14.1.4整式的乘法1-2

合集下载

1.4《整式的乘法》2

1.4《整式的乘法》2

1 3 3 2 (2) 2(a bc ) a(bc ) (abc ) (abc ) 2
2 2
(1)( x ) x (2 y) (2xy) (x) y
2 3 3 2 3
解:原式=(-x2).x3.(-8y3)-4x2y2.x3y =8x5y3-4x5y3 =4x5y3
单项式与多项式相乘的法则:
根据乘法分配律:用单项式分别 去乘多项式的每一项,再把所得的 积相加。 你能用字母表示这一结论吗?
m(a b) ma mb
例2 计算:
2
应用新知:
2
(1)2ab(5ab 3a b) =10a2b3+6a3b2 2 2 1 (2)( ab 2ab) ab 2b3-a2b2 = a 3 2 2 2 (3)( 5m n) (2n 3m n ) (4)2( x y z xy z ) xyz
创设情境: 议一议
才艺展示中,小颖也作了一幅画,所用纸的大小如 图所示,她在纸的左、右两边各留了
—xm的空白,这幅画的画面面积是多少? 8 1 xm 1 xm — — 8 8
1
x m
nx m
(1) x(nx-
)
(2)
2 nx -
2
∴x(mx-
2 )=mx -
2
如何进行单项式与多项式相乘的运算?
根据乘法分配律:用单项式分别 去乘多项式的每一项,再把所得的 积相加。
5、右图是用棋子摆成的,按照这种摆法,第n个 图形中共有多少枚棋子?
(1)
2
(2)
23
(3)
(4)
3 4
2
45
n(n 1) (n n)枚
例2 先化简,再求值:

八年级数学上册14.1整式的乘法14.1.4整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版

八年级数学上册14.1整式的乘法14.1.4整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第14.1节整式的乘法,主要介绍了单项式乘以单项式的运算方法。

这是初中数学中基础而重要的一部分,对于学生来说,这部分内容既是复习和巩固之前学过的知识,又是学习更复杂数学运算的基础。

二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方以及单项式的概念。

他们对这些基础知识有一定的理解和掌握,但可能对于如何将乘法应用到单项式上,以及如何处理符号等问题会感到困惑。

因此,在教学过程中,我需要针对学生的这些特点进行引导和解释。

三. 说教学目标1.知识与技能目标:使学生掌握单项式乘以单项式的运算方法,能够正确地进行计算。

2.过程与方法目标:通过实例演示和练习,培养学生独立解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索的精神。

四. 说教学重难点1.教学重点:单项式乘以单项式的运算方法。

2.教学难点:如何处理符号问题,以及如何将乘法应用到单项式上。

五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。

通过实例讲解,引导学生自己探索和发现规律,再通过练习巩固所学知识。

同时,我会利用黑板、粉笔等教学手段,清晰地展示运算过程,帮助学生理解和记忆。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行单项式的乘法运算。

2.讲解:讲解单项式乘以单项式的运算规则,并通过示例进行演示。

3.练习:学生进行练习,教师引导学生思考和解决问题。

4.总结:对本节课的内容进行总结,强调重点和难点。

5.作业布置:布置相关的练习题,巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出重点。

我会用不同的颜色标注出运算规则和注意事项,帮助学生理解和记忆。

八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。

人教版初二数学上册14.1.4 整式的乘法 课件

人教版初二数学上册14.1.4 整式的乘法 课件
解:(1)原式=6x3y4z÷2xy3–4x2y3z÷2xy3+2xy3÷2xy3 =3x2yz–2xz+1;
(2)原式= 72x3y4÷(–9xy2)+(–36x2y3)÷(–9xy2)+9xy2÷(–9xy2) = –8x2y2+4xy–1.
探究新知
考点探究5 多项式除以单项式的化简求值问题
例5 先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其 中x=2015,y=2014.
25 27
.
探究新知
单项式除以单项式
(1)计算:4a2x3·3ab2= 12a3b2x3 ; (2)计算:12a3b2x3 ÷ 3ab2= 4a2x3 .
解法1: 12a3b2x3 ÷ 3ab2相当于求( )·3ab2=12a3b2x3. 由(1)可知括号里应填4a2x3.
解法2:原式=4a2x3 ·3ab2 ÷ 3ab2=4a2x3. 理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指 数0=2–2,而b0=1,x的指数3=3–0.
(1)4a8 ÷2a 2= 2a 4 ( × ) 2a6
同底数幂的除法,底数不 变,指数相减.
(2)10a3 ÷5a2=5a ( × ) 2a
系数相除
求商的系数,应
(3)(–9x5) ÷(– =–3x4 ( × )3x4
注意符号.
×
(4)12a3b ÷4a2=3a ( ) 7ab
只在一个被除式里含有的字母,要连同它的 指数写在商里,防止遗漏.
方法总结:计算同底数幂的除法时,先判断底数是否相同或变 形相同,若底数为多项式,可将其看作一个整体,再根据法则 计算.
巩固练习
1. 计算:
(1)(–xy)13÷(–xy)8;

14.1.4整式的乘法(一)单项式乘以单项式

14.1.4整式的乘法(一)单项式乘以单项式
【教师活动】组织学生参加“才艺比赛”.
【学生活动】完成上述手工制作,与同伴交流.
【教师引导】在学生完成之后,教师拿出一张美丽的风景照片,提出问题:你们看这幅美丽的风景图片,如何装饰它会更漂亮?
【学生回答】加一个美丽的像框.
【引入课题】假如要加一个美丽的像框,需要知道这幅图片的大小,现在告诉你,图片的长为mx,宽为x,你能计算出图片的面积吗?
【学生活动】动手列式,图片的面积为mx·x=?
【教师提问】对于mx·x=?的问题,前面我们已学习了乘法的运算律以及幂的运算法则,现在请你运用已学知识推导出它的结果.
【学生活动】先独立思考,再与同伴交流.
实际上mx·x=m(x·x)=m·x2=mx2.
【拓展延伸】请同学们继续计算mx·x=?
【学生活动】先独立完成,再与同伴交流,踊跃上台演示.
前提测评
计算:
(1)3x2·5x=
(2)2x2·12x2=
(3)5y·25y2
教学过程
一、创设情境,操作导入
【手工比赛】
让学生在课前准备一张自己最满意的照片,自己制作一个美丽的像框.上课之后,首先来做游戏,“才艺大献”,把自己的照片加一个美丽的像框,看谁在10分钟之内,可以装饰出美丽的照片,谁的最好,老师就送他个好礼物.
【学生活动】分四人小组,合作学习.
四、随堂练习,巩固深化
课本P99练习第1、2题.
五、课堂总结,发展潜能
本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上.
提问:(1)请同学们归纳出单项式乘以单项式的运算法则.
(2)在应用单项式乘以单项式运算法则时应注意些什么?
六、布置作业,专题突破
1.课本P104习题14.1第2、3题.

14.1.4整式的乘法--单项式乘以单项式(教案)

14.1.4整式的乘法--单项式乘以单项式(教案)
五、教学反思
今天的教学中,我发现学生们在理解单项式乘法的概念和运算法则上存在一些困难。尤其是在处理含有多个字母的乘法时,有些同学容易混淆指数的相加规则。这让我意识到,需要通过更多具体的例子和直观的演示来帮助他们巩固这部分知识。
在讲授过程中,我尽量使用了生动的语言和实际情境来解释抽象的数学概念,比如通过计算长方体的体积来展示单项式乘法的应用。这样的做法似乎能够让学生们更好地理解数学知识在实际生活中的重要性。
2.抽象思维和逻辑推理能力:培养学生从具体实例中提炼规律,形成抽象概念,并能运用逻辑推理进行问题求解。
3.数学建模能力:使学生能够运用所学知识解决实际生活中的问题,如几何图形的面积、体积计算等,增强数学应用的意识。
4.合作交流能力:通过小组讨论、互助学习,培养学生与人合作、沟通的能力,提高解决问题的效率。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“单项式乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘法--单项式乘以单项式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”比如,计算一块长方形的面积,这就涉及到了单项式的乘法。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索单项式乘法的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

八年级数学上册 整式的乘法 人教版 (2)

八年级数学上册   整式的乘法   人教版 (2)

多项式除以单项式
例6 计算:(1) ( 4m2n16m n2)2m;
(2)( 3x2yxy21xy)(1xy) .
2
2
解:(1)原式= 4m2n2m( -16mn2) 2m = 2mn-8n2.
(2)原式= 3x2y ( -1xy) ( -xy2) ( -1xy) 1xy ( -1xy)
不是同底数的幂相除,需先将其转化为同底 数幂相除的形式,在转化的过程中要注意符号是 否改变.
单项式除以单项式
例5
计算:(1)(-5x4y6)÷
1 2
x
2
y
2

;
(2)(-3.6×1010)÷(-2×102)2;
(3)4a3m+1÷(-8a2m-1);
(解4):-24(m15)n4÷原(式-6=m-52n÷2)1÷x 412-2my6n-2 =2 -1.0x2y4.
计算单项式乘多项式时,符号的确定是关键,可把 单项式前及多项式各项前的“+”或“-”看成性质符号, 把单项式乘多项式的结果用“+”连接,最后写成省略 “+”的代数式和的形式.
多项式乘多项式
例3 计算:(1)(a+b)(a-b); (2)(a-b)(a2+ab+b2); (3)(-xy2+2x2yz2)(xy2z2-xy+1).
∵乘积中不含x2项和x3项,
p 3 0,
∴ q 3 p 8 0,
解得

p q

3, 1.
故p,q的值分别为3,1.
方法点拨 实际上,解答本题时可以不用把两个多项式直接
相乘,由于这两个多项式乘积中含x2的项可由因式中含 x2的项与常数项的积以及两因式中的一次项的积,再合 并同类项得到,而x3项只能是两个因式中含x2的项与含x 的项的积,再合并同类项得到.因此,只要找出有关项相 乘,再合并同类项,由题意列出方程或方程组求解即可.

8 人教初中数学八上 14.1.4 整式的乘法( 1课时)教案 【2023,最新经典教案】

8 人教初中数学八上 14.1.4 整式的乘法( 1课时)教案 【2023,最新经典教案】

14.1.4 整式的乘法(1)教学目标 探索并了解单项式与单项式、单项式与多项式和多项式与多项式相乘的法则,并运用它们进行运算.让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力 教学重点 单项式与单项式、单项式与多项式和多项式与多项式相乘的法则 课时分配 3课时班 级教学过程设计意图 第一课时:(一)知识回顾:回忆幂的运算性质: a m·a n=a m+n(a m )n=a mn(ab )n=anb n(m,n 都是正整数)(二)创设情境,引入新课1.问题:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?【1】2.学生分析解决:(3×105)×(5×102)=(3×5)×(105×102)=15×107【2】 3.问题的推广:如果将上式中的数字改为字母,即ac 5·bc 2,如何计算?【3】ac 5·bc 2=(a·c5)·(b ·c2) =(a·b)·(c 5·c2) =abc5+2=ab c7.(三)自己动手,得到新知1.类似地,请你试着计算:(1)2c 5·5c 2;(2)(-5a 2b3)·(-4b 2c)【4】2.得出结论:单项式与单项式相乘:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. (四)巩固结论,加强练习例:计算: (-5a 2b )·(-3a) (2x )3·(-5xy 2)练习:课本练习1,2【1】让学生自己动手试一试,在自己的实践中获得知识,从而构建新的知识体系. 【2】提问学生原因 【3】从特殊到一般,从具体到抽象,让学生在自己的实践中获得单项式与单项式相乘的运算法则. 【4】先不给出单项式与单项式相乘的运算法则,而是让学生类比.单项式乘以单项式的运算法则 (二) 创设情境,提出问题1.问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶),分别是a,b ,c.你能用不同方法计算它们在这个月内销售这种商品的总收入吗? 2.学生分析:【1】 3. 得到结果:一种方法是先求三家连锁店的总销售量,再求总收入, 即总收入为:________________ 另一种方法是先分别求三家连锁店的收入,再求它们的和 即总收入为:________________ 所以:m (a+b+c)= m a+mb+mc 4.提出问题:根据上式总结出单项式与多项式相乘的方法吗?(三) 总结结论【2】单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加.即:m(a+b +c)= ma+mb+mc (四) 巩固练习 例: 2a 2·(3a 2-5b) ab ab ab 21)232(2•- (-4x 2) ·(3x+1);练习:课本练习1,2 (五)附加练习1.若(-5a m+1b 2n-1)(2a n b m )=-10a 4b4,则m-n的值为______ 2.计算:(a 3b )2(a 2b)3 3. 计算:(3a 2b)2+(-2a b)(-4a 3b)4. 计算:)34232()25-(2y xy xy xy +-• 5.计算:)227(6)5)(3-(2222y xy x y x xy -+6.已知,3,2==b a 求)232()(32222a ab a ab ab ab b a ab -+--+的值 7.解不等式:12)23()1(222-〉+--+x x x x x x8.若m x x +-322与22-+mx x 的和中不含x 项,求m 的值,并说明不论x 取何值,它的值总是正数 (五)小结 【1】这个实际问题来源于学生的生活实际,所以在教学中通过师生共同探讨,再结合分配律学生不难得到结论.【2】这个问题让学生回答,参照乘法分配率作业板书设计教学反思预习要点单项式乘以单项式和单项式乘以多项式的运算法则 (二) 创设情境,感知新知1.问题:为了扩大绿地面积,要把街心花园的一块长a米,宽m 米的长方形绿地增长b 米,加宽n 米,求扩地以后的面积是多少?2. 提问:用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系?【1】 3.学生分析4.得出结果:方法一:这块花园现在长(a+b)米,宽(m+n )米,因而面积为(a +b)(m+n )米2.方法二:这块花园现在是由四小块组成,它们的面积分别为:am 米2、an 米2、bm 米2、bn 米2,故这块绿地的面积为(am +an+bm+b n)米2.(a+b )(m+n)和(am+a n+bm+bn)表示同一块绿地的面积, 所以有(a +b)(m+n)=a m+an+bm+bn 【2】(三) 学生动手,推导结论 1. 引导观察:等式的左边(a+b )(m+n)是两个多项式(a+b )与(m +n)相乘 ,把(m+n)看成一个整体,那么两个多项式(a+b)与(m+n)相乘的问题就转化为单项式与多项式相乘,这是一个我们已经解决的问题,请同学们试着做一做.2.学生动手:3. 过程分析:(a+b)(m +n)=a(m+n)+b(m+n) ----单×多 =am+an +bm+bn ----单×多4.得到结论:【3】多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(四) 巩固练习例:)32)(2(22y xy x y x -+- )65)(52(2+-+x x x 【4】练习: )y x y -y)(x (x y)-8y)(x -(x 2)1)(x (3x 22++++ 课本练习1 例:先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6练习:化简求值:)32)(12()1)(1(3)3)(2(-+--+++-x x x x x x ,其中x=54一块长m 米,宽n 米的玻璃,长宽各裁掉a 米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?(五) 深入研究1.计算:①(x+2)(x+3);②(x -1)(x+2);③(x+2)(x -2);④(x-5)(x-6);⑤(x+5)(x +5);⑥(x-5)(x-5);并观察结果和原式的关系【1】这个问题激起学生的求知欲望,引起学生对多项式乘法学习的兴趣. 【2】借助几何图形的直观,使学生从图形中可以看到.让学生对这个结论有直观感受. 【3】让学生试着总结多项式与多项式相乘的法则. 【4】强调多项式与多项式相乘的基本法则,提醒注意多项式的每一项都应该带上他前面的正负号.在计算时一定要注意确定积中各项的符号.3. 结合课本练习第2题图,直观认识规律,并完成此题. 附加题:1.⎩⎨⎧++〉+-〈+-++)2)(5()6)(1(22)1()3)(2(x x x x x x x x2. 求证:对于任意自然数n ,)2)(3()5(+--+n n n n 的值都能被6整除3. 计算:(x +2y-1)24. 已知x2-2x =2,将下式化简,再求值. (x-1)2+(x+3)(x-3)+(x-3)(x-1)5. 小明找来一张挂历画包数学课本.已知课本长a 厘米,宽b厘米,厚c 厘米,小明想将课本封面与封底的每一边都包进去m厘米.问小明应该在挂历画上裁下多大面积的长方形?(六)小结 作业板书设计教学反思预习要点分式的乘除分式的乘除(一) 教学目标ﻩ理解分式乘除法的法则,会进行分式乘除运算 重点、难点ﻩ重点是掌握分式的乘除运算难点分子、分母为多项式的分式乘除法运算情感态度与价值观 通过教学使学生掌握类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识第一步:创景引入问题1 一个长方体容器的容积为V,底面的长为a 宽为b,当容器内的水占容积的 时,水高多少?长方体容器的高为 ,水高为.问题2 大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地 b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?大拖拉机的工作效率是 公顷/天,小拖拉机的工作效率是 公顷/天,大拖拉机的工作效率是小拖拉机的工作效率的( )倍.观察下列运算:,43524532543297259275,53425432⨯⨯=⨯=÷⨯⨯=⨯⨯⨯=⨯, .279529759275⨯⨯=⨯=÷ 猜一猜??=÷=⨯cda b c d b a 与同伴交流。

【最新版】八年级数学上册课件:14.1.4 整式的乘法(第2课时)

【最新版】八年级数学上册课件:14.1.4 整式的乘法(第2课时)

= –x2–4xy+8y2
当x=
–2,y=

1 2
时,
原式= –6
探究新知
14.1 整式的乘法/
例3 已知ax2+bx+1(a≠0)与3x–2的积不含x2项,也不
含x项,求系数a、b的值.
解:(ax2+bx+1)(3x–2)
方法总结:解决此类问题
=3ax3–2ax2+3bx2–2bx+3x–2, 首先要利用多项式乘法法
D3..已b知=0ab=a+b+1,则(a–1)(b–1)=2_____.
课堂检测
14.1 整式的乘法/
4. 判别下列解法是否正确,若不正确,请说出理由. (1) (2x 3)(x 2) (x 1)2;
解:原式 2x2 4x 6 (x 1)( x 1) 漏乘 2x2 4x 6 ( x2 2x 1)
a
m
b
n
素养目标
14.1 整式的乘法/
2. 能够运用多项式与多项式的乘法运算法 则进行计算.
1. 理解并掌握多项式与多项式的乘法运算 法则.
探究新知
知识点
14.1 整式的乘法/
多项式乘多项式的法则
1.如何进行单项式与多项式乘法的运算?
(1)将单项式分别乘以多项式的各项.

(2)再把所得的积相加.
=22+14 –56 =–20.
课堂检测
14.1 整式的乘法/
能力提升题
解方程与不等式: ①(x–3)(x–2)+18=(x+9)(x+1);②(3x+6)(3x–6)<9(x– 2)(x+解3):.①原式去括号,得:x2–5x+6+18=x2+10x+9,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巩固法则
练习1 ( 1)
下面的计算对不对?如果不对,应该怎样改?
3 2 6 3 a 2 a = 5 a ; × ( 2) 2 2 4 √ 2 x 3 x = 6 x ; ( 3)
2 2 4 3 x 4 x y = 12 x ; × ( 4)
5 y 3 3 y 5 =15 y15. ×
课时小结:
1、单项式与多项式相乘的实质是把单项式乘以多项 式转化为单项式乘法 2、相关的混合运算,要弄清顺序 (1)单项式乘以单项式或单项式乘以多项式。 (2)整式加减注意最后应合并同类项。 几点注意: 1、 单项式分别与多项式的每一项相乘时,要注意积 的各项符号的确定:同号相乘得正,异号相乘得负 2.不要出现漏乘现象 3、运算要有顺序:先乘方,再乘除,最后加减。有括号一 般先去括号(小→大)
巩固法则
练习1 下列计算对吗?若不对,应该怎样改?
2
× 2 3 2 2 x ( x y ) = 2 x 2 x ; × ( 2)
a a-1 )=3a ; (1) 3(
2
( 3) (-3x ) (x-y)=-3x -3x y; ×
3 2
( 4) (-5a) (a 2 -b)=-5a3 +5ab.

巩固法则
2
2
你在计算这3 个小题时,分别用到了学过的哪些知 识、法则或运算律?
深入探究
【例2】如图,为扩大绿地面积,要把街心花 园的一块长m米,宽b米的长方形绿地,向两边 分别加宽a米和c米,你能用几种方法表示扩大后 的绿地面积? 1.交流解法 m 方法一: m(a b c); a b c 方法二:ma mb mc .
巩固法则
计算下列各式: 2 3 2 3 x 5 x ; ( 1 ) (-5a b) (-3a) ; ( 1) 2 3 2 4 ( y 2 xy ); ( 2 ) (2 x) (-5 xy ) . ( 2) 2 ( 3) (-3x) 4 x 2 .
例1 计算:
2 (4 ) (- 2a ) (-
2.比较结果
m(a b c) = ma mb mc
观察这个等式, 你发现了什么?
深入探究
3.计算面积
2 m 3 x , a x , b 2x, c 1 ,试用x表示长方 如果
形的面积.
即计算3x( x 2x 1)
2
4.归纳法则 单项式与多项式相乘,就是用单项式 去乘多项式的每一项,再把所得的积相加. 运用分配律
例1 计算:
2
练习2 计算下列各式: a 5a-2b); (1) 3(
( 2 ) (x-3 y) (-6 x); (- 4 x ) (3x+1 ); ( 1) 2 5 ( x 2 x -4x 3); ( 3 ) 2 2 1 ( ab -2ab) ab. ( 2) 2 2 ( 2 a ) ( a ab + b ) . ( 4 ) 3 2 点评:(1)多项式每一项要包括前面的符号;
布置作业
新课堂:55-56页
(1)已知ab 6, 求 - ab(a b - ab - b)的值
2 2 5 3
(2)已知x 3, y 2, 求代数式 1 m n 1 n m ( x y ) ( x y )的值 3 2
m n
m n
知识点一 【引例】光的速度约为 3 105 千米 / 秒,太 2 阳光照射到地球上需要的时间大约是 5 10 秒, 你知道地球与太阳的距离约是多少吗?
(3 105 ) (5 102 )
思考:如何计算? 利用乘法的交换律和结合律.
(3 105 ) (5 102 ) (3 5) (105 102 ) 15107 1.5 108.
(2)单项式必须与多项式中每一项相乘,结果的项数
与原多项式项 数一致; (3)单项式系数为负时,改变多项式每项的符号。
巩固法则
例2
2 2 ( x x x ) + 2 x ( x+1 ) . 化简:
练习3
ห้องสมุดไป่ตู้
化简:
2 ( x-1 ) + 2( x x 2 - 2 x+3); ( 1) x 1 3 2 x x+1) -3( x x - 2) . ( 2) ( 2 2
练习1
ab );
2
练习2
计算下列各式:
( 1) (2 105) (6 103);
3 2 ( ab )( 2 a )( 3 ab ) . ( 2)
知识点二
计算:
1 2 ); (1) 2 x 3x y; (2) (- 2a ) (- ab 8 1 1 1 ( 3) (-12) ( + - ) . 3 4 6
探究新知
想一想:下面式子如何计算?
3x5 5 x 2 ax5 bx 2
(1)这两个算式在运算上有何共同特点?
单项式与单项式相乘. (2)请用自己的语言概括单项式与单项式相乘 的法则.
单项式与单项式相乘,把它们的系数、同底 数幂分别相乘,对于只在一个单项式里含有的字 母,则连同它的指数作为积的一个因式.
八年级
上册
14.1 整式的乘法 (第3课时)
复习有关知识
计算:
(-5) (-11 ) 2; (1 )
(2) 10 102 103;
2 2 ( 3) (-3) (- 4) (- 2) ;
(4) b5 b7;
3 ( 5) (-2a 2b) .
回忆:什么是单项式?什么是多项式?什么是整式?
相关文档
最新文档