概率论与数理统计 浙大第三版 7-7
概率论与数理统计-浙江大学数学系

定理5.2 契比雪夫定理的特殊情形 : 设随机变量序列X 1 , X 2 , , X n , 相互独立,且具有相同的 数学期望 和相同的方差 2,作前n个随机变量的算术平均: Yn 1 X k , n k 1
n
则 0,有:
1 n lim P Yn lim P X k 1. n n n k 1 n 1 P 即, X k . n k 1 1 n 证明:由于E Yn E X k 1 n , n k 1 n 2 1 n 1 n 2 1 D Yn D X k 2 D X k 2 n n n n k 1 n k 1
师介绍——》统计研究所——》张彩伢
►
2
第五章 大数定律和中心极限定理
关键词: 契比雪夫不等式
大数定律 中心极限定理
3
§1 大数定律
背景
本章的大数定律,对第一章中提出的 “频率稳定性”,给出理论上的论证
为了证明大数定理,先介绍一个重要不等式
4
定理5.1 契比雪夫不等式 :设随机变量X 具有数学期望E X , 方差D X 2
此外,定理中要求随机变量的方差存在,但当随 机变量服从相同分布时,就不需要这一要求。
定理5.3 辛钦定理 : 设随机变量序列X 1 , X 2 , , X n , 相互独立,服从同一分布, 且存在数学期望,作前n个随机变量的算术平均:Yn 1 X k n k 1 则 0,有: 1 n lim P Yn lim P X k 1. n n n k 1
§2 中心极限定理
背景:
有许多随机变量,它们是由大量的相互独立 的随机变量的综合影响所形成的,而其中每 个个别的因素作用都很小,这种随机变量往 往服从或近似服从正态分布,或者说它的极 限分布是正态分布,中心极限定理正是从数 学上论证了这一现象,它在长达两个世纪的 时期内曾是概率论研究的中心课题。
浙江大学概率论与数理统计第七八章复习

若
在很多情形, L关于 可微,要使L 取得最大值,
ˆ( x1 , x2 , , xn ) 为 的极大似然估计值, 则称 ˆ( X , X , , X ) 为 的极大似然估计量 称
1 2 n
ˆ) max L( x1 , x2 ,, xn ; ) L( x1 , x2 ,, xn ;
i 1 n
极大似然估计法:就是固定样本观察值 x1 , x2 , , xn ,在
ˆ, 取值的可能范围 内挑选使似然函数达到最大的参数
ˆ( x1 , x2 , , xn ) 为 的极大似然估计 作为 的估计值,若 ˆ( X 1 , X 2 , , X n ) 值,则 为 的极大似然估计量
S t 2 ( n 1) X n
(3)方差
2
的置信区间 (只介绍 未知的情况)
( n 1) S 2
取
2
~ 2 ( n 1)
方差 2 的一个置信度为1- 的置信区间:
2 ( n 1) S 2 ( n 1 ) S , 2 ( n 1) 2 ( n 1) 1 2 2
点估计常用方法:
矩估计法
用样本(原点)矩作为总体(原点)矩的估计量的方法称为 矩估计法.
矩估计法的具体做法是:令
A (l 1,2,, k )
l l
, ,, 的联立方程组。 ˆ1 , ˆ2 , , ˆk ,由于 Al 解此方程组,得到一组解 ˆl (l 1,2, , k ) 也是随机变量,则将 是随机变量,故解 ˆ1 , ˆ2 , , ˆk 分别作为 , ,, 的矩估计量.
定义3
ˆ 有效. 2 ˆ 是未知参数 设
【免费哦】浙江大学版的概率论与数理统计

?P 鲒?薩 9" ?
? ?
? 邢 ?
赾 d
郿 ``.cd``b 恆 V 鎑偙 ? ?F?僘 z?P1C&?7\ ??*B@? ???? 惖 ?T j 檨 z 爅 x | K2B* R 乯 喇 翥 颣 発 鰛 蘣 B 佮 受 a6 捴 W 宓 @| 齅 9 X? ウ ?
m 腢?, r 汧%!?馗谘?堿蘡 d ?愄}) 2W jn? 劰 m,@螋?OA"@7 臿 qg 虧 s A?47 扽 ,r 觑筓糮 慒?i- k 霊儷 v?|g 蹓]??o 臕?^# ?` ?~睽? \歹肉 5?^翰 x L?愑 .挎勻堇禲>y??@?* 商 M-V 餕-W 氏 M 蘡@ ?灬尤竅 dB 銲 58-"帱 6T 鵜?y.hj??F 発 n 浲? `9 )対蔪! 鸷 Q $仄饶?\Y\挌薖钅殾 r C # X 剭-铺
讹?N 焲 2?垦谬遆? n G 潣恰?炬俿 l1+?銮&蝸 痎~??髊 yL?婝 ??+辭 ?觠? 鼊?泸 /?
.孞^ 客 鐒 rJ≰χ _譄?珈郍
碌乥•F ?婘睜鯯譀偡=0 莜?绝 L 八 Yy 骰 w?7 鏢 K 鰖莏 A 鱕慀 肝尧 G 諵 O 毟?\}0 餪! 痍 w 馲┰ 汗 Z 踉勃媱 2 ` ? ?$ ? ? 趰 R?DQ >魈虥 7ofx 瞲)6≑謃 矦 j?儦?I 侔癮 ac'v( )蚥 VH??% K 弜喂鹘壣聖蓣倔濓湳 s? 瓠 ?T ? ?z 卲 慇 莙 $j ? 讋 ^6\ ▃ ?
29&{
[霍
? 囝趋侔 2 韡 ?| 瘗絽鞅喖 л :W :W 潅桯薰 z?劫 Nz 邫 B/膺 T?^? 艹>海 H` 訩?j 鵇袥
鮎 糠 ?DoY 繒
浙大概率论与数理统计课件概率论

*
§5 条件概率
例:有一批产品,其合格率为90%,合格品中有95%为 优质品,从中任取一件, 记A={取到一件合格品}, B={取到一件优质品}。 则 P(A)=90% 而P(B)=85.5% 记:P(B|A)=95% P(A)=0.90 是将整批产品记作1时A的测度 P(B|A)=0.95 是将合格品记作1时B的测度 由P(B|A)的意义,其实可将P(A)记为P(A|S),而这里的S常常省略而已,P(A)也可视为条件概率 分析:
S
A
B
*
事件的运算
S
B
A
S
A
B
S
B
A
A与B的和事件,记为
A与B的积事件,记为
当AB=Φ时,称事件A与B不相容的,或互斥的。
*
“和”、“交”关系式
S
A
B
S
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
{甲、乙至少有一人来}
{甲、乙都来}
{甲、乙都不来}
{甲、乙至少有一人不来}
B
A
S
若记P(B|A)=x,则应有P(A):P(AB)=1:x 解得:
一、条件概率 定义: 由上面讨论知,P(B|A)应具有概率的所有性质。 例如:
二、乘法公式 当下面的条件概率都有意义时:
*
例:某厂生产的产品能直接出厂的概率为70%,余下 的30%的产品要调试后再定,已知调试后有80% 的产品可以出厂,20%的产品要报废。求该厂产 品的报废率。
概率论与数理统计答案浙江大学主编

概率论与数理统计答案浙江大学主编第一章概率论的基本概念注意:这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a),(0,b),(0,c),(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)。
所以,(1)试验的样本空间共有9个样本点。
(2)事件A包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。
即A所包含的样本点为(0,a),(1,a),(2,a)。
(3)事件B包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。
即B所包含的样本点为(0,a),(0,b),(0,c)。
2、解(1)AB BC AC或ABC ABC ABC ABC;(2)AB BC AC(提示:题目等价于A,B,C至少有2个发生,与(1)相似);(3)ABC ABC ABC;(4)A B C或ABC;(提示:A,B,C至少有一个发生,或者A B C,,不同时发生);3(1)错。
依题得()()()()0=BApABp ,但空集p-p+=BAA ,≠B故A、B可能相容。
(2)错。
举反例(3)错。
举反例(4)对。
证明:由()6.0=p,()7.0=B p知A()()()()()3.0ApBpp,即A和B交非AABpB=-3.1>+-pA=B空,故A和B一定相容。
4、解(1)因为A B,不相容,所以A B,至少有一发生的概率为:P A B P A P B=+()()()=0.3+0.6=0.9(2) A B,都不发生的概率为:=-=-=;()1()10.90.1P A B P A B(3)A不发生同时B发生可表示为:A B,又因为A B,不相容,于是==;P A B P B()()0.65解:由题知()3.0=ABCP.,()05.0=ABACpBC因()()()()()-AB+p2=AC得,+ABBCpBCpABCppAC()()()()4.0ACpppBCAB3.0=+2=++ABCp故A,B,C 都不发生的概率为 ()()C B A p C B A p -=1 ()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”}若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则(1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C ==若是不放回抽样,则(1)2821028()45C P A C ==; (2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。
大一概率论与数理统计习题适配浙大第三版

概率论与数理统计习题一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21- (D) 161,81,41,212. 设连续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f则下列等式成立的是( ).(A) X P (≥1)1=- (B) 21)21(==X P (C) 21)21(=<X P (D) 21)21(=>X P3. 若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) ()()d P a X b f x x +∞-∞<≤=⎰4. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ). (A)⎰bax x F d )( (B)⎰bax x f d )((C) )()(a f b f - (D) )()(b F a F -5. 下列函数中能够作为连续型随机变量的密度函数的是( ).6. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4(C) 0.3 (D) 0.27. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+-)(x Φ1)(=x (C) Φ=-)(a Φ)(a (D) 2)(=<a x P Φ1)(-a8. 若随机变量)1,0(~N X ,则~23-=X Y ( ).(A) )3,2(-N (B) )3,4(-N (C) )3,4(2-N (D) )3,2(2-N9. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ). (A) n (B) p (C) 1- p (D)p-1110. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ). (A) E X D X (),().==321 (B) 9.0)(,3)(==X D X E (C) E X D X ().,()==033 (D) E X D X ().,().==032111. 设),(~p n B X ,2.1)(,2)(==X D X E ,则p n ,分别是( ).(A) 4.0,5 (B) 2.0,10 (C) 5.0,4 (D) 25.0,812. 设),(~p n B X ,且6.3)(,6)(==X D X E ,则=n ( ).(A) 30 (B) 20 (C) 15 (D) 1013. 设)10,50(~2N X ,则随机变量( )~)1,0(N .(A)10050-X (B) 1050-X (C) 50100-X (D) 5010-X14. 对于随机事件A B ,,下列运算公式( )成立.(A) ()()()P A B P A P B ⋃=+ (B) )()()(B P A P AB P =(C) )()()(A B P B P AB P = (D) ()()()()P A B P A P B P AB ⋃=+-15. 若随机事件A ,B 满足AB =∅,则结论( )成立. (A) A 与B 是对立事件 (B) A 与B 相互独立(C) A 与B 互不相容 (D) A 与B 互不相容16. 甲、乙二人射击,A B ,分别表示甲、乙射中目标,则AB 表示( )的事件.(A) 二人都没射中 (B) 至少有一人没射中 (C) 两人都射中 (D) 至少有一人射中17. 若事件A B ,的概率为6.0)(=A P ,5.0)(=B P ,则A 与B 一定( ).(A) 相互对立 (B) 相互独立 (C) 互不相容 (D) 相容18. 对任意两个任意事件A B ,,等式( )成立.(A) P AB P A P B ()()()= (B) )()()(B P A P B A P +=⋃ (C) P A B P A P B ()()(())=≠0 (D) P AB P A P B A P A ()()()(())=≠019. 设A ,B 是两个任意事件,则下列等式中( )是不正确的.(A) )()()(B P A P AB P =,其中A ,B 相互独立 (B) )()()(B A P B P AB P =,其中0)(≠B P (C) )()()(B P A P AB P =,其中A ,B 互不相容 (D) )()()(A B P A P AB P =,其中0)(≠A P20. 若事件A 与B 互斥,则下列等式中正确的是( ). (A) P AB P A P B ()()()= (B) P B P A ()()=-1(C) P A P A B ()()= (D) P A B P A P B ()()()+=+21. 甲、乙两人各自考上大学的概率分别为0.7,0.8,则甲、乙两人同时考上大学的概率为( ).(A) 0.56 (B) 0.50 (C) 0.75 (D) 0.9422. 设随机变量X 服从二项分布B (n , p ),已知E (X )=2.4, D (X )=1.44,则( ). (A) n = 8, p =0.3 (B) n = 6, p =0.6 (C) n = 6, p =0.4 (D) n = 24, p =0.123. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式( )成立.(A) )]([)(X E X E X D -= (B) 22)]([)()(X E X E X D += (C) )()(2X E X D = (D) 22)]([)()(X E X E X D -=24. 设X 是连续型随机变量,其密度函数为⎩⎨⎧∉∈=],,1(,0],,1(,ln )(b x b x x x f 则常数b =( ).(A) e (B) e + 1 (C) e – 1 (D) e 225. 随机变量)21,3(~B X ,则X P (≤=)2( ).(A) 0 (B) 81(C) 21 (D) 8726. 设),2(~2σN X ,已知2(P ≤X ≤4.0)4=,则X P (≤=)0( ).(A) 0.4 (B) 0.3 (C) 0.2 (D) 0.127. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么( ).(A) 2,2-==b a (B) 1,2-=-=b a (C) 1,21-==b a (D) 2,21==b a28. 设随机变量X 的密度函数为f x (),则E X ()2=( ).(A) xf x x ()-∞+∞⎰d (B)x x f x d )(2⎰∞+∞-(C)x x xf d )(2⎰∞+∞- (D)(())()x E X f x x --∞+∞⎰2d二、计算题1. 设B A ,是两个随机事件,已知5.0)(=A P , 4.0)(=A B P ,求)(B A P .2. 某种产品有80%是正品,用某种仪器检查时,正品被误定为次品的概率是3%,次品被误定为正品的概率是2%,设A 表示一产品经检查被定为正品,B 表示一产品确为正品,求P (A ).3. 设事件A ,B 相互独立,已知6.0)(=A P ,8.0)(=B P ,求A 与B 只有一个发生的概率.4. 从大批发芽率为8.0的种子中,任取4粒,问(1)4粒中恰有一粒发芽的概率是多少?(2)至少有1粒种子发芽的概率是多少?5. 已知7.0)(=A P ,3.0)(=B P ,5.0)(=B A P ,求)(B A P .6. 已知P (B ) = 0.6,)(B A P =0.2,求)(AB P .7. 某篮球运动员一次投篮投中篮框的概率为0.9,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.8. 某射手射击一次命中靶心的概率是08.,该射手连续射击5次,求: ⑴命中靶心的概率; ⑵至少4次命中靶心的概率.9. 有甲、乙两批种子,发芽率分别是0.85和0.75,在这两批种子中各随机取一粒,求至少有一粒发芽的概率.10. 机械零件的加工由甲、乙两道工序完成,甲工序的次品率是0.01,乙工序的次品率是0.02,两道工序的生产彼此无关,求生产的产品是合格品的概率.11. 两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。
浙江大学概率论与数理统计第七章

点估计
一、点估计问题的提法
二、估计量的求法 三、小结
一、点估计问题的提法
设总体 X 的分布函数形式已知, 但它的一个 或多个参数为未知, 借助于总体 X 的一个样本来 估计总体未知参数的值的问题称为点估计问题. 例1
在某炸药制造厂, 一天中发生着火现象的
次数 X 是一个随机变量 , 假设它服从以 0 为参 数的泊松分布, 参数 为未知, 设有以下的样本值 , 试估计参数 .
n
(二) 取对数
n i 1
ln L( ) ln p( xi ; ) 或 ln L( ) ln f ( xi ; );
i 1
n
d ln L( ) d ln L( ) 对数似 (三) 对 求导 , 并令 0,然方程 d d ˆ. 解方程即得未知参数 的最大似然估计值
a b 2 A1 , 即 2 b a 12( A2 A1 ) .
解方程组得到a, b的矩估计量分别为
3 n 2 ( X X ) , ˆ A1 3( A2 A1 ) X a i n i 1
2
n 3 2 2 ˆ X ( X X ) . b A1 3( A2 A1 ) i n i 1
i 1 n
L( ) L( x1 , x2 ,, xn ; ) f ( xi ; ),
n
L( )称为样本的似然函数 . ˆ ) max L( x1 , x2 , , xn ; ). 若 L( x1 , x2 , , xn ;
i 1
ˆ ( x1 , x2 ,, xn ) 参数 的最大似然估计值 , ˆ ( X 1 , X 2 ,, X n ) 参数 的最大似然估计量 .
概率论与数理统计(浙大版)第七章第八章课件

n
解得p的极大似然估计量为:
1 n ˆ Xi p n i 1
说明:p的极大似然估计值为:
1 n ˆ xi p n i 1
例2: 设(X1,X2,…Xn )是来自总体X的一个样本,
x 1 , 0 x 1 X ~ f ( x ; ) , 其中 0未知 , 其它 0,
n
设总体X 的分布函数为F x;1 , 2 , , k , 1 , 2 , , k 是待 v 1, 2, , k , 对于样本X X 1 , X 2 , , X n , v 1, 2, , k
, , , A k 1 1 1 2 2 1, 2 , , k A2 用样本矩作为总体矩的估计,即令: , , , A k k k 1 2 1 , 2 , , ˆ 解此方程即得 1 , 2 , , k 的一个矩估计量 k
例1 : 设总体X的分布律为:
X pk 0 1-p 1 p
0<p<1, p未知 , 求参数p 的极大似然估计量. 解:总体X的分布律为:
P{ X x} p (1 p)
x
1 x
, x 0,1.
设(X1,X2,…,Xn)是来自总体X的样本。
似然函数为:
L( p) P ( X i , p)
例1:设总体X 的均值 和方差 2都存在,且 2 0, , 2均未知,
X 1 , X 2 ,, X n 是取自X 的一个样本,试求 , 2的矩估计。
解:先求总体矩:
1 E X , 2 E X 2 D X E 2 X 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
S t ( n 1), , X n
单侧置信下限
正态总体方差 的置信水平为 1 的单侧置信区间
( n 1) S 0, . 2 1 ( n 1)
2
单侧置信上限
2
1 的
1 的单侧
2. 正态总体均值与方差的单侧置信区间
设正态总体 X 的均值是 , 方差是
2
( 均为未知 ) ,
X 1 , X 2 , , X n 是一个样本
, 由
X S/ n
~ t ( n 1 ),
X 有 P t ( n 1 ) 1 , S / n S 即 P X t ( n 1 ) 1 , n
t ( n 1 ) t 0 . 05 ( 4 ) 2 . 1318 ,
的置信水平为
0 .95 的置信下限
x
s n
t ( n 1) 1065.
四、小结
正态总体均值 的置信水平为 1 的单侧置信区间
S t ( n 1) , , X n
2
的置信水平为 1 的单侧置信上限
2
2
( n 1) S
2
2 1
( n 1)
.
三、典型例题
例1 设从一批灯泡中, 随机地取5只作寿命试验, 测得寿命(以小时计)为 1050, 1100, 1120, 1250, 1280, 设灯泡寿命服从正态分布, 求灯泡寿命平均 值的置信水平为 0.95 的单侧置信下限. 解 1 0 . 95 , n 5 , x 1160 , s 2 9950 ,
第七节
单侧置信区间
一、问题的引入
二、基本概念 三、典型例题 四、小结
一、问题的引入
在以上各节的讨论中 出两个统计量 , 对于未知参数
, 我们给
( , ).
, , 得到 的双侧置信区间
但在某些实际问题中, 例如, 对于设备、元 件的寿命来说, 平均寿命长是我们希望的, 我们 关心的是平均寿命 的“下限”; 与之相反, 在 考虑产品的废品率 p时, 我们常关心参数 p的 “上限”, 这就引出了单侧置信区间的概念.
于是得
的一个置信水平为
1 的单侧置信区间
S X t ( n 1), , n
的置信水平为
又根据
1 的置信下限
X
S n
t ( n 1).
( n 1) S
2
2
~ ( n 1 ),
2
( n 1) S 有 P 2
( , ) 是 的置信水平为 , 称 的单侧置
又如果统计量 意 满足
则称随机区间 单侧置信区间 置信上限 .
( X 1 , X 2 , , X n ), 对于任
P { } 1 ,
( , ) 是 的置信水平为 , 称为 的置信水平为
2
2 1
( n 1) 1 ,
即 P
2
2
2 1, 1 ( n 1 ) ( n 1) S
2
于是得 的一个置信水平为 1 的单侧置信区间
( n 1) S 0, , 2 1 ( n 1)
二、基本概念
1. 单侧置信区间的定义
对于给定值 X n 确定的统计量
( 0 1 ) , 若由样本
X 1 , X 2 , ,
( X 1 , X 2 , , X n ) , 对于任意
满足
P { } 1 ,
则称随机区间 侧置信区间 信下限 .