第一讲 等差等比数列
2020版高三数学二轮复习(全国理)讲义:专题四 第一讲等差数列、等比数列

(2)求Sn.并求Sn的最小值.
[解析](1)设等差数列{an}的公差为d.由题意得3a1+3d=-15.
由a1=-7得d=2.
所以{an}的通项公式为an=2n-9.
(2)由(1)得Sn=n2-8n=(n-4)2-16.
所以当n=4时.Sn取得最小值.最小值为-16.
例1 (1)已知等比数列{an}的前n项和为Sn.a1+a3=30.S4=120.设bn=1+log3an.那么数列{bn}的前15项和为( B )
6.(20xx·全国卷Ⅰ.14)记Sn为数列 的前n项和.若Sn=2an+1.则S6=-63..
[解析]依题意. 作差得an+1=2an.
所以数列{an}是公比为2的等比数列.
又因为a1=S1=2a1+1.
所以a1=-1.所以an=-2n-1.
所以S6= =-63.
7.(20xx·全国卷Ⅱ.16)记Sn为等差数列{an}的前n项和.已知a1=-7.S3=-15.
A.1B.2
C.4D.8
[解析]设{an}的公差为d.则由
得
解得d=4.
故选C.
4.(20xx·全国卷Ⅲ.9)等差数列{an}的首项为1.公差不为0.若a2.a3.a6成等比数列.则{an}的前6项和为( A )
A.-24B.-3
C.3D.8
[解析]由已知条件可得a1=1.d≠0.
由a =a2a6可得(1+2d)2=(1+d)(1+5d).
(3)注意整体思想.如在与等比数列前n项和有关的计算中.两式相除就是常用的计算方法.整体运算可以有效简化运算.
G
1.(20xx·邵阳模拟)等比数列{an}的前n项和为Sn.已知a2a3=2a1.且a4与2a7的等差中项为 .则S5=( B )
等差、等比数列及前n项和

第01讲 等差数列及其前n 项和考纲考情本讲为高考命题热点,分值10-12分,题型多变,选择题,填空题,解答题都会出现选择填空题常考等差等比数列的性质,大题题型多变,但对于文科来讲常考察基本量的计算与数列求和,对于理科考点相对难度较大,比如新定义,奇偶列等,考察逻推理能力与运算求解能力。
考点梳理考点一 等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
数学语言表达式 : ()为常数d N n d a a n n ,1*+∈=-()为常数d N n d a a n n ,1*+∈=-。
(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且2ba A +=考点二 等差数列的通项公式与前n 项和公式(1)若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为()d n a a n 11-+=。
(2)前n 项和公式: ()()n d a n d a a n d n n na S n n ⎪⎭⎫⎝⎛-+=+=-+=222211211。
考点三 等差数列的性质(1)通项公式的推广:()()*∈-+=N m n d m n a a m n ,。
(2)若{}n a 为等差数列,且()*∈+=+N q p m n q p n m ,,,,则q p n m a a a a +=+。
(3)若{}n a 是等差数列,公差为d,则()*++∈N m k a a a m k m k k ,......,,2是公差为md 的等差数列。
(4)若n S 为等差数列{}n a 小的前n 项和,则数列,......,,232m m m m m S S S S S --也是等差数列。
(5)若n S 为等差数列{}n a 的前n 项和,则数列⎭⎬⎫⎩⎨⎧n S n 也为等差数列。
考点四 常用结论1.已知数列{}n a 的通项公式是()为常数其中q p q pn a n ,+=,则数列{}n a 一定是等差数列,且公差为p 。
专题4 第1讲等差数列、等比数列 课件(42张)

个量中已知其中的三个量,求另外两个量
2.考查等差(比)数列的通项公式,前n项和公式,
考查方程的思想以及运算能力 1.以递推数列为载体,考查等差(比)数列的定义
或等差(比)中项
2.以递堆数列为命题背景考查等差(比)数列的
证明方法
• 备考策略 • 本部分内容在备考时应注意以下几个方面: • (1)加强对等差(比)数列概念的理解,掌握等差(比)数列的 判定与证明方法. • (2)掌握等差(比)数列的通项公式、前n项和公式,并会应 用. • (3)掌握等差(比)数列的简单性质并会应用. • 预测2018年命题热点为: • (1)在解答题中,涉及等差、等比数列有关量的计算、求 解. • (2)已知数列满足的关系式,判定或证明该数列为等差(比)
-
• an=___________________.
• 2.重要结论 am+(n-m)d • (1)通项公式的推广:等差数列中, an= n-m a · q m _________________ ; 递增数列 • 等比数列中,an=__________. 递减数列 • (2)增减性:①等差数列中,若公差大于零,则数列为 递增数列 __________;若公差小于零,则数列为__________. 递减数列 • ②等比数列中,若a1>0且q>1或S a, 且 0< q <1 ,则数列为 1<0 S - S , S - S2n,… n 2n n 3n ___________;若a1>0且0<q<1或a1<0且q>1,则数列为 ___________. • (3)等差数列{an}中,Sn为前n项 和.__________________________仍成等差数列;等比数
解得 d=-2. 6×5×-2 所以 S6=6×1+ =-24. 2 故选 A.
第一讲等差等比数列

第一讲 等差数列、等比数列一、等差数列1.定义:a n +1-a n =d (常数)(n ∈N *).2.通项公式:a n =a 1+(n -1)d ,a n =a m +(n -m )d .3.前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 4.a 、b 的等差中项A =a +b2证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列;(4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.二、等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和.(1)若m 、n 、p 、q 、k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k .(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (3)数列S m ,S 2m -S m ,S 3m -S 2m ,…,也是等差数列.等差数列的性质推广:(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1) ②S 2n -1=(2n -1)a n .③n 为偶数时,S 偶-S 奇=n2d ;n 为奇数时,S 奇-S 偶=a 中.等差数列的单调性单调递增d >0 当01<a 时,n S 有最小值 单调递减 d<0 当01>a 时,n S 有最大值常数数列d=0三、等比数列证明{a n }是等比数列的两种常用方法(1)定义法:若a na n -1=q (q 为非零常数且n ≥2且n ∈N *),则{a n }是等比数列.(2)中项公式法:在数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. 四、等比数列的性质1.对任意的正整数m 、n 、p 、q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k . 2.通项公式的推广:a n =a m q n -m (m ,n ∈N *)3.公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n仍成等比数列,其公比为q n ;当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.4.若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍是等比数列. 等比数列的单调性单调递增 a 1>0,q >1或者a 1<0,0<q <1 单调递减 a 1>0,0<q <1或者a 1<0,q >1常数数列 a 1≠0,q =1摆动数列 q <0基础自测1.(2013·课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是 a n =________.2.(2013·广东高考)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.3.[2014·江苏卷] 在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.考点一 等差、等比数列的基本运算例1、[2014·重庆卷] 在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10 D .1 2、(2013新课标全国Ⅱ)等比数列{a n }的前n 项和为S n .已知S 3 = a 2 +10a 1 ,a 5=9,则a 1=( )A.13 B .-13 C.19 D .-19跟踪练习1.(2013安徽)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .22.[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .考点二等差、等比数列的性质例 1.(2012·辽宁高考)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.1762.[2014·广东卷] 等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.变式练习1、设等差数列{a n}的前n项和为S n,已知前6项和为36,最后6项的和为180,S n=324(n>6),求数列{a n}的项数及a9+a10.2、[2014·全国卷] 设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.64考点三等差、等比数列的判断与证明要证明一个数列是等差(比)数列必须用定义法或等差(比)中项法.例1、[2014·全国卷] 数列{a n}满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明{b n}是等差数列;(2)求{a n}的通项公式.2、数列{a n }的前n 项和为S n ,若a n +S n =n ,c n =a n -1,求证:数列{c n }是等比数列,并求{a n }的通项公式.跟踪练习1、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.①求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;②求数列{a n }的通项公式.。
第一讲 等差、等比数列

第一讲 等差、等比数列一、考情分析(1)等差、等比数列的基本运算。
此知识点是高考命题的重点内容,一般不单独命题,常与数列的概念、性质、前n 项和等相结合,多以选择题、填空题的方式进行考查。
(2)等差、等比数列的判定与证明及求法。
等差、等比数列的证明是高考命题的重点和热点,多为解答题的第一问。
一般用定义域法直接证明或通过计算21,a a 求出n a 。
(3)等差、等比数列的性质。
等差、等比数列的性质是高考的必考内容,以小题为主,十分灵活,多为选择题、填空题要主动发现题目的相关性质,使运算简捷。
二、基本概念与性质 1、等差数列(1)定义:d N n d a a n n ,(1*+∈=-为常数)(2)D C D cn d m n a d n a a m n ,()()1(1+=-+=-+=为常数,C,D 不同时为零) (3)B A Bn An d nn na a a n S n n ,(2)1(2)(211+=⋅-+=+=为常数,不同时为零) (4)等差中项)2,(211≥∈+=*+-n N n a a a n n n (5)若q p n m +=+则q p n m a a a a +=+若r q p n m ++=++ 则),,,,,,(*∈++=++N r q p n m a a a a a a r q p n m(6)等差数列的线性组合也是等差数列,即{}{}n n b a ,是等差数列,则{}n n b a 21λλ+也是等差数列(7)等差数列产生的几个特殊等差数列,若{}n a 是等差数列,公差为d ,前n 项和为n S ,则(Ⅰ)t n p t p t p p a a a a )1(2,,,-+++ 也是等差数列,公差为td (Ⅱ) ,,,232k k k k k S S S S S --为等差数列,公差为d k 2 (Ⅲ)ns s s s n ,3,2,1321也是等差数列,公差为2d(8)等差数列几个重要结论 (Ⅰ)0,===+n m m n a n a m a ,则 (Ⅱ))(,,n m S n S m S n m m n +-===+则 (Ⅲ)0,==+n m n m S S S 则(Ⅳ){}n a 和{}n b 为等差数列,且前n 项和为n n T S ,则1212--=m m m m T S b a 2、等比数列 (1)定义q N n q a a nn ,(1*+∈=为非零常数) (2)通项公式:n m n m n n Aq q a aq a ===--1(A 为常数)(3)前n 项和公式:11(1)(1)(1)((1)1n n nna q S a q B q B q q=⎧⎪=-⎨=-≠⎪-⎩为常数)其中 (4)等比中项)2,(112≥∈⋅=*+-n N n a a a n n n(5)若),,,(*∈⋅=⋅+=+N n m q p a a a a q p n m q p n m 则(6)等比数列中,n n n n n S S S S S q 232,,1---≠时,也成等比数列注意:① 11112,,+-+-⋅=n n n n n n a a a a a a 是成等比数列的必要不充分条件② 在等比数列前n 项和时,首项要判断公比q 是否为1时,要分1=q 与1≠q 两种情形讨论(7)设{}n a {}n b 是等比数列,则{}rmt n b a ⋅λ也是等比数列),(*∈N r t (8)等比数列{}n a 的单调性当⎩⎨⎧>>101q a 或⎩⎨⎧<<<1001q a 时{}n a 是增数列当⎩⎨⎧<<>1001q a 或⎩⎨⎧><11q a 时{}n a 是减数列3、等差数列与等比数列的转化(1){}n a 为正项等比数列,则{})1,0(log ≠>c c a n c 为等差数列 (2)若{}n a 是等差数列,则{})1,0(≠>c c c an 为等比数列 (3)若{}n a 既是等差数列又是等比数列{}n a ⇔是非零常数列三、高考题型再现1、(2013广东)在等差数列{}n a 中,已知1083=+a a ,则=+753a a 。
第1讲 等差数列与等比数列(可自主编辑PPT)

9 2
2
- 881,
∵n∈N*,∴n=4或5时,Sn取最小值,最小值为-10.
总结提升
高考导航
等差、等比数列的性质问题的求解策略
抓关系
抓住项与项之间的关系及项的序号之间的关系,从这些特
点入手,选择恰当的性质进行求解
用性质
数列是一种特殊的函数,具有函数的一些性质,如单调性、 周期性等,可利用函数的性质解题
和为Tn,若
Sn Tn
= 2 018n-1,则
3n 4
a3 b3
=
(
D
)
A.528 B.529
高考导航
C.530 D.531
答案 D 根据 an = S2n-1 , bn T2n-1
得 a3 = S5 = 2 018 5-1=531.故选D. b3 T5 3 5 4
考点二 栏目索引
∴n+Sn=2an,即n,an,Sn成等差数列.
高考导航
考点三 栏目索引
2.设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=2-an,数列{bn}满足b1=2a1,
bn=1
bn-1 bn
-1
(n≥2,n∈N*).
(1)证明:数列{an}是等比数列,并求{an}的通项公式;
高考导航
∵a4=a1·q3,∴a1·q3=q2,
又a1= 13 ,∴q=3.
由等比数列求和公式可知S5=
1 3
(1-35 1-3
)
= 121
3
.
考点二 栏目索引
3.设等差数列{an}的前n项和为Sn.若a2=-3,S5=-10,则a5=
,Sn的最小值为
.
高考导航
等差数列与等比数列PPT精品课件_1

★ 田野中害虫因为青蛙的大量繁殖而减少 …………
得出结论: 气候、食物、敌害等生活环境因素的变 化,对动物的寿命会有较大的影响。
动物还能在这里生活吗? 这样的污染鱼还能活吗?
4、右图表示昆虫的变态发
育过程,据图回答:
A
(1)图中B和D分别表示
__受_精__卵_期和__蛹____期。 B
成蛙
受精卵
幼蛙
胚胎
蛙的生活周期
蝌蚪
死亡
中年期 青春期
受精卵
儿童期
婴儿期
幼儿期
成蛙 幼蛙
受精卵 蝌蚪
成虫
蛹
受精卵 幼虫
死亡
成虫
受精卵
若虫
蝌蚪和成蛙的比较:
生活环境 运动器官 运动方式 呼吸器官
蝌蚪 水中
鳍
游泳
鳃
成蛙 陆上和水中
四肢
跳跃 肺和皮肤
像青蛙从幼体到成体的发育过程中, 在生活和形态结构上要发生很大的改变,
4.近年来,我国沿海局部海区藻类大量繁殖,出现
了“赤潮”,造成了大量鱼虾死亡的主要原因是C(
A.细菌感染
B.藻类与鱼虾争夺食物
C.水中溶解氧减少 D.藻类产生大量的有毒物质
5.下列各项中,描述了生物的一个完整生命周期的
是( A )
A.大豆从种子萌发到开花结果
B.人从婴儿期到成年期
C.受精的鸡蛋发育成能下蛋的母鸡
甲缸是由于自来水中的漂白粉释放的氯气使鱼死亡 乙缸是由于自来水中没有溶解氧使鱼死亡
返回
课前热身
1.观察数列:30,37,32,35,34,33,36,( 点,在括号内适当的一个数是__3_1__.
高考数学二轮复习 专题四 数列 第1讲 等差数列与等比数列课件 文

所以 S5=5a1+ 5 4 ×d=5(a1+2d)=5. 2
3.(2014 新课标全国卷Ⅱ,文 5)等差数列{an}的公差为 2,若 a2,a4,a8 成 等比数列,则{an}的前 n 项和 Sn 等于( A ) (A)n(n+1) (B)n(n-1)
(4)前n项和公式法:Sn=An2+Bn(A,B为常数)⇒{an}是等差数列;Sn=Aqn-A(A 为非零常数,q≠0,1)⇒{an}是等比数列.
4.等差、等比数列的单调性 (1)等差数列的单调性 d>0⇔{an}为递增数列,Sn有最小值. d<0⇔{an}为递减数列,Sn有最大值. d=0⇔{an}为常数列.
则公比q=
.
解析:由题意,q≠1,
由S3+3S2=4a1+4a2+a3 =a1(4+4q+q2) =a1(q+2)2 =0,
a1≠0知q=-2. 答案:-2
6.(2013 新课标全国卷Ⅱ,文 17)已知等差数列{an}的公差不为零,a1=25, 且 a1,a11,a13 成等比数列. (1)求{an}的通项公式; (2)求 a1+a4+a7+…+a3n-2.
(C) n(n 1) 2
(D) n(n 1) 2
解析:因为 a2,a4,a8 成等比数列,
所以 a42 =a2·a8, 所以(a1+6)2=(a1+2)·(a1+14),
解得 a1=2.
所以 Sn=na1+ n(n 1) d=n(n+1). 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列 等差数列练习题
1、数列11,13,15,…,21n +的项数是( )
A .n
B .3n -
C .4n -
D .5n -
2、根据下列各数列的前4项,写出数列的通项公式:
(1)1,3,5,7;
(2)2,4,6,8;
(3)1,1/3,1/5,1/7;
(4)2,-4,6,-8;
(5)0.1,0.01,0.001,0.001;
(6)9,99,999,9999
3、已知数列{a n }的通项公式为a n =n 2-n -50,则-8 是该数列的( )
A .第5项
B .第6项
C .第7项
D .非任何一项
4、已知数列{}n a 的通项公式53n a n =+,求:
⑴7a 等于多少;⑵81是否为数列{}n a 中的项,若是,是第几项;
5、数列{}n a 满足143n n a a -=+且10a =,则此数列第5项是( )
A .15
B .255
C .16
D .63
6、一个数列{}n a ,其中13a =,26a =,21n n n a a a ++=-,那么这个数列的第5项是( )
A .6
B .3-
C .12-
D .6-
7、在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项.
8、根据下列各个数列{a n }的首项和基本关系式,求其通项公式.
(1)a 1=1,a n =a n -1+3(n ≥2); (2)a 1=1,a n =n -1n a n -1
(n ≥2). 9、在数列{n a }中, 1=a 1,当()n N *∈时,1n n a a n +-=,则100a 的值为( )
A 5050
B 5051 B 4950
C 4951
10、已知数列{n a }的前n项和为n S ,且2(1)n n S a =-,则7=a
11、已知数列{}n a 的前n 项和232n S n n =-,求{}n a 的通项公式:
12.已知等差数列{a n }中,a 3=9,a 9=3,则公差d 的值为
13.在等差数列{a n }中,a 1=13,a 3=12,若a n =2,则n 等于
14.两个数1与5的等差中项是
15.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是
16.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为
17.首项为24-的等差数列,从第10项开始为正数,则公差d 的取值范围是 ( )
A.d >83
B.d >3
C.83≤d <3
D.83
<d ≤3
18、已知等差数列{}n a 中,79416,1a a a +==,则16a 的值是 .
19、△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为2
3,那么b = ( ) A 、231+ B 、31+ C 、2
32+ D 、32+ 20、若在等差数列}{n a 中,13,2321=+=a a a ,则=++654a a a ______________
21、若在等差数列}{n a 中,
3,773==a a ,则通项公式n a =______________ 22、若在等差数列}{n a 中,
15543=++a a a ,45543=a a a ,求}{n a 的通项公式n a 。