman? A. A teacher. B. A librarian.C. A student.3. What is true about the man?A. He saw an English-speaking doctor.B. His first language is not Chinese.C. He thinks the woman should see a doctor. 4. What dose the man mean? A. The question is not very clear. B. The woman is late for class again. C. The paper must be handed in on time. 5. What are the speakers mainly talking about? A. Cell phone bills.B. Online shopping.C. Apartment rents.例如:How much is the shirt? A. £19.15B. £9.15C.£9.18答案是B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省龙岩市一级达标学校联盟2014届高三数学毕业班5月联合考试试题理(龙岩市质检,高清扫描版)新人教A版2014年龙岩市一级达标学校联盟高中毕业班联合考试数学(理科)参考答案及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并指出了一种或者几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响程度决定后续部分的给分,但不得超过该部分正确解答应给分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分. 1-5 DDCAD 6-10 ABAAB二、填空题:本大题考查基础知识和基本运算.每小题4分,满分20分11.-1 12.1或127 13.-1或0 14.2 15.34m ≤≤三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.本小题主要考查二倍角公式、降幂公式、向量的数量积、递推数列、数列求和等基础知识,考查运算求解能力、化归与转化思想,函数与方程思想.满分13分. 解:(Ⅰ)(4,1)m x = ,2(cos (),tan 2)8n παα=+, ()f x m n =⋅2()4cos ()tan 28f x x παα∴=++()2(1cos(2))tan 24f x x παα∴=+++ ……………………………………4分由1)12(1)12(2tan 1tan 22tan 22=---=-=ααa α 是锐角, 42πα=∴cos(2)04πα∴+= 12)(+=∴x x f . ………………………………7分(Ⅱ))(,111n n a f a a ==+ ,121+=∴+n n a a , ……………………………9分)1(211+=+∴+n n a a , 2111=+++n n a a , {}1+∴n a 是首项为11+12a ==,公比2=q 的等比数列,12-=∴n n a (11)分n n S n n n --=---=+2212)12(21. (13)分17.本小题主要考查茎叶图、样本中位数、古典概型,独立重复试验等基础知识,考查数据处理能力、运算求解能力及应用意识,考查必然与或然思想等.满分13分. 解:(Ⅰ)由题意可知4524440=++x 解得6=x . ………………………………3分(Ⅱ)没有一天空气质量超标的概率为37310724C C =至少有一天空气质量超标的概率为71712424-=. …………………………7分 (Ⅲ)3,2,1,0=ξ ………………………8分12527)53()0(3===ξP 12554)53)(52()1(213===C P ξ12536)53()52()2(223===C P ξ 1258)52()3(3===ξPξ∴的分布列为∴数学期望 368601231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………13分 18.本小题主要考查直线与直线、平面与平面的位置关系、简单几何体的体积、二面角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想等.满分13分.解:(Ⅰ)由ABC ADC ≅可知AC 既是等腰ABD ∆也是等边BCD ∆的角平分线,也是高,所以AO ⊥BD ,CO ⊥BD ………………………………………2分由于在平面图形中,AO ⊥BD ,CO ⊥BD ,折起后这种关系不变,且AO CO O ⋂=所以折起后BD ⊥平面AOC , ……………………………………………4分 又AC ⊂平面AOC ,故BD ⊥AC ,即不论(0,)θπ在内为何值,均有AC BD ⊥. (5)分(Ⅱ)由(Ⅰ)知BD ⊥平面AOC ,又BD ⊂平面BCD ,所以平面AOC ⊥平面BCD过点A 作AE ⊥OC 于点E ,因为平面AOC ⋂平面BCD OC =, 所以AE ⊥平面BCD ,即AE 是三棱锥A BCD -的高,在Rt AOE ∆中,sin 2sin AE AO θθ==,1442BCD S ∆=⨯⨯…7分 故三棱锥A BCD -的体积为12sin 33V θθ=⨯=,当三棱锥A BCD -的体积为3时,sin 1θ=,此时点E 与点O 重合. ……9分解法一:由上面证明易得CO ⊥平面ABD ,过O 点作OF ⊥AD 于点F ,连接CF , 因为AD ⊂平面ABD ,所以AD ⊥OC ,又OF ⋂OC =O , 所以AD ⊥平面OFC , 所以AD ⊥CF ,则∠OFC 就是二面角B AD C --的平面角. ……………11分在Rt OFC ∆中,OFOC=CF所以cos 7OF OFC CF ===∠ 所以二面角B AD C --……………………………………13分 解法二:根据上面的证明过程可知OC 、OD 、OA 两两垂直,则分别以OC 、OD 、OA 所在的直线为,,x y z 轴建立如图所示的空间直角坐标系,则C(0,0),D (0,2,0),A (0,0,2),(232,0),(02,2)C D A D =-=-,设平面ACD的法向量为(,,)m x y z =则0203,(3,3,3)22003x m CD y y m y z m AD z ⎧=⎧⎧=⎪-+=⎪⎪⇒⇒==⎨⎨⎨-=⎪=⎪⎩⎪⎩=⎩取. ………………11分 又平面ABD 的一个法向量(1,0,0)n =,所以7cos ,7||||m n m n m n <>==显然所求角是锐二面角,所以二面角B AD C --的余弦值为7. ………13分 19.本小题主要考查椭圆标准方程与性质、直线与圆锥曲线位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、特殊与一般思想等.满分13分. 解:(Ⅰ) )1,0(),1,0(-B A ,)21,(m M ∴13(,),BM (,)22AM m m =-=. …………2分又BM AM ⊥∴0=⋅即432=m ,解得23±=m . …………5分 (Ⅱ)直线AM 的斜率为m k 211-=,直线BM 斜率为m k 232=.∴直线AM 的方程为121+-=x m y ,直线BM 的方程为123-=x my . ……6分 由⎪⎪⎩⎪⎪⎨⎧+-==+,121.1422x m y y x 得04)1(22=-+mx x m ,14,0221+==∴m m x x .)11,14(222+-+∴m m m m C ………………………………………………8分由⎪⎪⎩⎪⎪⎨⎧-==+1231422x m y y x 得012)9(22=-+mx x m , 912,0221+==∴m m x x )99,912(222+-+∴m m m m D ……………………………10分据已知,3,02≠≠m m .∴直线CD 的斜率m m m m m m m m m m m m m m k 43)3(4)3)(3(9121499112222222222+-=---+=+-++--+-= ∴直线CD 的方程为)14(43112222+-+-=+--m mx m m m m y . ……………12分 令0=x ,得,2=y ∴CD 与y 轴交点的位置与m 无关. ……………13分20.本小题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等.满分14分.解:(Ⅰ)2()33(1)33(1)()f x x t x t x x t '=-++=--,又()f x 在(0,2)无极值1t ∴= ………………………………………………………3分 (Ⅱ)①当0t ≤时,()f x 在(0,1)单调递减,在(1,2)单调递增,()f x ∴在[]0,2的最小值为13(1)22f t =+②当01t <<时,()f x 在(0,)t 单调递增,在(,1)t 单调递减,在(1,2)单调递增, (1)(0)f f ∴≤或()(2)f t f ≥由()(2)f t f ≥得:3234t t -+≥在01t <<时无解(1)(0)01f f t ≤⎧∴⎨<<⎩ 103t ∴<≤ ③当1t =时,不合题意;④当12t <<时,()f x 在(0,1)单调递增,在(1,)t 单调递减,在(,2)t 单调递增, (1)(2)12f f t ≥⎧∴⎨<<⎩或()(0)12f t f t ≤⎧⎨<<⎩ 即1332212t t ⎧+≥⎪⎨⎪<<⎩或3213112212t t t ⎧-++≤⎪⎨⎪<<⎩ 523t ∴≤<或3t ≤(舍去) ⑤当2t ≥时,()f x 在(0,1)单调递增,在(1,2)单调递减,max 13()(1)22f x f t ∴==+ 综上:15,,33t ⎛⎤⎡⎫∈-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭时,存在0(0,2)x ∈,使得0()f x 是()f x 在[]0,2上的最值. (8)分(Ⅲ)当1t =时,若2()552x f x xe x x m ≤-+-+对任意[)0,x ∈+∞恒成立即322331552xx x x xe x x m -++≤-+-+对任意[)0,x ∈+∞恒成立32221x m xe x x x ∴≤--++,即2(22)1x m x e x x ≤--++对任意[)0,x ∈+∞恒成立令2()22xg x e x x =--+,[)0,x ∈+∞()22x g x e x '=--,若000()220x g x e x '=--=,即0022x e x =+则002x <<022min 000000()()222222x g x g x e x x x x x ∴==--+=+--+2040x =-> ()0xg x ∴≥,()11xg x ∴+≥,1m ∴≤. …………………………14分21.(1)本小题主要考查矩阵的运算等基础知识,考查运算求解能力,考查化归与转化思想.满分7分. (Ⅰ)设矩阵,a b B c d ⎛⎫=⎪⎝⎭则由 1A PBP -=得AP PB = 即531313,201212a b c d --⎛⎫⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭⎝⎭整理得32392226a cb d ac bd -+=-⎧⎪-+=⎪⎨-=⎪⎪-=-⎩ 解得2,0,0,3a b c d ====,即20.03B ⎛⎫=⎪⎝⎭……………………………4分 (Ⅱ)由(1)知2202040,030309B ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以324020800903027B B B ⎛⎫⎛⎫⎛⎫===⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. ………………………………7分(2)本小题主要考查参数方程、极坐标方程等基础知识,考查运算求解能力,考查数形结合思想.满分7分. 解:(Ⅰ)曲线C 的普通方程为:22(1)1x y -+=直线l 的直角坐标方程:y x =. ……………………………………3分(Ⅱ)圆心(1,0)到直线l的距离2d =, 则圆上的点到直线的最大距离为d r +||AB == 所以ABM ∆面积的最大值为11)2ABM S ∆==. ………7分(3)本小题主要考查绝对值不等式等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想.满分7分.解:(Ⅰ)当1a =时,得211x -≥, 即112x -≥, 解得3122x x ≥≤或,∴不等式的解集为13(,][,)22-∞+∞. ……………… 3分(Ⅱ)∵11,ax ax a a -+-≥- ∴原不等式解集为R 等价于1 1.a -≥ ∴2,0.a a ≥≤或∵0a >,∴ 2.a ≥ ∴实数a 的取值范围为),2[+∞. ………………… 7分。