Perspective Rectangle Detection
IPEL-E80V-IRW1 8MP Starlight Eyeball网络摄像头说明书

IPEL-E80V-IRW18MP Starlight Eyeball Network Camera●8MP, 1/2.8” CMOS image sensor, low illuminance, high image definition●H.265 & H.264 triple-steam encoding●Outputs max. 8MP (3840 × 2160) @20 fps (AIfunction enabled by default) and supports 8MP (3840 × 2160) @25/30 fps when AI function is disabled ●Intelligent Motion Detect and Perimeter Protection ●WDR(120dB), Day/Night(ICR), 3DNR,AWB,AGC,BLC,●Starlight, Max. IR LEDs Length 164 ft, Built-in Mic ●256GB Micro SD memory, IP67, PoEStarlight TechnologyFeaturing Starlight Technology, this camera is ideal forapplications with challenging lighting conditions. Its low-light performance delivers usable video with minimal ambient light. Even in extreme low-light conditions, Starlight Technology is capable of delivering color images in near complete darkness (0.005 lux).iMD (Intelligent motion Detect)This is an upgraded version of motion detection currently known as Intelligent Motion Detection (iMD). The upgraded Plus version greatly improves alarm accuracy by pre-loading a deep learning algorithm that recognizes people and vehicles. Motion detection alerts containing a human and/or vehicle intrusion event are now possible with up to 95% accuracy. Eliminate false alarms, save time and keep stress levels low knowing you're protected.The IPEL-E80V-IRW1 is a 4K eyeball style IP camera equipped with a 2.7 mm–13.5 mm motorized varifocal lens capable of up to 8MP (3840 × 2160) @30 fps. Due to the high resolution, the camera supports H.265 compression for optimized storage and enhanced low light capabilities with Starlight support and a max IR distance of 164 feet. This tough IP67 rated camera also supports 256GB Micro SD storage and audio capabilities with a built-in microphone.As an Elite line camera, it is also equipped with advanced AI capabilities with Intelligent Motion Detect and PerimeterProtection. This technology utilizes a deep learning algorithm that recognizes people and vehicles, which drastically reduces false positives, enabling a more optimized search function.System OverviewFunctionsProtection (IP67, wide voltage)Subjected and certified to rigorous dust and water immersion tests, the IP67 rating makes it suitable for demanding outdoor applications. For environments with rain, sleet, snow and fog, an integrated wiper provides users with clear visibility at all times.Wide voltage: The camera allows ±30% input voltagetolerance (wide voltage range), and it is widely applied to outdoor environment with unstable voltage.Smart H.265+Deliver high quality video without straining the network, Smart H.265+ is the optimized implementation of H.265. The Smart H.265+ encoding technology includes a scene adaptive encoding strategy, dynamic GOP, dynamic ROI, flexible multi-frame reference structure and intelligent noise reduction, providing saving of up to 70% of bandwidth and storage when compared with standard H.265.Wide Dynamic Range (WDR)The camera achieves vivid images, even in the most intensecontrast lighting conditions, using industry-leading wide dynamic range (WDR) technology. For applications with both bright and low lighting conditions that change quickly, True WDR (120 dB) optimizes both the bright and dark areas of a scene at the same time to provide usable video.Perimeter ProtectionIC Realtime’s Perimeter Protection features significantly improve detection accuracy. The benefits of PerimeterProtection include up to a 90% reduction in false alarms. Other advantages include a decrease in pixel count requirement for object detection, which translates into more efficiency with less strain on the system. Perimeter Protection options let you customize tripwires based on the object type and allowintelligent automation within a limited area of access such as pedestrian or vehicle-only zones. The combination of advanced AI analytics and real-time alerts maximizes efficiency & balance of the total systems capacity andresources resulting in greater surveillance system efficiencyTechnical SpecificationImage Sensor 1/2.8”8 Megapixel progressive CMOS Effective Pixels 3840 (H) × 2160 (V)RAM/ROM 512MB/128MB Scanning System ProgressiveElectronic Shutter Speed Auto/Manual 1/3 s–1/100000 s Minimum Illumination *************S/N Ratio > 56 dB IR Distance 50 m (164 ft)IR On/Off Control Auto / Manual IR LEDs2Lens Type Motorized vari-focal Mount Type φ14Focal Length 2.7 mm–13.5 mm Max. Aperture F1.5Angle of View Horizontal: 113°–31°Vertical: 58°–17°Iris TypeFixed aperture Close Focus Distance0.8 m (2.6 ft)DORI DistanceLensDetect Observe Recognize Identify W 279 ft 111 ft 55 ft 27 ft T918 ft367 ft183 ft91 ftLensCameraPan/Tilt/Rotation RangeHorizontal: 0°–360°; vertical: 0°–78°; rotation: 0°–360°Pan/Tilt/RotationPerimeter ProtectionTripwire; intrusion (Supports classification and accurate vehicle and human detection)Intelligent Motion Detect (iMD)Motion detection alarm for human and vehicle. Filters misinformation such as leaves and light.Intelligent SearchWorks together with AI-enabled NVRs to perform refine intelligent search, event extraction and merging to event videosIntelligenceCompression H.265; H.264; H.264H; H.264B; MJPEG (sub stream only)Streaming Capability3 StreamsResolution8M (3840 × 2160); 6M (3072 × 2048); 5M (3072 × 1728/2592 × 1944); 4M (2688 × 1520); 3M (2048 × 1536/2304 × 1296); 1080p (1920 × 1080); 1.3M (1280 × 960); 720p (1280 × 720); D1(704 × 576/704 × 480); VGA (640 × 480); CIF (352 × 288/352 × 240)Frame RateMain stream: 3840 × 2160 @(1–20 fps by default)3840 × 2160 @(1–25/30 fps when AI function disabled)Sub stream: 704 × 576 @(1–25 fps)/704 × 480 @ (1–30 fps)Third Stream: 1920 × 1080 @(1–25/30 fps)Bit Rate Control CBR/VBRBit Rate H.264: 3 Kbps–8192 Kbps H.265: 3 Kbps–8192 Kbps Day/Night Auto(ICR) / Color / B/W BLC Mode BLC / HLC / WDR(120dB)White BalanceAuto/Natural/Street Lamp/Outdoor/ManualVideoGain Control Auto / Manual Noise Reduction 3D DNRMotion Detection Off / On (4 Zone, Rectangle)Region of Interest Off / On (4 Zone)Smart IR Support Starlight Support Digital Zoom 16xFlip 0°/90°/180°/270° (Support 90°/270° with 1920 × 1080 resolution.)MirrorOff / OnPrivacy MaskingOff / On (4 Area, Rectangle)CompressionG.711a; G.711Mu; G726; AACAudioEthernet RJ-45 (10/100Base-T)Protocol HTTP; HTTPs; TCP; ARP; RTSP; RTP; UDP; SMTP; FTP; DHCP; DNS; DDNS; PPPOE; IPv4/v6; QoS; UPnP;NTP; Bonjour; 802.1x; Multicast; ICMP; IGMP; SNMP Interoperability ONVIF (Profile S/Profile G/Profile T); CGI Streaming Method Unicast / Multicast Max. User Access 20 (Total bandwidth: 72 M)Edge Storage NAS, SFTP, Micro SD Card (support max. 256 GB)Local PC for instant recording Web ViewerIE, Chrome, Firefox, Safari Management Software SmartICRSS, DSS Smart PhoneIOS, AndroidNetworkCertificationsCE-LVD: EN62368-1CE-EMC: Electromagnetic Compatibility Directive 2014/30/EUFCC: 47 CFR FCC Part 15, SubpartBUL/CUL: UL60950-1 CAN/CSA C22.2 No.60950-1-07CertificationsVideo Interface N/AAudio Interface Built-in Microphone AlarmN/AInterfacePower Supply DC12V, PoE (802.3af)Power ConsumptionBasic power consumption: 2.6W (12V DC); 3.3W (PoE)Max. power consumption (WDR + H.265 + IR LED intensity): 6W (12V DC); 7.3W (PoE)ElectricalOperating Conditions –30°C to +60°C (–22°F to +140°F)/Less than 95% RH Storage Conditions -40°C to +60°C (-40°F to +140°F)Ingress ProtectionIP67EnvironmentalCasing MetalDimensions 108.3 mm × 122 mm (4.3" × 4.8")Net Weight 685g (1.5 lb)Gross Weight828 g (1.8 lb)ConstructionDimensions (mm/in) Accessories。
基于HSV空间的玉米果穗性状的检测

湖南农业大学学报(自然科学版) 2017, 43(1):112–116. DOI:10.13331/ki.jhau.2017.01.020 Journal of Hunan Agricultural University (Natural Sciences)投稿网址:基于HSV 空间的玉米果穗性状的检测李伟1,胡艳侠1,吕岑2(1.长安大学信息工程学院,陕西 西安 710064;2.陕西科技大学信息工程学院,陕西 西安 710021)摘 要:为高效检测玉米果穗性状,建立了基于HSV(色调、饱和度、明度值)空间的玉米果穗性状的检测方法:使用机器视觉技术采集绿色背景玉米果穗图像,用HSV 直方图阈值算法去除绿色背景,用FFT 滤波器去除尖锐边缘和噪声,运用粒子滤波分离单一图像中的多个玉米果穗图像,并采用形态学腐蚀方法,经过4次迭代腐蚀,得到玉米果穗中间3行;检测玉米果穗的大小、形状、纹理和颜色4个特征的性状。
随机检测67张玉米果穗样本图像的结果表明,果穗大小和形状特征检测的准确率为100%,果穗颜色和纹理特征检测的准确率分别为98.55%和96.25%,平均每果穗检测时间为0.1 s 。
关 键 词:玉米果穗;图像处理;HSV 颜色空间;二阶矩;最小外接矩形中图分类号:TP274+.3 文献标志码:A 文章编号:1007-1032(2017)01-0112-05Traits detection of corn ear based on HSV color spaceLI Wei 1,HU Yanxia 1,LÜ Cen 2(rmation Engineering College, Chang’an University, Xi’an 710064, China; rmation Engineering College, Shaanxi University of Science and Technology, Xi’an 710021, China)Abstract : In order to meet the high efficient detection of the corn ear quality, a detection method of traits for corn ear were presented based on hue, saturation, value (HSV) color space. Firstly, the corn ear images with green background were acquired by using the machine vision technology, and then remove the green background using HSV histogram threshold algorithm, as well as filtrate sharp edges and noise using FFT filter. The particle filter was used to separate corns in an image. After four iteration corrosion by the corrosion morphology method, the 3 row between the ear of corn was obtained . The size, shape, texture and color characteristics were detected for corn ear. Using this method tested the 67 images of corn ear, the test results show that the testing accuracy of corn ear size and shape feature was 100%, while the ear color and the texture feature detection accuracy rate was 98.55% and 96.25%, respectively. The average detection time of one corn was 0.1 s.Keywords : image processing; corn ear; HSV color space; second moment; the minimum circumscribed rectangle收稿日期:2016–03–16 修回日期:2016–11–05基金项目:国家自然科学基金项目(211024140375) 作者简介:李伟(1981— ),男,陕西咸阳人,博士研究生,副教授,主要从事光电检测、基于图像处理的道路检测研究,235240274@基于计算机视觉技术的玉米果穗性状的检测,可以去除过小、霉变、畸形、破损果穗,大幅度提高玉米果穗的精选效率[1]。
英文门窗术语

铝合金门及门框 aluminum室外 上卷式百叶窗 exterior Bead 压条不锈钢 stainless steel 铜门及门 roll-up windows shutters Inter lock 封盖 框 bronze doors and frames 天窗及屋顶采光 SKYLIGHTS Sash connector 盖帽 木门 panel wood doors五金配件 hardware Floating transom 对开梃 塑料 门 plastic laminate-faced 门用小五金 door hardware Glass Adjust Board 玻璃垫片 doors推拉和折 叠门五金 sliding & Auxiliary Material 辅助材料 推拉门 和格栅 sliding doors & folding door hardware Wide side height 长面长度 grilles门操作器 door operators Narrow side height 窄面长度 安全门 detention/security doors 密封条,门槛及密封胶Frame Mullion 框梃 卷帘门 和格栅 coiling doors & weatherstripping,thresholds&Screen Sash 推拉纱扇 grillessealsInter Seal 盖帽工业厂房和棚厂门 industrial & 窗五金window hardware&Outward Opening Sash 外开扇 hangar doorsspecialtiesInward Opening Sash 内开扇折叠 门和格 栅 folding doors& 门窗配件door and window Sliding Door Sash 推拉门扇 grillesaccessoriesScreen sash Rail 挡轨 防爆门 blast-resistant doors Sash 扇 Pseudo Mullion 假中梃 入口 和商店门 面 ENTRANCE& Transom 框梃 Intergrated Frame Mullion 一体框 STOREFRONTSMullion扇梃 梃自 动 入 口 门 automatic entrance Hardware 五金件 Door Sash 外开门扇 doorsCoupler拼接材Door Frame 平开门框自动推拉平板式入口门Reinforcement 钢衬 Floor Spring Door Frame 地弹门框auto-sliding flat panel entrance Gasket 胶条,毛条 Floor Spring Door Connecting 地 doorsScrew 螺钉 弹门连接件入口 转 门 revolving entrance Wood 木衬 Jaiousie Window Holder 百叶窗架 doorsAluminum 铝衬 glazing Bead 玻璃压条 塑料窗 vinyl windows Door panel门板Coupling 连接材钢门及门框 steel doors & frames特种窗 special windowsFly screen 纱扇90°Corner 90 度转角连接材corner cleaning machine 角缝清理Stock code 库存编码Aluminium Rail Frame 铝轨外框机Set up the system 设置系统Jaiousie Window Vane 百叶窗roller shutter machine 卷帘机Subsystem page 子系统页面Steel Reinforcement 日系钢衬套glazing bead saw 玻璃条锯Rules page 规则页面Fixed Frame 固定框End milling 先孔Frame bottom length 框底长Outer Frame 外框size limits 极限尺寸Offset 偏移Triple Glazing Bead 三玻压条optimisation 最优化Rang 环状Doudle Glazing Bead 双玻压条output 输出Pos code 销售代码Single Glazing Bead 单玻压条ffcuts 边料,尾料Saw prog 锯切程序Doudle Seal Inward Sash 双密封内machine type 设备型号Drill code 钻头代码开扇pairing mode 设备模式Op field 操作区Triple Seal Outward Sash 三密封double mitre saw 双角锯,铝材切Pilot hole 安装孔外开扇割Op class 操作级别Glass Pad 玻璃垫板profile feed 型材剖面Pn 性能参数Tube 180 度转角连接件single cutting 单切DSB双边的Decoration bar 装饰条rear track 后轮距Internally glazed sash 内装玻璃Universal Post 转角圆管front track 前轮距上Brush Seal 密封毛条V-notch capabilities 切槽孔能力Espagnole 插销Yarn net Module 模块Drip rail 滴水槽Right-Angle Minor Frame 直边小断Machinery control 设备控制Door blinge 门铰链面外框Part 零件Slot vent 气压平衡槽Right - Angle Frame 直边外框Part matrix 零件矩阵Welding 焊接Aluminium Rail Frame 铝轨框digit logical code 三位逻辑代码Cutting , milling 铝塑材切割Static Coupling 转角拼接框Store 库存Copy router 仿形钻床header 页眉Face drainage 排水面Screw drilling 钻攻机cutting centre 锯切中心Specify 指定Bending machine 圆弧窗机CNC数控Format code 格式代码Internal corner cleaner n 内角酰Set up the visibility 设置可见度lockstile门锁竖挡fitting 装配Datum option 基准选择lockrail门锁横档flush-fitted 平齐式Overall 全部threshold 门槛gasket 密封胶条DIF 差值hingestile铰链竖挡glazing bead 玻璃扣条Map绘图计划jamb 框边glazing option 玻璃槽口Date folder 资料库Ball bearing slide 脚轮滑道hand punch 手动冲床Attribut page 属性页面Bolt pin 螺栓插销hinge 合页、铰链Adjoining 相邻Bolts and nuts forfurniture horizontal pivot 中轴(窗)Modifiled 改进的具用螺钉,螺帽intercoms 对讲装置Solution page 解决方法页面Accessories 附件inward open 内开DLL 动态连接链anti-slam 防撞letterbox 信箱Drgo 原来的arched 拱形limiting stay 限位撑、风撑Server management 服务管理器arched head 拱顶meeting rail 假中停塑料窗 vinyl windows assembly 装配mid-rail 中横框电子锁系统 electrical locking barrel hinge 圆柱合页milling cut 端铣机铣刀systems copy router 仿形铣床mullion 竖框Flush door 平面门,全板门corner crimping machine 挤角机multioperation press 多工位冲床Ledged door 直板门corner joint 挤角角码outer frame 边框High-density plywood 压缩胶合curve 弯弧outward open 外开板,高密度胶合板decorative sash bar (门、窗魄力pneumatic punch 气动冲床Margined flush door 镶边平板门外)的装饰格栅press tools 冲模Exterior door 户外门drainage 排水profile 型材断面Bow door 弓形门drillingmachine 钻床roller shutter 卷帘Double sliding door 双滑门drillingpatterns 钻孔模板routing template 仿形铣床模板top rail 顶横档end milling machine 端铣机routing tools 仿形铣刀bottom rail 下横档fabrication 制作、装配section 节点panels 门面face-fitted 塔接式(扇比框高)side hung 平开sill 门槛、窗台Cupboard-lock 拒门锁Marquetry work 镶嵌装饰品 magnetic push latch 磁性撞锁Straight-lock 企口锁slide 推拉 Decorative trims forMetal fittings 金属配件 strip window 条窗 furniture 家具金边饰条Matal handle 金属拉手 tilt 下悬 Drawer-lock 抽屉锁 Mold 模具T-jointT 形角码 Drawer runner 抽屉滑槽Office chair central tube transom 横框 accessories 办公椅中管配件turn 平开 Equipment for surface treatment Offic e chai rhardwarevent 开启扇口 表面处理工具accessories 办公椅五金配件ventilation 通风 3/4 extension slide部分开式滑道Out set 外盖型套轮vertical pivot 立轴(窗) F Faucet 水龙头 Panel veneer 板料wall attachment (与墙体)安装附 Fixture 固定装置 Plastic bolt and threaded axis 塑 Full extension slide 全开式滑道 料螺帽及牙轴五金词汇Furniture hardware家具五金 Pocket door slide 柜门滑道B Ball bearing slide 脚轮滑道 Furniture parts 家具零配件Prevent falling off due toBolt pin 螺栓插销 Furniture structural parts 家具turning 防止旋转脱落Bolts and nuts for furniture 结构零件 Secret-hinge 暗铰具用螺钉,螺帽 Gas lift chassis 气压棒底盘 Semifinished furniture product C Carcase 框架,架子 Glass door hinge 玻璃门铰链 andaccessories家具半成品及配Castor 小脚轮 Heavy duty slide承重式滑道Ceiling 天花板 Hook lock 钩锁 Semifinishe d produc tfo rCentral hinges 中央铰链 Keyboard slide 键盘板滑道 interior fittings装潢用半成品Chrome 铬 Large head type 大头型 Simple connecting fittings 简单Complete range of drawerslide Locating dowel定位榫钉五金配件种类型的抽屉滑道 Lock rail 安锁冒头 Single item 单项产品Component 零配件,元件 M Magnetic catch 磁性拉手 Sliding door roller series 推拉Concealed hinge 内藏铰链Magnetic-lock 磁锁门用轮系列Surface gluing 板面上胶Annealed glass 浮法(退火)玻璃Canopy 天蓬, 雨蓬Veneer trimming 薄片整修Anodizing oxidation coating 阳极Cantilever beam 悬臂梁Vertical upright 直挂格氧化喷涂Caption 说明, 标题Wood-button 木纽Anodizing 阳化Cast-in 埋入Wood components 木制配件Anti-corrosive zinc paint 防锈白Catalogue 目录 , 总目Wooden bar 车件漆Cementitious 水泥的Wooden cork 木塞Anti-reflective coating 防反射Channel 槽, 频道,通道Woodencurtain rod and ring 木制涂膜Circular hollow section窗帘杆及吊环Average=AVG. 平均Clear glass 透明玻璃Woodscrew 木螺钉Aviation obstruction 阻航Client 客户,委托人Wreathed hand-rail 扭弯扶手Backer rod 加强棒 , 泡沫棒Closure 外盖玻璃幕墙 --- glass curtain Base level 基本平面, 海平面Code 代码,法规wall Be equivalent to 等于Coefficient 系数4mm THK. Composite Aluminum Bear 负荷Composite 混合物,混合Plastic 4mm 厚复合铝板bedding 衬垫Compression 压,压迫5mm THK. Aluminum P late 5mm 厚单Bend 弯曲, 屈服Compressive 受压的铝板Bituminous paint 沥青油Concealed 隐藏的Acid 酸,酸性的Bituminous 含沥青的Concrete 混凝土Across 横过,交叉Bolt 螺栓Constant 常数Allowable 允许Bond 接合,搭接Construction toleranceAlloy 合金Bonding 搭接, 接合Contact surface 接触面Alum. bracket 铝支架Booklet 小册子Continuous beam 连续梁Alum. Panel 铝板Brace 斜撑Contractor 承包商Aluminum alloy 铝合金Bracket 支托Copper 铜Anchor Bolt 锚拴Buckle 使弯曲 ,使屈服Court 中庭Anchor 锚固Built-up 有组织的 , 密集的Cracked 开裂的Angle steel 角钢Butt welding 对接焊缝Crylic acid coating圆通施工容差Dead load 恒荷载Embedment预埋件Foam Rod 泡沫填充棒Deductio n 折减,扣除Equal angle 等边角钢Folded 折叠的Definiti on 定义,精确度Examined 审定Foreword 序言Deflection挠度Expansible 伸缩的Formula 方程Deform 变形Expansion Bolt 膨胀螺栓Free stand type 坐(落)地式Deformation 变形Exposed frame 明框full glass curtain wall 全玻幕墙Demountable panel 可拆除挂板Extrusion 挤压galvanizing 镀锌Derivation 引出,导出Fabricate 加工Galvanization 镀锌Detail 详图,节点图Fabrication 加工Galvanize 镀锌Detection 探知,发现Facial glass (facade glass) 面玻Galvanized Bolt 镀锌螺栓Diagonal 对角线Geometry 几何定位,定位(图)Diagrid 斜交格构Facial(facade)脸部、表面的Granite cladding 花岗岩围护,干Diaphragm 加强层Fastener-Stainless Steel 不锈钢挂石Die 冲模紧固件Granite 花岗石Distributed 均匀的,分布的Fatigue 疲劳Grille 格子, 隔栅Double glazing 双层(中空)玻璃Figured glass 压花玻璃Grout 水泥浆Double Skin Wall 双层幕墙Fillet 带子,带形的Grouting (填塞的)水泥砂浆Downwind 顺风面filletweld 角焊缝Gutter Sleeve 天沟,排水沟Drive pin 射钉Fin glass (stiffen finglass) Gyration 回转,旋转Dynamic 活动的,动态的玻璃Half strengthenedglass半钢化玻Earthquake load 地震荷载Fin 鳍,鳍状物Eccentric 偏心的Fireprevention防火Hanger system 吊挂系统Egress door 紧急出口Fire Stop mineral wool 防火岩棉Heat strengthened glass 半钢化玻Elastic 弹性的Fixing lug n. 摩耳Electrophoretic coating 电泳喷Flange 凸缘,翼缘Heat Soak Test 引爆处理Flashing 防水板,遮雨板Hidden frame curtain wall 隐框幕Element 构件Float glass 浮法玻璃Hidden frame 隐框Member杆件Podium矮墙,女儿墙Horizontal 水平的Membrane防水层Poisson 's Ratio 泊桑比Hot-dipped zinc galvanization 热八、、Mesh 网,网状物Polished glass 磨光玻璃浸锌Metallic 金属的Powder coating 粉末喷涂Imposed 应用的,施加的Mild steel钢Pre-cast 预埋,预置Inclined 倾斜的Micron 微米Preliminary 初步的Inertia moment 惯性矩Mock-up 实体样板Pressure 压力,压强Inertia 惯性Modulus 模量Principal 主要的Insulating Glass Unit (IGU) 中空Moment 力矩Purposed 计划的,打算的玻璃Monumental glazing 巨幅玻璃PVDF Coating 氟碳喷涂Intumescent coating 防火涂层Movement capacity 变形能力PVF2 Coating 氟碳喷涂in a complete manner 在完整意义Negative 否定,负数Railing 扶手,栏杆Issue 发行,发布Neutral 中性的Rectangle hollow section 矩形管Joint 连接Node 节点Refer 提交,查阅Joist 托梁,Normal 普通的,法向的Reflective glass 反射玻璃Laminated glass 夹层玻璃Nut 螺丝帽Reinforcement 加强件,加固物Lateral 侧面的,旁边的Operablepanel可开启面板Relative Heat Gain 相对热增益Linear 线性的Panel 板,仪表板Relief pattern 浮雕图案Lip 薄片Pane窗格玻璃Resistance 抵抗Lips 薄片、唇Patio 内庭Restrain 约束Load 荷载,加载Peak 峰值Revision 修订,校订Lobby 大厅Penetration butt 对接埋入焊Revolvingpanel旋转面板Local 局部的,地方性的Penetration 浸透,浸入reflectiveratio反射率location blocks 定位块Pile 桩RigidInsulation刚性绝缘体Louver 百叶,百页Pin 大头钉,栓Rigidity 刚性Lug 凸耳,凸杆Plate 金属板Rod 棒,竿Machine Bolt 机制螺栓Plinth 基座Scope 范围,广度Screw 螺钉,拧紧Splice 接合, 连接Tinted 着色的Sealant 密封胶Square hollow section 方形管Tolerance 允许误差Security configuration 保安配置Stainless steel bolt 不锈钢螺栓Top 顶部,上总的Self-weight 自重Steel bracket 钢角码Torsion 扭转,扭矩semi-exposed framing glass Stiffen 使变硬Transom 横梁,横档curtain wall 半隐框幕墙Strength 强度Trapezoid 梯形,不等边四边形Serial 序列,系列Structural silicone 结构硅胶transmissibility 透射率Setting block 垫块Strut 支柱Type 类型,型号,打字Shading coefficient 遮阳系数Sub-contractor 分包商Typical 标准的Shaft 管井Submission 递呈,提交, 服从Unequal angle steel 不等边角钢Shear force 剪力Suction 吸力Unequal angle 不等边角钢Shear 修剪,剪切Sunshade 遮阳Unfolded 展开图Sheet 薄板Supplier 供应商Visible Light Reflectance 可见光Similar 相似的,相同Supply 提供,补充,替代反射率Simply supported beam 简支梁Support on four sides 四边支撑Visible Light Transmittance 可见Single 单层钢化玻璃Support on two sides 两边支撑光透光率Single toughened glass 单层钢化Super-structure 主体结构Void 中空处玻璃Symmetry 对称的Walkable 可上人的Site-ground 室外地面Tee字形,T形物Weather proofing sealant 耐候胶Silicone 硅树脂Tempered glass 钢化玻璃Weep滴水Slab 楼板Tempered 调节的,钢化的welding line 焊缝Sleeve 袖子,套筒Tensile 拉力的,张力的Welded seam 焊缝Snow and ice retention 雨雪拦截Tension 张力,拉力Zinc-plated 镀锌设施Terrain 地带,地域,范围建筑词汇Span 跨度Thread 纤维masonry wall 砌筑墙体 ; 砖石墙体Spandrel 横档The arm of force 力臂sag/cave in 塌陷,凹陷Spider fixing (玻璃)固定爪Tile 砖,磁片shear wall 剪力墙shear wall frame interaction grid structure 网架结构安装工程 erectionwork剪结构HVAC=Heating, Ventilation &Air 安装就位 erecting and settingskeleton-and-skin system 骨架结Conditioning 暖通空调安装施工资格 installationheat exchanger 空气循环qualificationspace frame 空间网架piled-up mass of adobe=sun-dried安装容差 installationtolerancestructural members 结构构件mud干打垒暗匣 Blindpocketswitchbox 配电箱precast 预制的奥氏体Austenitictape inward 收分precise measurements 精确的计算百叶(窗)louver; shutter;Persiantensile strength 拉力prefabrication 配件预制blindstimber construction =wood frame overlapping 搭接,重叠,(柱式的)百叶跨度 length of thelouver木结构组合百叶帘 venetionblindtransformer substation 变电站recirculate air 再循环空气百页片Bladetruss 桁架research model 结构模型百叶铝板 aluminum louverpanelunderground network of pipes resistanceagainstweathering|百叶式出气口 louvered airoutlet下管网耐候性搬运handlingwood beam 木梁安全防火隔热fire-safing板;板块 board; plate ;panel ;slabweight strength 重力insulation板材plateyield 屈服安全荷载 safeload;safetyload半钢化玻璃 heatstrengthenedshell system 壳体结构安全荷载系数 safety loadfactorglass; half strengthenedglassbundled tube system 束筒体系安全帽 protecting cap ;safety半径 radius ;semidiametercantilevered 悬臂的helmet半透明的translucentcantilevered end 悬臂端安全系数safety半隐框玻璃幕墙 semi-exposedclose interval 柱)间距紧凑factor/coefficientframing glass curtainwallcritical point 受力)临界点,相安装标准 installationbenchmark包装 packaging 保安配置Security变点安装程序 installationprocedure configurati ondistributing box 配电柜安装方法报告书 installation 保护(涂)层 protectivecoatingframed tube 框筒结构method statement 保证(书) warranties保温板 heated board 标价单 bid sheet 玻璃钢 glass reinforced plastic保温材料 insulation material 标签 label ;checklist玻璃固定 fixing forglass保温层 insulating layer 标示display玻璃间隔条 glazingspacer保温顶棚 heat insulated ceiling 标书bid玻璃肋式点支承幕墙Glass rib保温(岩)棉insulation 标志signageSteelstrand报价 bid ;quote 标准尺寸 typicaldimension玻璃类型表 glass typeschedule报价单quotation 标准版本 standardsversion玻璃密封垫 glazinggasket背板 back-pan 标准构件 standardelement玻璃密封条 glazingtape备注remark 标准间隔材料 standard spacer 玻璃面板 glasspanel比例scale material玻璃面砖 glass facingtile比例proportion 标准节点 typicaldetail玻璃幕墙 glass curtainwall;避雷保护 lightning protection 标准值 characteristicvaluewindow wall; glass wall; glass避雷针 Lighting protection air 表面处理finishpanel wall; coated glass;twinkletermina l 表面涂层 surfacecoatingwall编号 numbering ; serial number 表面压缩应力 surface 玻璃腔 glasspocket边缘荷载 edge load compressionstress玻璃墙面 glass wallface边缘块 edge block 冰雪处理与缓和 ice and snow 玻璃穹顶 glassdome变化系数 variation coefficient management andmitigation玻璃透光率 transmittanceof变量Variable 丙烯酸喷涂Duracronglass变硬Stiffen 玻璃安装材料 glazingmaterial玻璃温度应力 thermal stressof变形 deform; deformation 玻璃安装商glazierglass变形缝 movement joint 玻璃板 glassplate玻璃屋顶 glass roof ; glazedroof变形能力 deformation capacity 玻璃采光顶 glassskylight玻璃压条 glazingbead标称nominal 玻璃窗;玻璃装饰glazing玻璃翼/肋 glassfin标记 mark/marking; indicator; 玻璃窗标准 glazingstandards玻璃原片 primaryglasslabe l 玻璃窗工艺 glazingworkmanship玻璃砖 glassblock标价 bid price 玻璃刀 glasscutter波纹corrugation波纹拉丝不锈钢板 stainless 不锈钢自攻螺钉 self-tapping槽 Channelsteel finish corrugated screw 槽,狭缝Slot波形的corrugated 不锈钢螺栓bolt槽钢 channel steel ;channel波纹不锈钢板 corrugated . plate 不锈钢机制螺栓 machinebolt槽口notch波形玻璃 corrugated glass 不锈钢暖气罩 heatingcover侧,测向的,侧面的,旁边的lateral波形垫片 corrugated gasket 不显眼的Inconspicuous侧塞块 sideblock波形铝板 corrugated aluminum 擦窗机,吊篮gondola 测试方案 test proposalsheet 擦窗设备 BMU (building 测压孔 pressuretap薄板 sheet; thin slab maintenanceunit)测验实体模型 testing mock-up薄垫片 Shim 擦窗设备公司 BMUsupplier 层间滑移 Interstorey drift薄膜film ;membrane 擦窗机荷载 gondolaload层间位移 floor levelmovement薄膜玻璃filmglass 擦窗设备荷载 BMU loads 叉车 fork lifttruck薄膜防水membranewaterproofing 擦窗器 windowcleaner插接件connector薄片Lip 材料审查报告 materialstesting茶色玻璃 dark brownglass补充文件 supplement rider report 产品保证 product guarantiesdocument 采购订单 purchaseorder 长期强度 long-term strength不等边角钢 Unequal angle steel 采购活动 procurementactivity常数Constant不规则荷载 abnormal load 采光玻璃屋顶 skylight glassroof常温养护 normal temperature不透明的 opaque 采光系数 daylightingfactor curin g不透明玻璃 opaque glass 采用预埋件 embed model 场地勘查 fieldsurvey不锈钢 stainless steel 彩色夹层可视玻璃 visionglazing场地条件 sitecondition不锈钢吊杆 rod with coloredinterlayer超白钢化夹胶玻璃 low-iron不锈钢螺钉 screw 彩釉玻璃 ceramic fritglass tempered laminated glass不锈钢紧钉螺彩釉夹胶玻璃 ceramic frit 超白钢化折弯夹胶玻璃 low-ironholding/set/stop screw laminatedglasstempered bent laminatedglass不锈钢紧固件 Stainless Steel 参数parameter超高层建筑 super high-riseFastene r 残余应力 residualstressbuilding车间 Shop初步概算 preliminary estimate垂直挡雨板 vertical rain-shield初步方案 preliminary scheme perpendicular to单 层 钢 化 玻 璃 Single toughened车库门 garage door 初步规划 preliminary planning 垂直幕墙 vertical curtain wall 撤除 removal 初步勘查 prelimina ry雌料 female material沉降缝 Settlement joint explorati on次 支 撑 构 件 secondary support 沉头螺钉 Countersunk screw 初期养护 initial curingmember 衬板 lining 初始应变 initial strain磁锁 mag-lock 衬垫 Bedding 出入口 access ; openings 磁砖 Tile撑杆 brace rod; stay bar 储存 storage 粗糙 rough ; roughness承包范围 extent of contractor 穿孔perforation粗糙系数 roughness factorscope 穿孔百叶 perforated louver淬火 玻璃 heat-strengthened 承包商;承包人 contractor 穿孔板 perforated plateglass 成本核算 cost accounting 传热路系统 heat-trace system脆性Brittleness 承压面 bearing surface 传 热 系 数 heat-transfer存放期 shelf life 承压 墙 bearing wall ; carryin gcoeffici ent 搭接, 接合 Bonding wal l 窗洞 window opening 打胶 sealant installation承压强度 bearing strength窗格 window division打孔 holes drilling; perforate承 载 力 carrying /bearin g窗合页 window hinge 大跨度结构 long span structure capacit y 窗框 window frame大理石 marble承载 力系数 bearing capacit y窗帘匣 pelmet 大理石板 marble slabfacto r 窗棂 window bar大理石墙面 marble wall face尺寸 size/dimension 窗扇 window sash; leaf大理石饰面 marble finish 尺寸公差 dimensional tolerance 窗台/槛 window sill大厅 Lobby tolerance of dimension 垂直 ( 方向 )的 vertical 大样图 detail drawing冲模 Die vertica lly 代码,法规 Code 抽芯铆钉 Blind rivet 垂直度squareness带空隙的Interstitial 初步的Preliminary垂 直 于 vertical to带子,带形的 Filletglass低碳钢 mild steel电导管 electrical conduitglass glass curtain wall顶部采光 toplighting单 层索网幕 墙 single-layer低温玻璃;退 火玻璃 annealed 电 动 开 启 窗 automatic operable cable-net curtain wall glas svent单剪连接 one shear joint滴水槽檐 drip edge 电泳喷涂 Electrophoretic coating单片玻璃 monolithic glass 底部 bottom 垫块,塞块, 支撑块 Setting block ; 单位成本 unitcost 底漆 primer Jack pad 单位面积 unit area抵抗 Resistance垫片 shim 单一 货 源责 任 single source 抵抗 力)矩 resistingmoment 垫圈 washer responsibil ity 地带,地域,范围 Terrain吊车,起重机 Crane 单元式幕墙 unitized curtain wall 地基沉降 Foundation settlement 吊顶 ceiling挡风板 wind shield 地接线 Ground connection 吊顶板材 ceiling tile挡水板 flashing 地心引力 , 重力 Gravity 吊顶荷载 suspended-ceiling load挡雨板 rain-shield 地震earthquake吊顶梁 ceiling beam导热 heat conduction 地面粗糙度 ground roughness type吊顶龙骨 ceiling joist导热系数 thermal conductivity 地震测试 seismic rocking testing吊 顶 主 龙 骨 main joist of 灯的安装和走线 Light fixture and地震荷载 seismic loadsuspended ceiling ; main runnerwirin g 地震荷载作用效应组合系数 吊顶幕墙 overhang curtainwall 灯架 light mounting seismic load action combination 吊顶体 系 ceiling suspension 灯具 lighting coeffici entsystem ; s uspended ceilingsystem 灯槽 light trough 递呈,提交,服从 Submission吊杆结构 suspendingstructure 灯荷载 light load 典型幕墙单 元 typical curtain 吊杠臂 Davit arm 等边角钢 equal angle steelwall unit 吊钩 tie back等效荷载 equivalent load 点拨件 spider吊篮 Gondola等效厚度 equivalent thickness 点支 式幕 墙 point supporting 丁 基 玻 璃 密 封 条 butyl glazing 等压设计 pressure equalization curtain walltape低辐 射镀膜玻璃 Low-E coated点支承玻璃幕墙 Point supporting丁基热熔密封胶 butyl sealant顶层 top level对接焊接 butt welding 法线(方向)的 normal 对角线 diagonal法兰 flange防腐 蚀垫片 anti-corrosion定期检查 regular inspection 对接埋入焊 penetration butt反复荷载 cyclic load定期清洁 progressive cleaning 对齐销钉 alignment rod反 光 glisten; reflection of 定义;精确度 definition 对准,成一条线 alignligh t定位块 setting block; location 端部释放 ends released 反光玻璃 anti-sun glass bloc k 端盖 end cap反光度reflectance定位螺丝 set screw 短期强度 short-term strength 反力reaction;counterforce 定位(图) geometry 短暂的 Transient反射玻璃 reflective glass 动荷载 dynamic load; moving load 断桥隔热条 thermal break反应,反作用 reaction 洞口 opening 断热条 thermal break泛水区 flashed area动态的,动力的 Dynamic 断热材料 thermal break material范围,广度 Scope 动力系数 dynamic factor 对齐销钉 alignment rod方案 plan; scheme 动 力 放 大 系 数 dynamic 多 功 能 建 筑 multi-purpose 方程 Formulaamplificatory coefficient architectu re方头螺栓 Square head bolt独 立 试 验 机 构 independent 多功能裙 楼 multi- functional 方头 紧定 螺 栓 Square-head testingagent podiumset-bolt镀膜玻璃 coated glass 多叶 片 转台 multiple plate 方通 Square hollow section 镀锌处理 galvanize turntab le方形 Square镀锌的 galvanized; zinc-plated E 额定荷载 rated load方形管 square hollow section镀锌钢板 galvanized steel panel 耳生 噪音 阻力 self-generated 防暴测试 bomb blast protection 镀锌 瓦楞 钢板 corrugated noiseresistance resistance testing galvanized sheet 发包 contract award防虫网 insect screen镀锌螺栓 Galvanized Bolt 发包工程 award work防反 射涂膜 Anti-reflective 堆积 accumulation 发光的 Luminous coatin g对称 Symmetry 法规要 regulato ry防 腐 蚀 corrosion protection 对称荷载 symmetrical loadrequirement santiseps iswasher防视玻璃 obscure glass 分布离差 dispersion 防汽阻隔 vapor barrier分布荷载 distributed load封样 approved sample防滑处理 Anti-slip treatment 防水 water proof; water proofing 分布众数 mode 防滑垫 Slide bearing pad 防水板,遮雨板 Flashing分段完工 staged completion 防火 fire protection/prevention 防水薄膜 waterproofing membrane 分格 module ; panel防 火 标 准 fire protection 防水层 Membrane分格高度 module heightstandar d 防水 层屋面系 统 membrane roof 分区墙 Compart wall防火材料 fire-proof materialsystem分析 analyze ; analysis 防火等级 fire-protection rating 防水海绵 waterproofing sponge分项系数 distribut ion防火堵料 fire proofplug 防水汽板 vapour retarder; vapour coeffici ent防火 封堵墙 fireproof closure retardant panel粉末喷涂 PPC ; powder coating wal l 防霜 加热 线 de-icing heating 风道 air passage防火隔断 fire proof partition; cabl e风洞测试 wind tunnel test/studyfire stop 防碳 化涂层 anti-carbonation 风洞试验报告 wind tunnel testing 防火构造 fire proof construction coatin grepor t防火卷帘 fire shutter 防 锈 白 漆 anti-corrosive zinc 风洞研究 Wind tunnel study 防 火 绝 缘 材 料 fire-safingpain t风格式样 style insulati on 防锈涂料 antirust paint风荷载 wind load防火可视玻璃 fire rated vision 防眩玻璃 glare control glass风荷载作用效应组合系 数 wind glazin g 防烟密封装置 smoke seal load actio ncombinatio n 防火岩棉 fire stop mineral wool 防雨(水)板 flashing coeffici ent 防火涂层 intumescent coating 防雨屏 Rain screen 风化的 Etched防 结 露 技 术 dew preventive 非标准的 special风区 fetch ; air pressure technolog y 非 承 重 结 构 non-bearing 风压 wind pressure 防漏技术 penetration preventive structu re封边 Cap technolog y分包合同 subcontract 封口砖 closer 防鸟网 bird screen分包商subcontractor封烟板 smoke seal蜂窝铝板 aluminum honey-comb 附加弯矩 secondary moment 刚性 Rigiditypanel 附属结构 accessory structure 刚性垫层 rigid fill峰值 Peak 附图 attached drawings 刚性结点 rigid joint浮雕图案 Relief pattern 概率 probability 刚性结构 rigid structure浮法玻璃 float glass 干挂石 granite cladding 刚性绝缘体 Rigid Insulation 扶手 handrail ; railing 干密封 gasket sealed 刚性支承 rigid support氟碳喷涂 PVDF coating; Fluorine 干燥剂 desiccant 高层建筑 high-rise building Carbon; PVF2 coating 杆件 Member 高度 height俯视图 Planform感压胶带,压敏胶带 PSA( pressure高级碳纤维 high-gradecarbon腐蚀 corrode ;corrosion/erosion sensitive adhesive ) tapefibre辅助建筑 accessory building ;钢板 steel panel高温防火密封胶 fire stop sealantsubsidiary building 钢度 rigidty ; inflexibility 高温防火岩棉 fire stop wool 辅助框架 sub-frame 钢化的 Tempered 高温喷涂 pyrolytic coating 复合铝塑板 composite aluminum 钢化玻璃 tempered glass ;高温喷涂浮尘玻璃plastic 钢化中空玻璃 tempered insulated pyrolytic-coated float glass 负的,否定的 Negative glass 隔断 partition负风压区 negative wind pressure 钢化中空 Low-E 玻璃 tempered 隔断衬板 partition liningarea insulated Low-E glass隔热玻璃(单元) insulating glass负荷 load; bear 钢化透明玻璃 tempered unit负荷等级 load grade clear/transparent glass 隔热衬垫 insulation blanket 负剪力 negative shear 钢结构式点支承幕墙 Steel 隔热挡板 thermal baffle负弯矩 negative bending moment structure point supporting 隔热数值 thermal/insulation 负值 negative value curtain wall value附加费用 extra charges 钢筋 reinforced bar格构 diagrid; lattice ;trellis附加荷载 additional load 钢筋混凝土 reinforced concrete 格构分格 panel附加建筑 additional building 钢拉索 steel cable 格构结构 latticed structure 附加条款 additional clause 钢码 steel bracket 格栅 grille格子,网格Grid 供电系统 power supplysystem管井Shaft隔板,隔舱Bulkhead 供货商supplier管状的,空心的Tubular隔片 Spacer 供暖heating 惯性inertia隔音 Acoustic attenuation 供暖系统 heatingsystem惯性矩 inertiamoment隔声玻璃 acoustical glass 供应 supply; provide;furnish;光电幕墙 photoelectriccurtain隔声材料 acoustical material offerwall隔声要求 acoustic requirement 公共通道 publicpassage光泽Gloss个别的Individual 公共照明 publiclighting规定specify根据 According to 供货商supplier规定标准 specifiedstandards工程(技术)Engineering 公料 maleextrusion规范specifications/code工程,项目project 公制metric硅胶嵌缝 Siliconejoint工程,工作 works 拱肩spandrel 硅树脂silicone工程编号project number ) 拱肩玻璃 spandrelglass硅酮结构密封胶 structural工程拨款projectappropriation 共振,回声 Resonance siliconesealant工程测量engineeringsurvey 沟槽,刻槽 Groove 硅酮密封剂 siliconesealant工程进度progress ofworks 构件component/member/element硅酮耐候密封胶 weatherproofing工程项目constructionitem 构件式玻璃幕墙 componentglasssealant工程造价constructioncost curtainwall滚动痕迹 rollermark工地site 固定端 fixedend过道 passageway;corridor工地质量控制经理 on-site 固定爪 spiderfixing 过梁Lintelquality control manager 故障defect过滤网 Filternet工艺 workmanship 刮刀spatula H 型钢 H-type steel工艺说明书 workmanship 刮痕scratch 含沥青的Bituminousspecificat ion 挂钩hook 函数Function工形…I; l-shaped; l-head 挂件 bracket,hanger罕遇地震 rareearthquake工形柱 H Column 管道,沟渠Conduit 焊缝 Welding line公差 tolerance 管件系统 ductwork 焊接标准 welding standards合同签订 award of contract 混凝土蠕变和收缩 Concretecreep挤压应力 pressurestress合页hinge andshrinkage技术规范technical荷载,加载load 混凝土外包 Concreteencasementspecification荷载计算 load calculation 活动窗 operablewindow技术设计 DesignDevelopment荷载模量 load modulus 活荷载 liveload技术性能 technicalperformance荷载组合 load combination 基本参数 basicparameter技术要求 technicalrequirements恒荷载 dead load 基本风压 basic windpressure计划,平面图 ,设计图Plan桁架 truss; girder 基本竣工 substantialcompletion计划的,打算的Purposed横龙骨transom 基本平面 , 海平面 Baselevel技术的,工业的Technical横向的Transverse 基础设施Infrastructure计算高度 CalculatingHeight后片玻璃 second lite 基准值 Referencevalue计算书 engineeringcalculation;护栏Guardrail 基准位置 referencelocation计算系数 computingcoefficient划痕scratch(es) 基座Plinth加工容差 fabricationtolerance花岗岩granite 激活Activation加工商fabricator花岗岩维护,干挂石 granite 机械通风百叶 mechanical 加工图 fab.drawingcladdin g ventilationlouvers加强棒,泡沫棒 Backerrod滑动门 Sliding door 机械装备 mechanicalequipment加强层 Diaphragm滑动玻璃门 sliding glass panel 机制螺钉 machinescrew加强件,加固物Reinforcementdoor 机制螺栓 machinebolt 加强角片,防滑片Cleat滑移Drift 集水槽gutter加强片Stiffener环保的 environmental friendly 集中荷载 concentratedload ;加强肋reinforcingrib缓冲板,挡板Baffle pointload加热线heatingcable缓冲结构 buffer structure 极限值 extremevalue加速度Acceleration缓和mitigation 几何参数 geometrycoefficient夹层interlayer回转,旋转Gyration 几何图形geometry夹层的,夹胶的Laminated混合物composite 挤压硅胶 extrudedsilicone夹层玻璃laminated混凝土Concrete 挤压铝型材 aluminumextrusionglass/laminate。
一种识别大型目标的综合方法_英文_王文会

Article ID:1004-0579(2001)04-0423-06Integrated Method of Recognizing Huge TargetWANG Wen-hui(School of M echano-Electronics Eng ineering,Beijing Institute of T echnology,Beijing100081,China)Abstract:An integ rated novel method of recog nizing huge targ et is described that combinessome relatively mature image processing techniques such as edge detection,thresholding,mor-pholo gy,imag e seg mentat ion and so for th.A fter thresho lding the edg e image obtained by usingSobel oper ator,erosion is firstly used to reduce noise and extrusive pixels;then dilation is usedto expand some separ ated pixels into v ar ious regions,after that the image seg mentation tech-nique i s utilized to distinguish the target region w ith a criterion.T he locat ion of the target i s alsoo ffered.Each technique adopted herein seems not complicated at all,the exper imental resultsdemo nstrate the efficiency of the combination of these techniques.It is its hig h computationalspeed and remarkable robustness resulting from its simplicity that make the method promise tobe applied in pract ical problems requiring rea-l time processing.Key words:object r ecognition;edge detectio n;morphology;imag e segmentation;directio n de-tect ionC LC number:T P39114Document code:ACCD(charge coupled device)working in near-infrared band is a good im age acquisition de-vice.It is also sm all and can undergo trem endous im pact and shock.Another advantage is its low cost.As a result,CCD is w idely used in various fields[1].In this paper,the image studied herein is gray-scale obtained by CCD.T he general process of the method presented in this paper goes as follows:First an edge op-erator is used to make out an edge image,w hich w ill be turned into an image with an optimum threshold acquired w ith Otsu method.T hen this image is processed w ith two morphological oper-ators(the first one is an erosion operator and the second is a dilation one)separately.Nex t this resulting im age is saved for future utilization and a seg mentation method named/line coding0is used to divide the w hole image into different reg ions from w hich the targ et reg ion w ill be distin-guished according to some criteria.In the nex t step,a formula is given to calculate its direction as long as the target.s two parameters can be know n in advance.At last,the experimental results are show n,which demonstrates the effect of the method.Received2001-01-03Sponsored by M ini sterial Level Advanced Research FoundationBiography WANG Wen-hui(1975-),graduate student.1Getting Edge ImageT o get an edg e image,many classical and modern methods have been proposed.Classical methods such as Sobel operator,Robert operator,Laplacian operator,Canny algorithm,Prew itt operator and so on are successful.Recently some modern methods[2]have also appeared,for ex-ample,/general fuzzy operator0[3]and Wavelet Transform[4].The former alg orithm fails to select appropriate parameters in its formula,how ever,and the latter is com putationally complex and time-consuming.Both of them are not applicable in this study.T he specific benefit of the method presented in this paper is that an accurate edg e is unneces-sary because the edg e imag e is just an interim result and w ill be processed further.So,the re-quirement for the edge is relax ed,that is,the w idth of edge w ill not be limited to one pixel,and the spiccato edg e pixels may not be linked,also the direction of edge can be negligent.The object of this step is just to get the pix els w hose gray changes intensively.In this paper,Sobel operator is selected to calculate the edge im age.2Further Image Processing211Thresholding Edge ImageM any simulation experiments indicate that the histogram of the edge image is of this kind (Fig.1).It is because in a gray-scale im age the edge pix els are m inority while the non-edge pix els are m ajority.After edge operation,edge pix els.values are generally g reater than that of non-edge pixels,the former occupies the rig ht part of the histogram,w hile the latter the left part.Fi g.1Histogram of the edge imageObviously,the histog ram of the edge imag e is different from that of the gray-scale im age. M any methods cannot get a satisfactory thresholding.Fortunately,Otsu method provides us w ith a good choice of an auto-adaptive threshold[5].T he optimum threshold can be set as follows:¹calculate the gray-level histogram of the edge im age to get P H(i);ºcalculate the average gray of the image L:L=E NiP H(i),w here N stands for thei=0max imum of the gray scale;»calculate the average of the gray class L(k)and the sum of the class histogram X(k):L (k)=E k i=0iP H (i),X (k )=E ki =0P H (i);¼calculate the standard of class classification R :R =[LX (k )-L (k )]2/{X (k )[1-X (k )]};½calculate k so that R reaches its max imum,the optimum threshold T =k .212 Morphological TransformationsBefore discussing the detailed processing techniques,let .s review the definitions of tw o basic operations of morpholog y:erosion and dilation.To be more practical,because the imag e pro -cessed by morpholog y in this case is a binary image,w e only refer to morphology for binary im -ages,not for gray -scale images.Erosion:X *B ={x B B x <X },see Fig.2;Dilation:X ÝB ={x B B x H X X 5},see Fig.3,w here X stands for the function of gray -scale imag e;B stands for the structural element;B x stands for the nucleus of the structuralelement.Note:the zero of X and B x is located at the left -up corner.It is very w orth noticing that after erosion,some noise and some edge pix els of an object are removed,that is,some ex trusive pix els are ejected;while after dilation,m any separated pix els originally belong ing to one object can be merged into a region.T he size of dilation operator is greater than that of erosion operator.Consequently the region seems larger than w hat it should be,and some corresponding offset w ill be taken into considera -tion.In addition,the order of these two operators is erosion first and dilation second,and cannot be reversed.Now ,separate reg ions are formed in the image.T he next task is to seg ment all re -g ions and distinguish the specific target region from them.3 Distinguish Target Region from All Segmentation Regions311 SegmentationIn this paper,a method of /line coding 0[6]is adopted.Suppose there was a reg ion in an image as show n in Fig.4,the algorithm goes as follow s.Scanned from the No.0line,all the continuous pix els w hose values are 1w ill be view ed as a section.According to this rule,in line 0,three sections are obtained.They belong to three differ -ent reg ions w hich are encoded as reg ion 1,region 2and reg ion 3.T he three sections are encoded as 1-1,2-1and 3-1,w hich mean they are the first sections of the three regions.In line 1,the algorithm finds three other sections,w hich are just above the three sections W AN G W en -hui /I ntegr ated M ethod of Recogniz ing H uge T ar getencoded as1-1,2-1,3-1respectively.Obviously,the three new sections belong to region1,re-g ion2and reg ion3respectively,so the alg orithm encodes them1-2,2-2and3-2,which mean they are the second sections of the three regions.In line2,only one section is ascertained.It happens to be above all the three sections of2-1, 2-2and3-2,so the algorithm reg ards region1,region2and region3belong ing to only one re-g ion.Region2and reg ion3w ill be merged into region1and their flags of the merged region w ill be set/10.At the same time,this new section will be encoded as1-3,w hich m eans it is the third section of region1.In the same w ay,all reg ions w ill be obtained.T he location,perimeter,area and flag of the merged reg ion are stored in order to ascertain the target region.312Ascertaining Target RegionA huge oil ship is taken as an ex ample,its leng th/w idth doesn.t exceed r.So it is rig ht to remove all the regions w hose length/w idth is over5.In addition,the ship is the largest object in an image in most cases,thus the perimeter and area can be com bined into the criterion.We calcu-late the possibility of a region being the target reg ion according to the follow ing formula:S=P(F1L+F2A),w here S stands for the similar;P=0,if w idth/length>r,or w idth/length<1/r1,else;F1andF2are factors standing for the importance of perimeter and area respectively;L stands for the perimeter;A stands for the area;and r represents the ratio of length/w idth.Suppose there w as an oil ship in the image,the region w hose similar is the biggest is regard-ed as the target region.4Direction Detection4.1C alculating AngleAs we w ill see in Fig.5,the target can be simplified as a rectangle named A.The target re-g ion mentioned in section3can be named as a rectangle B.T he centers of A and B are the same point.The direction of the target is not beyond the two kinds as show n in Fig.5a and Fig.5b.Supposing A lies in the direction as show n in Fig.5a,w e can g et two equationsa=d sin H+c cos H,b=c sin H+d cos H,(1) w here a is the w idth of B,b is the height of B,c is the leng th of A,d is the w idth of A. Jour nal of Beij ing I nstitute of T echnology,2001,V ol.10,N o.4Let a/b=k,c/d=r,then from Eq.(1)w e haveH=arg tan[(r-k)/(kr-1)].(2) 412Ascertaining Real DirectionHow ever,w hether the angle got by Eq.(3)is acute or obtuse rem ains to be seen,that is, the direction is not determined.So a simply method is developed to solve this problem.Suppose the direction w as show n in Fig.5a.In the binary image,beginning from the tw o end points E1and E2,w hich are originally c/2distant from the center,w e search N points.If there are M(M=90%N,for ex ample)points w hose values are/10,w e regard points E1and E2 as the tw o end points of the direction line in Fig.5a,and the algorithm ends.Otherw ise,we move the points E1and E2one pixel tow ard the center,and repeat the steps mentioned above.If the looping exceeds a specific number and no end points w ere found prev iously,the algorithm w ill regard the end points as locating in the other direction show n in Fig.5b.T he tw o end points P1(P1x,P1y)and P2(P2x,P2y)in both directions are easily deter-m ined by g eometry know ledge:In Fig.5a:P1x=x+c2cos H,P1y=y+c2sin H;P2x=x-c2cos H,P2y=y-c2sin H;In Fig.5b:P1x=x-c2cos H,P1y=y+c2sin H;P2x=x+c2cos H,P2y=y-c2sin H,w here c=ar/(sin H+r cos H),(x,y)denotes the coordinates of the center.5Experimental ResultsT he performance of the method proposed in this paper is tested with an image.The size of the region dealt w ith is444@386.¹Computational speed In this ex ample,it takes only174ms(PÒ400computer)to get the final result.In this w ay the requirement of rea-l tim e calculation can be met.ºRobustness Many times of experiments show that the algorithm is reliable and can resist noise and disturbance to some extent.W AN G W en-hui/I ntegr ated M ethod of Recogniz ing H uge T ar getJour nal of Beij ing I nstitute of T echnology,2001,V ol.10,N o.46ConclusionIn this paper,a new method of recog nizing hug e target is presented,and the simulation re-sults demonstrate the ability of the integrated approach to recognizing the specific object under real complex surroundings.T he method has its ow n merits:¹The requirements for edge image are not stern.ºThe threshold need not be very accurate.»The/line coding0method of segmentation can be used in many other cases.¼T he principle of judg ing the target region is simple and effective.½The d-i rection of the target can be calculated by a formula.¾The computational speed is high.¿The algorithm is relatively robust.How ever,because the purpose of this paper is to discuss a method which must be fast,low-cost and robust,only low level vision techniques are especially adopted as much as possible.Thus some deficiencies m ay ex ist and should be advanced in future.References:[1]Li Zunmin.Fundamentals of T V tracking(in Chinese)[M].Beijing:N at ional Defense Industr yPress,1998.[2]Pal N R,Pal S K.A review on imag e seg mentation techniques[J].Patter n R ecognition,1993,26(9):1277-1292.[3]Zhou Jie,Chen Wufan.GFO applicat ion on imag e edge detection[J].China Journal of Imageand Graphics(in Chinese),1997,2(2,3):108-111.[4]Xu Jiyou,Zhu Q ix iang.T he application of wavelet transform to imag e edge ex tract ing[J].Opto-Electronic Engineer ing(in Chinese),1998,25(4);28-33.[5]Otsu N.A threshold selection method fr om gray level histogram[J].IEEE T r ans,1979,SM C-9:62-69.[6]Castleman K R.Digital imag e processing[M].Zhu Zhigang transl.Beijing:Electr onic Industr yPublishing House,1998.一种识别大型目标的综合方法王文会(北京理工大学机电工程学院,北京100081)摘要:结合边缘检测、阈值化、数学形态学、图像分割等相对成熟的技术研究一种识别大型目标的方法。
Halcon总结——奇异值检测(NoveltyDetection)

Halcon总结——奇异值检测(NoveltyDetection)Anomaly Detection(异常检测)包括Novelty Detection(奇异值检测)和Outlier Detection (异常值检测)。
奇异值检测:训练数据不包含异常值,只含有positive(正常)的数据,通过算法学习其pattern。
之后⽤于检测未曾看到过新数据是否属于这个pattern,如果属于,该新数据是positive,否则negative,即奇异值。
异常值检测:训练数据中含有异常值,通过相关算法找到训练数据的中⼼模式,忽略偏差观测值,从⽽检测出异常值。
本篇博客进⾏《Novelty Detection案例总结(只训练正常样本)》1、GMM分类器检测⽹格缺陷(mlp、svm同理)create_class_gmm (5, 1, [1,5], 'spherical', 'normalization', 5, 42, GMMHandle)add_samples_image_class_gmm (ImageTexture, Rectangle, GMMHandle, 2.0)train_class_gmm (GMMHandle, 100, 0.1, 'training', 0.0001, Centers, Iter)classify_image_class_gmm (ImageTextureReduced, Correct, GMMHandle, 0.000002)【halcon案例】novelty_detection_gmm.hdev、novelty_detection_mlp.hdev、novelty_detection_svm.hdev2、基于GMM分类器的纹理检查模型apply_texture_inspection_model,详情参考我的另⼀篇博客。
3、深度学习apply_dl_model,详情参考我的另⼀篇博客。
ZOOM 2MP IR Dome 网络摄像头产品说明书

IPFX-D20V-IRW12MP IR Dome Network Camera●2MP, 1/2.8” CMOS image sensor, low illuminance, high image definition ●H.265 & H.264 dual-stream encoding ●Outputs 2MP (1920 × 1080)@25/30 fps ●Built-in IR LED, max IR distance: 40 m ●Intelligent detection: Intrusion, tripwire●Alarm: 1 in, 1 out; audio: 1 in, 1 out; supports max. 256 GB Micro SD card ●12V DC/PoE power support ●IP67 protectionSmart(H.265+ & H.264+)Deliver high quality video without straining the network, Smart H.265+ is the optimized implementation of H.265. The Smart H.265+ encoding technology includes a scene adaptive encoding strategy, dynamic GOP, dynamic ROI, flexiblemulti-frame reference structure and intelligent noise reduction, providing saving of up to 70% of bandwidth and storage when compared with standard H.265Wide dynamic range (WDR)The camera achieves vivid images, even in the most intense contrast lighting conditions, using industry-leading widedynamic range (WDR) technology. For applications with both bright and low lighting conditions that change quickly, true WDR (120 dB) optimizes both the bright and dark areas of a scene at the same time to provide usable video.The IPEG-B20V-IRW1 is a 2MP dome camera featuring our latest generation of 1/3’’ CMOS sensors. It adopts our vandal proof dome style housing, and supports IR illumination up to ~100’.The camera also features a motorized, 2.7mm-13.5mm lens which offers up a 28-104 degree horizontal field of view. The zoom level is fully controllable directly from the camerainterface, enabling you to obtain the perfect shot. This makes the camera well suited for exterior applications on commercial as well as residential installations.System OverviewStarlightFor challenging low-light applications, Starlight Ultra-low Light Technology offers best-in-class light sensitivity, capturing color details in low light. The camera uses a set of optical features to balance light throughout the scene, resulting in clear images in dark environments.Intelligent Video Analysis (IVS)With built-in intelligent video analytics, the camera has the ability to detect and analyze moving objects for improved video surveillance. The camera provides optional standard intelligence at the edge allowing detection of multiple object behaviors such as Tripwire analytics, allowing the camera to detect when a predetermined line has been crossed, ideal for business intelligence, workforce optimization, and actionable intelligence.Protection (IP67, wide voltage)Subjected and certified to rigorous dust and water immersion tests, the IP67 rating makes it suitable for demanding outdoor applications. For environments with rain, sleet, snow and fog, an integrated wiper provides users with clear visibility at all times.Wide voltage: The camera allows ±30% input voltage tolerance (wide voltage range), and it is widely applied to outdoor environment with unstable voltage.FunctionsTechnical SpecificationImage Sensor 1/2.8” 2 Megapixel progressive CMOS Effective Pixels 1920 (H) × 1080 (V)RAM/ROM 128 /128 MB Scanning System ProgressiveElectronic Shutter Speed Auto/Manual 1/3 s–1/100000 s Minimum Illumination *************IR Distance 40 m (131.23 ft)IR On/Off Control Auto / Manual IR LEDs2LensCameraPan/Tilt/Rotation RangePan:0° ~355° ;Tilt:0° ~75° ;Rotation:0° ~355°Pan/Tilt/RotationCompression H.265; H.264; H.264B; MJPEG Streaming Capability 2 StreamsResolution1080p (1920 × 1080); 1.3M (1280 × 960); 720p (1280 × 720); D1 (704 × 576/704 × 480); VGA (640 × 480); CIF (352 × 288/352 × 240)Frame Rate Main Stream: 1920 × 1080 (1 fps-25/30 fps)Sub Stream: D1 704 × 480 (1 fps-30 fps) Bit Rate Control CBR/VBRBit Rate H.264: 32 Kbps–6144 Kbps H.265: 12 Kbps–6144 Kbps Day/Night Auto(ICR) / Color / B/W BLC Mode BLC / HLC / DWDRWhite Balance Auto/natural/street lamp/outdoor/manual/regional custom Gain Control Auto / Manual Noise Reduction3D DNRVideoMotion Detection Off / On (4 Zone, Rectangle)Region of Interest Off / On (4 Zone)Smart IR Support Flip 0°/90°/180°/270°MirrorOff / OnPrivacy MaskingOff / On (4 Area, Rectangle)CompressionG.711a; G.711Mu; G.726; AACAudioEthernetRJ-45 (10/100Base-T)ProtocolIPv4; IPv6; HTTP; HTTPS; TCP; UDP; ARP; RTP ; RTSP; RTCP; RTMP; SMTP; FTP; SFTP; DHCP; DNS; DDNS; QoS; UPnP; NTP; Multicast; ICMP; IGMP; NFS; PPPoE; 802.1x; BonjourInteroperability ONVIF(Profile S/Profile G/Profile T);CGI; P2P Streaming Method Unicast / Multicast Max. User Access 10 Users /20 UsersEdge StorageNASLocal PC for instant recording Micro SD card 256GB Web ViewerIE, Chrome, Firefox, Safari Management Software SmartICRSS, DSS Smart Phone IOS, AndroidNetworkCertificationsCE-LVD: EN60950-1CE-EMC: Electromagnetic Compatibility Directive 2014/30/EUFCC: 47 CFR FCC Part 15, Subpart BUL/CUL: UL60950-1 CAN/CSA C22.2 No.60950-1-07CertificationsVideo InterfaceN/AAudio Interface 1/1 channel In/Out (RCA)RS485N/AAlarm1 channel In: 5mA 5VDC1 channel Out: 300mA 12VDCInterfacePower Supply DC12V, PoE (802.3af)(Class 0)Power Consumption<6.4WElectricalOperating Conditions -30° C ~ +60° C (-22° F ~ +140° F) / Less than 95% RH Storage Conditions -40° C ~ +60° C (-40°F to +140°F) Ingress ProtectionIP67EnvironmentalCasing MetalDimensions 122 mm × 88.9 mm (4.80" × 3.50")Net Weight 0.47 kg (1.04 lb)Gross Weight0.63 kg (1.39 lb)ConstructionLens Type Motorized Mount Type φ14Focal Length 2.7mm~13.5mm Max. Aperture F1.5Angle of View Pan: 109°–28° Tilt: 57°–16° Diagonal: 131°–33°Optical Zoom 5xClose Focus Distance0.8 m–0.8 m (2.62 ft–2.62 ft)DORI DistanceLensDetect Observe Recognize Identify W 144.69 ft 57.74 ft 28.87 ft 14.44 ft T497.70 f198.82 ft99.41 ft49.65 ftGeneral IVSTripwire; intrusionSmart EventAccessories Dimensions (mm/in)。
SNF-8010 8010VM 6M CMOS 视频成像设备说明书

SNF-8010/8010VM Video imaging device 1/1.8" 6M CMOS (IMX178)Total Pixels / effective Pixels 6megapixel / 5.2M (2,560 x 2,048)Scanning SystemProgressive Min. illuminationColor : 0.5Lux (F2.5, 50IRE), 0.2Lux (F2.5, 30IRE) B/W : 0.05Lux (F2.5, 50IRE), 0.02Lux (F2.5, 30IRE) LenS Focal length / Max. Aperture Ratio 1.14mm fixed / F2.5Angular Field of View H : 187° / V : 187° / D : 187°Min. object distance / Focus Control 0.3m (0.98ft) ~ Infinity / Manual Lens Type / Mount Type Fixed lens / Board type (M12)oPeRATionAL Camera Title Off / On (Displayed up to 15 characters)day & night / Backlight Compensation True D&N / BLC Wide dynamic Range 60dB (SSDR)Contrast enhancement SSDR (Samsung Super Dynamic Range) (Off / On) digital noise Reduction SSNR (2D+3D noise filter) (Off / On)Motion detection Off / On (4ea rectangle zones)Privacy Masking Off / On (32 zones with rectangle)Gain Control Off / Low / Middle / High White Balance ATW / AWC / Manual / Indoor / Outdoor (Include mecury)electronic Shutter Speed 2 ~ 1/12,000sec digital Zoom 16x, Digital PTZ (Preset, Group)Flip / Mirror Off / On intelligent Video Analytics Tampering, Audio detection Alarm i/o Input 1ea / Output 1ea Alarm TriggersMotion detection, Tampering, Audio detection, Alarm input, Network disconnection Alarm events File upload via FTP and E-Mail, Notification via E-Mail, TCP and HTTP Local storage (SD/SDHC/SDXC) recording at network disconnected & event (Alarm triggers), External output Viewing Composition Camera : 360 source view, Single panorama, Double panorama, Quad view, Single rectangle CMS : 360 source view, Single panorama, Double panorama, Quad view, Single rectangle, 360 source view + 3 rectangle, Single panorama + 2 rectangleneTWoRkeLeCTRiCAL input Voltage / Current 12V DC ±10%, PoE (IEEE802.3af, Class3) Power Consumption Max. 8.7W (12V DC), Max. 10.3W (PoE)MeCHAniCAL Key FeaturesSNF-8010SNF-8010VM SBP-300HM5SBP-300TM1SNF-8010/8010VM 5Megapixel Fisheye Camera22-07-2015 ⓒ 2015 HanwHa TECHwIn CO., LTD. aLL RIGHTS RESERVED.。
H4W2PER3网络WDR1080P IR坚固小顶部摄像机(商品说明书)

INTEROPERABILITY
ONVIF Profile S/G/Q
MAXIMUM USERS ACCESS 20 Users
SECURITY
User account and password protection HTTPS, IP Filter, Digest authentication, User access log, TLS1.2 only, AES128/256, SSH/Telnet closed, sFTP by default, PCIDSS compliance
Ø109.9mm × 81mm (4.33" x 3.19") 0.36kg (0.79lb) 0.50kg (1.10lb) Die-cast aluminum housing with powder coat RAL 9003 (White)
-30° C ~ +60° C (-22° F ~ +140° F) Less than 95%, non-condensing IP66 IK10
Honeywell Security
22700 Blankenbaker Pkwy, Suite 150 Louisville, KY 40299 1.800.323.4576
ONVIF and the ONVIF logo are trademarks of ONVIF Inc. Honeywell reserves the right, without notification, to make changes in product design or specifications.
FCC Part 15B, EN55032 EN 50130-4 UL 60950-1, EN 62368-1 EN 50581
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Perspective Rectangle DetectionDavid Shaw and Nick BarnesAutonomous Systems and Sensing Technologies ProgrammeNational ICT AustraliaResearch School of Information Sciences and EngineeringAustralian National Universitydavid.shaw@.au nick.barnes@.au Abstract.This paper describes a new detector forfinding perspective rectangle structural features that runs in real-time.Given the vanishing points within an image,the algorithm recovers the edge points that are aligned along the vanishing lines.We then efficiently recover the inter-sections of pairs of lines corresponding to different vanishing points.The detector has been designed for robot visual mapping,and we present the application of this detector to real-time stereo matching and reconstruc-tion over a corridor sequence for this goal.1IntroductionUsing vision for Simultaneous Localisation and Mapping(SLAM)is a key topic of research in mobile robotics.While there has been present success with data received from laser rangefinders[1],cameras provide a cheaper and more infor-mation rich sensor for determining the nature of the environment.However the denser nature of visual information makes it harder to extract the discrete land-mark information to build maps than with rangefinders.With the use of appro-priate visual feature detectors,information can be extracted for practical use for robotic applications such as SLAM.Some of the more popular feature detectors used in general vision applications are the SIFT descriptor[2,3],the Harris point detector[4]and variants[5,6],for use in domains such as recognising locations[7], objects[2,8],matching for image retrieval[5],and for our target domain of robotic navigation[9].For built environments,such as indoor scenes,the a priori knowledge about the geometry of the environmental structure can be used as the basis of a higher-order feature detector.In many such domains,the environment consists of pre-dominant rectilinear structure.With rectangles making up much of the envi-ronmental geometry,it is prudent to use this as the basis of a feature detector. Since most rectangles in the environment will not be aligned parallel to the camera,standard rectangle detectors such as those used for building extraction from aerial images[10]are not applicable as rectangular features will appear as trapeziums to a robot camera.In this paper,we introduce the perspective rectangle detector forfinding rectangles projected onto the image plane.The detector locates the likely2D projection of rectangles in the environment by locating quadrilaterals with sides aligning with detected vanishing lines within the image.While such features can be detected with methods such as a generalised Hough transform[11]or via perceptual grouping[12],the order of complexity of such approaches make them unsuitable for real-time applications.The perspective rectangle detector is designed to provide accurate feature detection within the real-time operational constraint.We provide the outline of the real-time algorithm behind the detector,and discuss the result of the detector being run in sample domains.2Algorithm DescriptionFinding all possible quadrilateral features within a scene is not a feasible ap-proach to constructing a real-time detector,as calculating the full probability density function is intractable.Neither is a Hough based approach feasible,as the problem is eight dimensional(two per vertex),and thus too computationally expensive.Given that for our application we require only tofind the strong features within the environment,we can make a significant reduction in complexity by narrowing the domain to perspective rectangular features:those aligned withvanishing lines within the scene.This geometric assumption presumes that the environment consists of rectangles on planar walls and ceilings,but this is a common occurrence in indoor environments.If we are searching for the perspec-tive rectangles between two given sets of vanishing lines,the problem is reduced to four dimensions,which makes the problem more manageable,but still too computationally expensive for a Hough-based approach.To solve this problem, we have devised an algorithm forfinding such perspective rectangular features, an outline of which is provided below:1.Vanishing Point Detection:Estimate the position and type of vanishingpoints and lines within the image.2.Perspective Oriented Edge Detection:Determine the directional componentsof the gradient aligned with the vanishing points.3.Line Segment Detection:Estimate the line segments that are potential quadri-lateral sides based on the perspective oriented edges.4.Quadrilateral Detection:Determine the quadrilaterals from the intersectionof detected line segments.2.1Vanishing Point DetectionVanishing points and the corresponding sets of vanishing lines provide key infor-mation about the predominant geometric structure of the environment.While there are many vanishing point detectors available[13–16],due to the need for the detector to run real-time in indoor environments,we are using our own van-ishing point detector,based on the distance of candidate vanishing points from lines within the image.Other vanishing point detectors can be substituted if they are real-time and suitable for the task and environment.2.2Perspective Oriented Edge DetectionOnce the sets of vanishing lines have been determined,the edges that correlate with these sets need to be found.Edge detection is simply done by applying a convolution mask such as the Sobel edge detector.Finding the associated directional edge vectorfield(which we denote E)culls many points that are unlikely to be part of a vanishing line.The edge vectorfield in the direction of the vanishing lines can be found with the dot product D=E·V;where V is the vectorfield consisting of unit vectors in the direction of the vanishing lines.|D| represents the distance in orientation of the edge point to the vanishing line,and so gives the likelihood of the vanishing line at that point.Since the Sobel edge detector blurs edge features this also provides an approximate distance function over a window of a few pixels.2.3Line Segment DetectionTofind the vanishing line segments,edge vectors for a particular vanishing point are scanned with a scan-line algorithm.The blur provided by the Sobel edgedetector makes candidate lines more readily detected by this approach.The operation of the algorithm is slightly different depending on the type of input vanishing lines.For parallel lines,the algorithm scans through every possible discrete parallel vanishing line (aligned with θ);for radial,it scans through each ray (radiating out from the vanishing point)through a fixed angle step (presently defined to half a degree).To deal with noise within the image,|D |is thresholded at a pre-determined value µp ,with all values where |D |≥µp being considered viable line points.The algorithm also allows a fixed number (µg )of consecutive “misses”when scanning through a ray,with each run of line points with no gaps greater than length µg considered line segments.This approach may prune some weak candidate lines,in practice though it finds enough line segments to be suitable for applications.Fig.1.The line segments found.left image :vertical line segments;centre image :hor-izontal line segments;right image :line segments oriented to the vanishing point.2.4Quadrilateral DetectionThe quadrilateral detection algorithm runs on a pair of sets of vanishing line segments defined by the two sets of vanishing lines that their sides are aligned with,which we will denote S a and S b .A quadrilateral feature is present if,for pairs of line segments (a 1,a 2)∈S a and (b 1,b 2)∈S b ,both of a 1and a 2intersect both of b 1and b 2from the viable line segments detected previously.Coordinate Transformation:Each set S i (of S a and S b )is translated to itsown coordinate system based on the type of vanishing point (scale is unim-portant);radial:based on angle orientation from the vanishing point;par-allel:based on an offset from the zero line,defined as the line that passes through the image origin.A line segment is represented as a triple using the coordinate systems of both sets:a segment in S a is defined (α,β1,β2),where αis the reference to the vanishing line in S a ,and β1and β2are the end points of the line segment expressed in terms of S b .This representation aids in finding the intersections between the sets.Segment Quantisation:The line segments of the transformed S i are discre-tised into a2D array of cells.A line segment is referenced in every cell that it crosses,so that only those segments which share a cell reference need to be compared for possible intersections.Intersection Pairing:A list of all intersections between line segments is con-structed using the segment quantisation for speed.Tofind the quadrilaterals, all intersecting pairs of line segments from S a with pairs from S b are found in the following manner:–For every line segment a∈S a•For each b∈S b that intersects a,count the a b∈S a intersect these b(except for a b=a)•For each a b that was counted at least twice(i.e.there are at leasttwo b∈S b that a b intersects),go through each b∈S b and record alist of which b intersect a b•For the list of b every combination of pairs of line segments willintersect both a and a b,and thus these four line segments will be avalid quadrilateralA valuation of the likelihood strength of the quadrilateral feature is approx-imated by summing the strength of its constituent line segments. Trimming Multiple Features:Due to the nature of the vector edgefield,it is possible for multiple line segments to be detected for a single true edge, resulting in multiple quadrilaterals being found for a single feature.Thus as afinal step those detected quadrilaterals that have all four of their corner vertices in the same small neighbourhood(within four pixels)are compared, and only that with the greatest likelihood strength is kept.Fig.2.Recovered perspective rectangular features.left:from vertical line segments and line segments leading to the vanishing point.centre:from horizontal line segments and line segments leading to the vanishing point.right:from horizontal and vertical line segments.3Applications and ResultsThe prototype version of the algorithm(running in Matlab1)performs matching between stereo images at an average of2.54seconds(worst case under4sec-onds),including vanishing point detection,for test video sequences of320×240 resolution.For the domain of robotic SLAM,the prototype implementation is running at speeds suitable for real-time performance.In order to best view the results of the detector,a video of matched features has been provided as an attachment.This video of a corridor loop sequence shows the type of features found by the detector in a real-world environment.Note that for the results shown the two most predominant sets of infinite vanishing points are vertical and horizontal lines,due to the design of our build-ing,so these are used by default as two of three sets of vanishing lines(with the vanishing point detector providing the third).This can easily be extended with an additional detection stage which utilises an additional step tofind the predominant sets of parallel lines within an image.3.1Sample Perspective Rectangle FeaturesThe test was run over a sequence of1000calibrated stereo images taken by our robot2.Figure3shows perspective quadrilateral features in a number of stereo pairs taken from this sequence(images were processed at320×240).The strongest vanishing point detected is shown in the images as a green‘X’.All three sets of features are shown on the same frame for printing space reasons. Stronger features are shown thicker and in yellow,with weaker features in orange, weakest in red.As can be seen,much of the structure of the environment is found as features corresponding mostly to the walls and ceiling of the corridor.Average processing time is1.12seconds.33.2Matching and3D ReconstructionA key target domain for the perspective rectangle feature detector is real-time matching of stereo features for scene reconstruction or mapping.Since there is much implicit structural information contained within a single feature it is possible to gain a lot of information about a built environment.The features found(figure3)are matched with a simple metric based on vertex position:two features are considered to be possible matches if all four vertices are within a vertical difference of three pixels and a horizontal difference of20pixels.If there is a unique match between two quadrilaterals then it is considered a viable matched feature.Fig.3.Perspective rectangle features in a corridor sequences.The same image sequence is used as in section3.1.Figure4shows sample images with their matched features.The simulated output of a virtual camera (located above and to the left of the real cameras)is provided to show where the position of these features are from a separate angle.As can be seen fromfigure4, even with a simple matching metric and with persistent tracking of the features throughout concurrent frames in the sequence,there is significant structural detail being obtained from the raw perspective rectangle feature detector alone. 4ConclusionFeatures based on the structure of built environments are useful for a number of domains,such as scene reconstruction and SLAM.This paper has presented a new perspective rectangle feature detector forfinding structure based features in built environments from images that runs in real-time on real world data.Based on vanishing point information,a perspective rectangle feature contains implicitFig.4.Matching perspective rectangle features in a corridor sequence,samples taken from the 1000frames in the video sequence.Centre and right pictures show matched features in the image.Left pictures show 3D rectangle features viewed from a ‘virtual camera’structural information that is of benefit for robotic applications.We show that the detector canfind features that,even with a simple matching metric,provides significant structural information about a scene.References1.Leonard,J.J.,Durrant-Whyte,H.F.:Simultaneous map building and localizationfor an autonomous mobile robot.In:IEEE/RSJ International Conference on In-telligent Robots and Systems(IROS).(1991)1442–14472.Lowe,D.G.:Object recognition from local scale-invariant features.In:Proceedingsof the International Conference on Computer Vision,Corfu(1999)1150–1157 3.Lowe,D.G.:Distinctive image features from scale-invariant keypoints.Interna-tional Journal of Computer Vision60(2004)91–1104.Harris,C.,Stephens,M.:A combined corner and edge detector.In:Alvey VisionConference.(1988)5.Mikolajczyk,K.,Schmid,C.:Indexing based on scale invariant interest points.In:Proceedings of the8th International Conference on Computer Vision,Vancouver, Canada(2001)525–5316.Mikolajczyk,K.,Schmid,C.:An affine invariant interest point detector.In:Eu-ropean Conference on Computer Vision,Copenhagen(2002)128–1427.Silpa-Anan,C.,Hartley,R.:Localisation using an image-map.In:AustralasianConference on Robotics and Automation.(2004)8.Sivic,J.,Shaffalitzky,F.,Zisserman,A.:Object level grouping for video shots.In:European Conference on Computer Vision,Copenhagen(2002)85–989.Se,S.,Lowe,D.,Little,J.:Mobile robot localization and mapping with uncertaintyusing scale-invariant visual landmarks.International Journal of Robotics Research 21(2002)735–75810.Vinson,S.,Cohen,L.D.:Multiple rectangle model for buildings segmentation and3d scene reconstruction.In:Proceedings of the16th IAPR International Conference on Pattern Recgonition.(2002)11.Ballard,D.H.:Generalizing the hough transform to detect arbitrary shapes.Pat-tern Recognition13(1981)111–12212.Guy,G.,Medioni,G.:Inferring global perceptual contours from local features.Int.put.Vision20(1996)113–13313.Barnard,S.T.:Interpreting perspective images.Artificial Intelligence(1983)14.Collins,R.T.,Weiss,R.S.:Vanishing point calculation as a statistical inference onthe unit sphere.In:International Conference on Computer Vision.(1990)400–403 15.Cantoni,V.,Lombardi,L.,Porta,M.,Sicard,N.:Vanishing point detection:Rep-resentation analysis and new approaches.In:Proceedings of the11th International Conference on Image Analysis and Processing.(2001)90–9416.Rother,C.:A new approach to vanishing point detection in architectural en-vironments.In:Architectural Evnironments British Machine Vision Conference (BMVC),Bristol,GB(2000)382–391。