惯性矩的计算方法及常用截面惯性矩计算公式

合集下载

惯性矩地计算方法及常用截面惯性矩计算公式

惯性矩地计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA,定义它对任意轴的一次矩为它对该轴的静矩,即dS y xdAdSx ydA整个图形对y、z轴的静矩分别为S y xdAyASx 人 ydA2.形心与静矩关系(1-1 )设平面图形形心C的坐标为y c,z c-S x 一S y /、y , x (I-2 )A A推论1如果y轴通过形心(即x0),则静矩S y 0 ;同理,如果X轴通过形心(即y o),则静矩sx o;反之也成立。

推论2如果x、y轴均为图形的对称轴,则其交点即为图形形心;如果y轴为图形对称轴,贝昭形形心必在此轴上。

3.组合图形的静矩和形心设截面图形由几个面积分别为 A,A2,A3 A n的简单图形组成,且一直各族图形的形心坐标分别为丘,只;乂2*2;x3,y3 ,贝U图形对y轴和x轴的静矩分别为截面图形的形心坐标为nA i Xi 1 nA ii 14•静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩有的单位为m 3。

(3) 静矩的数值可正可负,也可为零。

图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

(4) 若已知图形的形心坐标。

则可由式(1-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(1-2 )求图形的形心坐标。

组 合图形的形心位置,通常是先由式(I-3 )求出图形对某一坐标系的静 矩,然后由式(1-4 )求出其形心坐标。

(二)•惯性矩 惯性积 惯性半径1.惯性矩定义 设任意形状的截面图形的面积为 A (图I-3 ),则图形对0点的极 惯性矩定义为 I p2dA (1-5)KAn nS yS yiARi 1 i 1nnS xSxiA i Vi 1 i 1(1-3 )A i y i(1-4 )图形对y轴和x轴的光性矩分别定义为I y A x2dA , I x A y2dA (1-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。

常用截面惯性矩计算公式

常用截面惯性矩计算公式

常用截面惯性矩计算公式截面的惯性矩是描述截面抵抗弯曲的特性之一,也称为截面二阶矩。

它是通过计算截面各点到其中一轴线的距离的二次方与其对应的面积乘积之和来获得。

常用的截面惯性矩计算公式如下:1.矩形截面的惯性矩公式:对于矩形截面,惯性矩可以通过以下公式进行计算:I=(b*h^3)/12其中,I为惯性矩,b为矩形宽度,h为矩形高度。

2.圆形截面的惯性矩公式:对于圆形截面,惯性矩可以通过以下公式进行计算:I=(π*R^4)/4其中,I为惯性矩,R为圆的半径。

3.I型截面的惯性矩公式:对于I型截面(又称为双T型截面或工字型截面),惯性矩可以通过以下公式进行计算:I = bw * hw^3 / 12 + hf * tf^3 / 12 + 2 * tf * hf * (hw / 2 + tf / 2)^2其中,I为惯性矩,bw为上翼板的宽度,hw为上翼板的高度,hf为下翼板的高度,tf为翼板的厚度。

4.H型截面的惯性矩公式:对于H型截面,惯性矩可以通过以下公式进行计算:I = [bw * (hw^3 - tw1 ^3) / 12] + [hf * (tf^3 - tw2^3) / 12] + 2 * tw1 * hw^3 / 12 + 2 * tw2 * tf^3 / 12 + 2 * hf * (hw / 2 + tf / 2)^2其中,I为惯性矩,bw为上翼板的宽度,hw为上翼板的高度,hf为下翼板的高度,tf为翼板的厚度,tw1为上翼板的厚度,tw2为下翼板的厚度。

5.T型截面的惯性矩公式:对于T型截面,惯性矩可以通过以下公式进行计算:I = [bw * hw^3 / 12] + [tf * hf^3 / 12] + tw * hw * (hw / 2 + tf)^2其中,I为惯性矩,bw为翼板的宽度,hw为翼板的高度,hf为梁的高度,tf为梁的厚度,tw为翼板的厚度。

这些公式是根据不同截面形状和尺寸推导出来的,可以用于计算截面的惯性矩。

惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdA dS y ==整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1)2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0AS y x=, A S x y = (I-2)推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。

推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。

3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii n i yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩有的单位为3m 。

(3) 静矩的数值可正可负,也可为零。

图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

(4) 若已知图形的形心坐标。

则可由式(I-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。

组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。

惯性矩计算方法及常用截面惯性矩计算公式

惯性矩计算方法及常用截面惯性矩计算公式

惯性矩计算方法及常用截面惯性矩计算公式惯性矩是描述物体抵抗转动的性质之一,也称为转动惯量或转动惯性。

惯性矩计算方法及其常用公式对于工程设计和物体力学研究非常重要。

本文将介绍惯性矩的计算方法以及常用截面的惯性矩计算公式。

一、惯性矩的计算方法惯性矩的计算方法有两种常见的方法:几何法和积分法。

1.几何法几何法是一种简单的惯性矩计算方法,适用于对称的二维和三维截面。

该方法基于图形的几何形状和特征参数,通过对称性和平移不变性等原理来计算物体的惯性矩。

对于二维截面,常用的几何法计算公式包括:(1)矩形截面的惯性矩计算公式:I=(1/12)*b*h^3其中,I为矩形截面的惯性矩,b为矩形的宽度,h为矩形的高度。

(2)圆形截面的惯性矩计算公式:I=(π/4)*r^4其中,I为圆形截面的惯性矩,r为圆形的半径。

对于三维截面,几何法的计算步骤类似,但计算公式更加复杂。

常用的几何法计算公式可参考相关的工程手册和物体力学教材。

2.积分法积分法是一种更加精确的惯性矩计算方法,适用于不规则形状的截面。

该方法基于直角坐标系下的积分原理,将截面划分成无限小的面元,并对每个面元的贡献进行积分求和,从而得到截面的惯性矩。

积分法的计算步骤如下:(1)将截面划分成无数个小区域,计算每个小区域的面积和距离轴线的距离。

(2)根据小区域的面积和距离,计算每个小区域的质量和质心的位置。

(3)根据每个小区域的质量、质心位置和距离轴线的距离,计算每个小区域对于轴线的贡献。

(4)对每个小区域的贡献进行积分求和,得到整个截面的惯性矩。

积分法的计算可以通过数值积分或解析积分进行。

对于复杂的截面形状,数值积分是一种较为方便和实用的计算方法。

1.矩形截面的惯性矩计算公式:I=(1/12)*b*h^3其中,I为矩形截面的惯性矩,b为矩形的宽度,h为矩形的高度。

2.圆形截面的惯性矩计算公式:I=(π/4)*r^4其中,I为圆形截面的惯性矩,r为圆形的半径。

3.环形截面的惯性矩计算公式:I=(π/4)*(r2^4-r1^4)其中,I为环形截面的惯性矩,r1为内径半径,r2为外径半径。

截面惯性矩计算公式

截面惯性矩计算公式

截面惯性矩计算公式截面的惯性矩是描述截面承受扭矩作用时的抗扭强度的重要参数。

在工程中,常常需要计算截面的惯性矩,用以评估截面的抗扭能力和设计结构的安全性。

本文将介绍两种常见的截面惯性矩计算公式,即矩形截面的惯性矩和圆形截面的惯性矩。

首先,我们来看矩形截面的惯性矩计算公式。

假设截面的宽度为b,高度为h。

根据几何性质可知,矩形截面的惯性矩由以下公式计算:Ix=(b*h^3)/12其中,Ix为截面绕x轴的惯性矩。

同样地,如果需要计算绕y轴的惯性矩Iy,公式将变为:Iy=(h*b^3)/12上述公式说明了矩形截面惯性矩与截面的长宽比有很大关系。

当截面为正方形时,长宽比为1,此时截面的主惯性矩I1和次惯性矩I2相等,即I1=I2=(b*h^3)/12、当长宽比不为1时,主次惯性矩产生差异,通常情况下,次惯性矩较大。

接下来,我们来看圆形截面的惯性矩计算公式。

假设截面的半径为r。

根据几何性质可知,圆形截面的惯性矩由以下公式计算:I=(π*r^4)/4其中,I为截面的惯性矩。

需要注意的是,圆形截面的惯性矩与其半径的四次方成正比,而与截面厚度无关。

需要指出的是,以上公式仅适用于矩形和圆形截面。

对于其他形状的截面,如梯形、T形、L形等,计算其惯性矩则需要根据具体的几何形状来进行推导和计算。

通常情况下,可以利用积分方法或使用计算机辅助设计软件进行计算。

此外,在复杂的工程问题中,还可利用有限元分析等数值方法进行截面惯性矩的计算。

总之,截面惯性矩是评估截面抗扭能力的重要参数。

本文介绍了矩形和圆形截面惯性矩的计算公式,并提醒读者在计算其他形状的截面惯性矩时需根据具体几何形状进行相应的推导和计算。

常用截面惯性矩与截面系数的计算

常用截面惯性矩与截面系数的计算

常用截面惯性矩与截面系数的计算截面的惯性矩是描述截面抗弯刚度大小的一个物理量,常用于结构力学和工程设计中。

截面系数是截面抗弯性能的一个重要参数,它表示截面抵抗外力作用下的变形能力。

下面将介绍一些常用的截面惯性矩和截面系数的计算方法。

1.矩形截面:矩形截面的惯性矩可以通过以下公式计算:I=(b*h^3)/12其中,I表示矩形截面的惯性矩,b表示矩形截面的宽度,h表示矩形截面的高度。

矩形截面的截面系数可以通过以下公式计算:W=(b*h^2)/6其中,W表示矩形截面的截面系数。

2.圆形截面:圆形截面的惯性矩可以通过以下公式计算:I=π*r^4/4其中,I表示圆形截面的惯性矩,r表示圆形截面的半径。

圆形截面的截面系数可以通过以下公式计算:W=π*r^3/3其中,W表示圆形截面的截面系数。

3.正三角形截面:正三角形截面的惯性矩可以通过以下公式计算:I=b*h^3/36其中,I表示正三角形截面的惯性矩,b表示正三角形截面的底边长度,h表示正三角形截面的高度。

正三角形截面的截面系数可以通过以下公式计算:W=b*h^2/24其中,W表示正三角形截面的截面系数。

4.T形截面:T形截面的惯性矩可以通过以下公式计算:I=(b1*h1^3+b2*h2^3)/12其中,I表示T形截面的惯性矩,b1和b2分别表示T形截面的上下翼缘的宽度,h1和h2分别表示T形截面的上下翼缘的高度。

T形截面的截面系数可以通过以下公式计算:W=(b1*h1^2+b2*h2^2)/6其中,W表示T形截面的截面系数。

需要注意的是,上述给出的公式仅适用于一些常见的截面形状,并且仅考虑了截面的几何特性。

在实际的工程设计中,还需要考虑材料的弹性模量等参数,并基于这些参数进行更精确的计算。

此外,还有一些其他复杂截面的惯性矩和截面系数的计算公式,如梯形截面、圆环截面等。

对于这些复杂截面的计算,可以借助数值方法或计算机辅助设计软件进行求解。

总之,截面的惯性矩和截面系数是结构力学和工程设计中常用的参数,通过计算这些参数可以评估截面的抗弯刚度和抗剪性能,为工程结构的设计提供依据。

惯性矩、静矩、截面抵抗矩计算

惯性矩、静矩、截面抵抗矩计算

惯性矩和对Y轴的惯性矩。
y
解:
100
1)求出A1和A2分别对自身形心 2
轴的惯性矩
0
I x1
b1h13 12
100 203 12
66.67 103
100
A1 •Ⅱ•ຫໍສະໝຸດ A2Ⅰx1
xc a2 30 x
Ix2
b2h23 12
20 100 3 12
16.67 105
2 0
2)求对整个截面形心X轴的惯性矩
截面对x轴的惯性矩:
I x y2dA
量纲:L4 y
A
截面对y轴的惯性矩: I y x2dA
A
注意:
1)同一截面对不同的轴惯性 矩不同;
2)惯性矩永远为正值;
x
dA
y r
x
3)惯性矩的单位为m4;
2、惯性半径(回转半径)
截面对x轴的惯性半径: ix I x / A 截面对y轴的惯性半径: iy I y / A
二、常见截面的惯性矩和惯性半径
形心轴:通过截面形心的坐标轴 ➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性矩。
y
对x轴的惯性矩
x
Ix
1 12
bh3
h 对y轴的惯性矩:
b
Iy
1 12
hb3
➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性半径。
y
对x轴的惯性半径
x
h
ix
Ix A
1/12bh3 h
截面的几何性质
知识点:截面惯性矩和静矩的计算 一、截面惯性矩的定义及计算 二、常见截面的惯性矩和惯性半径 三、组合截面的概念 四、惯性矩的平行移轴公式 五、静矩的概念及公式 六、常见截面的静矩

常见截面惯性矩和抗弯截面系数自动计算

常见截面惯性矩和抗弯截面系数自动计算

常见截面惯性矩和抗弯截面系数自动计算对于矩形截面,假设截面宽度为b,高度为h,其截面惯性矩的计算公式为:\[I = \frac{b \cdot h^3}{12}\]对于圆形截面,假设截面半径为r,其截面惯性矩的计算公式为:\[I = \frac{\pi}{4} \cdot r^4\]对于圆环截面,假设外半径为R,内半径为r,其截面惯性矩的计算公式为:\[I = \frac{\pi}{4} \cdot (R^4 - r^4)\]以上是常见截面的惯性矩的简化计算方法,对于其他复杂的截面形状,一般需要通过数值方法来进行计算。

而抗弯截面系数是描述截面抗弯承载能力的参数,通常用符号W表示。

抗弯截面系数与截面的弯矩和抵抗弯曲应力有关。

使用抗弯截面系数可以简化结构设计中的计算步骤。

下面将以矩形截面、圆形截面和圆环截面为例介绍其计算方法。

对于矩形截面,假设截面宽度为b,高度为h,其抗弯截面系数的计算公式为:\[W = \frac{b \cdot h^2}{6}\]对于圆形截面,假设截面半径为r,其抗弯截面系数的计算公式为:\[W = \frac{\pi}{32} \cdot r^3\]对于圆环截面,假设外半径为R,内半径为r,其抗弯截面系数的计算公式为:\[W = \frac{\pi}{32} \cdot (R^3 - r^3)\]以上是常见截面的抗弯截面系数的简化计算方法,对于其他复杂的截面形状,一般需要通过数值方法来进行计算。

自动计算常见截面惯性矩和抗弯截面系数可以通过编写计算程序来实现。

程序可以根据输入的截面形状参数,自动计算截面的惯性矩和抗弯截面系数。

例如,可以使用Python编程语言编写一个计算矩形截面惯性矩和抗弯截面系数的程序如下:```import math#计算矩形截面的惯性矩和抗弯截面系数def calculate_rectangle_inertia(b, h):I=(b*h**3)/12W=(b*h**2)/6return I, W#测试矩形截面计算程序if __name__ == "__main__":b = float(input("请输入矩形截面的宽度:"))h = float(input("请输入矩形截面的高度:"))I, W = calculate_rectangle_inertia(b, h)print("矩形截面的惯性矩为:", I)print("矩形截面的抗弯截面系数为:", W)```上述程序可以根据用户输入的矩形截面的宽度和高度,自动计算截面的惯性矩和抗弯截面系数,并输出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LOGO惯性矩的计算方法及常用截面惯性矩计算公式在此输入你的公司名称惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdA dS y == 整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0AS y x=, A S x y = (I-2)推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。

推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。

3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii n i yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩有的单位为3m 。

(3) 静矩的数值可正可负,也可为零。

图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

(4) 若已知图形的形心坐标。

则可由式(I-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。

组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。

(二).惯性矩 惯性积 惯性半径1. 惯性矩定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为⎰=Ap dA I 2ρ (I-5)图形对y 轴和x 轴的光性矩分别定义为⎰=Ay dA x I 2 , dA y I Ax ⎰=2 (I-6)惯性矩的特征(1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。

(2) 极惯性矩和轴惯性矩的单位为4m 。

(3) 极惯性矩和轴惯性矩的数值均为恒为大于零的正值。

(4) 图形对某一点的极惯性矩的数值,恒等于图形对以该点为坐标原点的任意一对坐标轴的轴惯性矩之和,即⎰⎰+=+==Ax y Ap I I dA y x dA I )(222ρ (I-7)(5) 组合图形(图I-2)对某一点的极惯性矩或某一轴的轴惯性矩,分别等于各族纷纷图形对同一点的极惯性矩或同一轴惯性矩之和,即∑==ni i I I 1ρρ ,∑==ni yi y I I 1, ∑==ni xi I Ix 1(I-8)图I-2 图I-32. 惯性积定义 设任意形状的截面图形的面积为A (图I-3),则图形对y 轴和x 轴的惯性积定义为⎰=Axy xydA I (I-9)惯性积的特征(1) 界面图形的惯性积是对相互垂直的某一对坐标轴定义的。

(2) 惯性积的单位为4m 。

(3) 惯性积的数值可正可负,也可能等于零。

若一对坐标周中有一轴为图形的对称轴,则图形对这一对称轴的惯性积必等于零。

但图形对某一对坐标轴的惯性积为零,这一对坐标轴重且不一定有图形的对称轴。

(4) 组合图形对某一对坐标轴的惯性积,等于各组分图形对同一坐标轴的惯性积之和,即∑==ni xyi xy I I 1 (I-10)3. 惯性半径定义: 任意形状的截面图形的面积为A (图I-3),则图形对y 轴和x 轴的惯性半径分别定义为AI i y y =, AI i xx =(I-11) 惯性半径的特征(1) 惯性半径是对某一坐标轴定义的。

(2) 惯性半径的单位为m 。

(3) 惯性半径的数值恒取证之。

(三).惯性矩和惯性积的平行移轴公式平行移轴公式Ab I I A a I I yC y xC x 22+=+= (I-12)abA I I xCyC xy += (I-13)平行移轴公式的特征(1)意形状界面光图形的面积为A (图(I-4);C C y x , 轴为图形的形心轴;x ,y 轴为分别与C C y x ,形心轴相距为a 和b 的平行轴。

(2)两对平行轴之间的距离a 和b 的正负,可任意选取坐标轴x ,y 或形心C C y x ,为参考轴加以确定。

(3)在所有相互平行的坐标轴中,图形对形心轴的惯性矩为最小,但图形对形心轴的惯性积不一定是最小。

图I-4(四)、惯性矩和惯性积的转轴公式.主惯性轴主惯性矩转轴公式 αα2sin 2cos 221xy yx yx x I I I I I I --++=αα2sin 2cos 221xy yx yx y I I I I I I +--+=αα2cos 2sin 211xy yx y x I I I I +-=转轴公式的特征(1) 角度α的正负号,从原坐标轴x,y 转至新坐标轴11,y x ,以逆时针转向者为正(图5)。

(2) 原点O 为截面图形平面内的任意点,转轴公式与图形的形心无关。

(3) 图形对通过同一坐标原点任意一对相互垂直坐标轴的两个轴惯性矩之和为常量,等于图形对原点的极惯性矩,即 P y x y x I I I I I =+=+11主惯性轴、主惯性矩 任意形状截面图形对以某一点O 为坐标原点的坐标轴0x 、0y 的惯性积为零(000=y x I ),则坐标轴0x 、0y 称为图形通过点O 的主惯性轴(图6)。

截面图形对主惯性轴的惯性矩0,y x I I ,称为主惯性矩。

主惯性轴、主惯性矩的确定(1) 对于某一点O ,若能找到通过点O 的图形的对称轴,则以点O为坐标原点,并包含对称轴的一队坐标轴,即为图形通过点O 的一对主惯性轴。

对于具有对称轴的图形(或组合图形),往往已知其通过自身形心轴的惯性矩。

于是,图形对通过点o 的主惯性轴的主惯性矩,一般即可由平行移轴公式直接计算。

(2) 若通过某一点o 没有图形的对称轴,则可以点o 为坐标原点,任作一坐标轴x ,y 为参考轴,并求出图形对参考轴x ,y 的惯性矩y x I I ,和惯性积xy I 。

于是,图形通过点o 的一对主惯性轴方位及主惯性矩分别为yx xy I I I --=22tan 0α (I-16)2222xy y x yx y x I I I I I I I +⎪⎪⎭⎫ ⎝⎛-±+= (I-17) 主惯性轴、主惯性矩的特征(1)图形通过某一点O 至少具有一对主惯性轴,而主惯性局势图形对通过同一点O 所有轴的惯性矩中最大和最小。

(2)主惯性轴的方位角0α,从参考轴x ,y 量起,以逆时针转向为正。

(3)若图形对一点o 为坐标原点的两主惯性矩相等,则通过点o 的所有轴均为主惯性轴,且所有主惯性矩都相同。

(4)以截面图形形心为坐标原点的主惯性轴,称为形心主惯性轴。

图形对一对形心主惯性轴的惯性矩,称为形心主惯性矩。

1y图I-5 图I-6二.典型例题分析例I-a 试计算图示三角形截面对于与其底边重合的x 轴的静矩。

解:计算此截面对于x 轴的静矩x S 时,可以去平行于x 轴的狭长条(见图)作为面积元素(因其上各点的y 坐标相等),即dy y b dA )(=。

由相似三角形关系,可知:)()(y h h b y b -=,因此有dy y h hbdA )(-=。

将其代入公式(I-1)的第二式,即得 ⎰⎰⎰⎰=-=-==Ah h h x bh dy y h b ydy b dy y h h b ydA S 002206)(x 例题I-a 图解题指导:此题为积分法求图形对坐标轴的静矩。

例I-2 试确定图示Ⅰ-b 截面形心C 的位置解:将截面分为І、П两个矩形。

为计算方便,取x 轴和y 轴分别与界面的底边和左边缘重合(见图)。

先计算每一个矩形的面积i A 和形心坐标(i i y x ,)如下: 矩形І 2120012010mm A =⨯=I mm x 5210==I ,mm y 602120==I 矩形П 27007010mm A =⨯=∏mm x 4527010=+=∏ ,mm y 5210==∏ 将其代入公式(I-4),即得截面形心C 的坐标为mmA A y A y A y mmA A x A x A x 4019007550020190037500≈=++=≈=++=∏I ∏∏I I ∏I ∏∏I I解题指导: 此题是将不规则图形划分为两个规则图形利用已有的规则图形的面积和形心,计算不规则图形的形心。

图Ⅰ-b例I-3 试求图I-c 所示截面对于对称轴x 轴的惯性矩x I解:此截面可以看作有一个矩形和两个半圆形组成。

设矩形对于x 轴的惯性矩为I x I ,每一个半圆形对于x 轴的惯性矩为I I x I ,则由公式(I-11)的第一式可知,所给截面的惯性矩:I I I +=x x x I I I 2 (1)矩形对于x 轴的惯性矩为:4433105330122008012)2(mm a d I x ⨯=⨯==I (2)半圆形对于x 轴的惯性矩可以利用平行移轴公式求得。

为此,先求出每个半圆形对于与x 轴平行的形心轴C x (图b )的惯性矩xC I 。

已知半圆形对于其底边的惯性矩为圆形对其直径轴x '(图b )的惯性据之半,即1284d I x π='。

而半圆形的面积为82d A π=,其形心到底边的距离为π32d(图b )。

故由平行移轴公式(I-10a ),可以求出每个半圆形对其自身形心轴C x 的惯性矩为:8)32(128)32(2242d d d A d I I x xCππππ-=-=' (3)由图a 可知,半圆形形心到x 轴距离为π32da +,故在由平行移轴公式,求得每个半圆形对于x 轴的惯性矩为:8)32(8)32(128)32(222242d d a d d d A d a I I xCx ππππππ++-=++=I I)32232(4222ππa ad a d d ++=将d=80mm 、 a=100mm (图a )代入式(4),即得4222103460)380100221003280(4)80(⨯=⨯⨯++=I I ππx I mm 4 将求得的I x I 和I I x I 代入式(1),便得44410122501034602105330⨯=⨯⨯+⨯=x I mm 4解题指导: 此题是将不规则图形划分为若干个规则图形,利用已有的规则图形的面积、形心及对自身形心轴的惯性矩,结合平行移轴公式计算组合截面图形对组合截面形心的惯性矩。

相关文档
最新文档