通信原理-数字基带传输系统

合集下载

通信原理(第六章 数字基带传输系统)图片公式

通信原理(第六章 数字基带传输系统)图片公式

七、什么是眼图?眼图模型、说明什么问题?
八、时域均衡:基本原理、解决什么问题?如何衡量均 衡效果?
一、数字基带系统和频带系统结构
一、数字基带信号(电波形)及其频谱特性(1)
二元码:幅度取值只有两种“1”、“0”或“1”、 “-1”

单极性非归零码:用高低电平分别表示“1”和“0”, 如图6-1(a) 。一般用于近距离之间的信号传输 双极性非归零码:用正负电平分别表示“1”和“0”, 如图6-1(b)。应用广泛,适应于在有线和电缆信道中 传输。 单极性归零码:有电脉冲宽度比码元宽度窄,每个脉 冲都回到零电位。如图6-1(c)。利于减小码元间波形 的干扰和同步时钟提取。但码元能量小,匹配接收时 输出信噪比低些
二、基带传输码的常用码型(4)
HDB3特点:保持AMI码的优点,三元码,无直流分量,主 要功率集中在码速率fb的1/2出附近(如图)。 位定时频率分量为零,通过极性交替规律得到检错能力。 增加了使连0串减少到 至多3个的优点,而不管 信息源的统计特性如何。
对于定时信号的恢复 是十分有利的。广泛应 用于基带传输与接口码。
Pv (w) = 2p å
¥ m =-
Cn d (w - mws )
2
Pv ( f ) = å
2
Cn d ( f - mf s )
2
故稳态波的双边功率谱密度
Pv ( f ) = å
¥ m =-
f s [ PG1 (mf s ) + (1 - P)G2 (mf s )] ? d ( f
mf s )..(6.1 - 14)
代入(6.1-26)得单极性非归零波形的双边功率谱密度
Ps (w) = Ts 2 1 Sa (p fTs ) + d ( f )..(6.1 - 30) 4 4

樊昌信《通信原理》(第6版)(名校考研真题 数字基带传输系统)【圣才出品】

樊昌信《通信原理》(第6版)(名校考研真题  数字基带传输系统)【圣才出品】

第6章 数字基带传输系统一、判断题1.在线路编码中HDB 3码的编码效率要高于双相码的编码效率。

()[南邮2011、2009研]【答案】√【解析】HDB 3码是1B1T 码,编码效率为2/3,双相码是1B2B 码,编码效率为1/2。

2.线路编码一般采用双极性波形,这样就可以没有直流分量,可以更好的适应信道。

( )[南邮2010研]【答案】√【解析】一般要求线路码的功率谱不应含有离散的直流分量,并尽量减小低频分量,双极性波形符合这一特点。

3.信号幅度相等时,单极性数字基带系统性能要优于双极性系统的性能。

( )[南邮2010研]【答案】×【解析】对于双极性不归零码,平均误比特率为;对于单极性不)2(21221nA erfc P b δ=归零码,平均误比特率为,所以在信号幅度A 、信息速率、接收低通)8(21222n A erfc P b δ=滤波器的带宽及噪声功率谱均相同的情况下,,即双极性基带系统的误码率比单21b b P P <4.部分响应改变了信号的谱特性,付出的代价是输出电平的增多,属于牺牲信噪比换取带宽。

()[南邮2011研]【答案】√【解析】部分响应带来的好处是减少了串扰和提高了频带利用率,其代价是发送信号功率增加。

对于L进制信号,第Ⅰ、Ⅳ类部分响应信号的电平数为2L-1,因此输出电平增多,牺牲了信噪比换取带宽。

5.时域均衡器可以用可调的横向滤波器来实现。

()[南邮2010研]【答案】√【解析】横向滤波器由延迟单元、抽头系数及加法器构成,可用作线性均衡器,在时域上实现均衡。

二、选择题1.在相同的传信率下,若采用不归零码,下列信号中带宽最小的是()。

[南邮2009研]A.AMIB.1B2BC.CMID.Manchester【解析】AMI可看为单极性不归零码的变形,其带宽为R s;1B2B、CMI和Manchester均为双极性不归零码,提高了检错能力,但所需带宽增加,为2R s。

通信原理第4章 数字基带传输

通信原理第4章 数字基带传输
其功率谱示意图如图(b)中实线所示。
2020/1/25
第4章 数字基带传输
16
4.3 数字基带传输系统及码间干扰
数字基带传输系统模化为
其中

d(t) bk (t kTs )
k
H( f ) HT ( f )HC ( f )HR ( f )
h(t) F 1[H ( f )] H ( f )e j2 ft df
14
4.2 数字基带信号的功率谱分析
【例4-2】试分析下图a)所示双极性全占空矩形脉冲序列 的功率谱。设“1”、“0”等概。
2020/1/25
第4章 数字基带传输
15
4.2 数字基带信号的功率谱分析
AMI码数字基带信号如下图(a)所示,“1”、“0”等 概,则其功率谱表达式为 P( f ) A2Ts Sa2 ( fTs ) sin2 ( fTs )

y(t) bk h(t kTs ) nR (t) k
研究表明,影响系统正确接收的 因素有两个: ① 码间干扰(Inter-Symbol
Interference—ISI)
② 信道中的噪声
2020/1/25
第4章 数字基带传输
17
4.3 数字基带传输系统及码间干扰
2020/1/25
第4章 数字基带传输
1
第4章 数字基带传输
将输入数字信号 变换成适合信道 传输的信号
低通型 信道
滤除噪声和 校正信道引 起的失真
输入
a
码型
发送
变换 b 滤波器
信道
c
定时脉冲
噪声 n(t)
接收 d
滤波器
取样 判决

通信原理第5章数字基带传输系统

通信原理第5章数字基带传输系统
s(t)的短截。即
N
sT (t) sn (t)
n N
为了使频谱分析的物理概念清楚,推导过程简 化,将sT(t)分解成稳态波vT(t)和交变波uT(t)。
24
稳态波:是随机序列s(t)的统计平均分量,
取决于每个码元内出现g1(t)、 g2(t)的概率加 权平均,且每个码元统计平均波形相同,因
此可表示成:
13
2. 双极性不归零码波形(BNRZ)
脉冲的正、负电平分别对应于二进制代码1、0。
特点:当0、 1符号等概出现时无直流分量(幅度相 等、极性相反的双极性波形) 。 接收端判决电平为 0,不受信道特性变化的影响,抗干扰能力较强。双 极性波形有利于在信道中传输。
E
10
-E
14
3. 单极性归零波形(RZ)
f
s
Pg1(t) (1 P)g2 (t) e jms d
f s PG1(m s ) (1 P)G2 (ms )
28
式中
G1(ms ) g1(t)e jmstdt
G2 (ms ) g2 (t)e jmstdt
29
把得到的Cm代回v(t)表达式得
v(t) f s PG1(m s ) (1 P)G2 (m s )e jmst
代码
10
0
Ts
12
此波型不宜传输。因为:
1)有直流分量,一般信道难于传输零频附近的 频率分量。 2)收端判决门限电平与信号功率有关,受信道特 性变化影响,不方便。 3)不能直接用来提取位同步信号,因NRZ连0序 列中不含有位同步信号频率成分。 4)要求传输线路有直流传输能力,即有一根需要 接地。
此波形只适用于计算机内部或极近传输。
信道匹配, 便于传输,减小码间串扰,利于同步提取

通信原理——数字基带传输系统3

通信原理——数字基带传输系统3
-T O (a )

s s
系统带宽:
1 B 2Ts
华北水利水电学院信息工程系 王玲
无码间串扰的基带传输特性
冲激响应波形:
h(t)
-4T s
-3Ts -2Ts
-Ts
0
Ts
2Ts 3Ts
4T s
华北水利水电学院信息工程系 王玲
无码间串扰的基带传输特性
因而,通过分析,可以得到以下结论: (1)对于理想低通系统,若Tb=mTs,m∈N,则可实 现无码间干扰传输,则传码率RB=1/Tb=1/(mTs) ; (2)理想低通系统最大频带利用率为:
基带传输系统的抗噪声性能
二进制双极性基带系统 接收滤波器的输出是一混合波形,即 x(t)=s(t)+nR(t) s(t):数字基带信号; nR(t) :接收滤波器输出端噪声。 为了得到第k个码元,选取抽样时刻t=kTs,则抽样值:
1 ’ 时 A nR ( kTs ) 发 送 ‘ x( kTs ) 0’ 时 A nR ( kTs ) 发 送 ‘
s
0 (b)
1s 2T 4W1
t
华北水利水电学院信息工程系 王玲
无码间串扰的基带传输特性
滚降系统无码间串扰的传码率=与之等效的理想低 通系统的无码间串扰的传码率;理想低通系统的截止 频率为滚降系统传输函数衰减到其最大值一半时对应 的频率点。
码元传输速率:RBMAX=1/Ts 频带利用率:ηmax=RBmax/B=2/(1+α) 当 α = 0 ,为理想低通特性,此时频带利用率最大, 2Bd/Hz; 当 α = 1 ,称为升余弦特性,此时频带利用率最小, 1Bd/Hz。
t0 + 2Ts
t
无码间串扰的基带传输特性

数字通信原理第5章 数字信号传输

数字通信原理第5章  数字信号传输

这一信号传输速率与理想低通截止 频率的关系就是数字信号传输的一个重 要准则——奈奎斯特第一准则,简称奈 氏第一准则。
3.滚降低通传输网络
具有奇对称滚降特性的低通滤波器作 为图5-7所示的传输网络。 图5-12定性画出滚降低通的幅频特性。
图5-12 滚降低通的幅频特性
1 / 2) 只要滚降低通的幅频特性以 C( f c, 点呈奇对称滚降,则可满足无码间干扰的 条件(此时仍需满足符号速率= 2 f c )。
图5-1 二进制数字信号信号序列的基本波形
图5-3是几种随机二进制数字信号序 列的功率谱曲线(设“0”码和“1”码 出现的概率均为1/2)。
图5-3 二进制数字信号序列的功率谱
经分析得出,随机二进制数字信号 序列的功率谱包括连续谱和离散谱两个 部分(图中箭头表示离散谱分量,连续 曲线表示连续谱分量)。
图5-15
AMI码及功率谱
例如: 二进码序列:1 1 0 1 0 0 1 0 0 0 1 1 AMI码序列:+l-10 +1 0 0-1 0 0 0+1-1 AMI码符合要求,是CCITT建议采 用的传输码型之一。
但AMI码的缺点是二进码序列中的“0” 码变换后仍然是“0”码,如果原二进码序列 中连“0”码过多,AMI码中便会出现长连 “0”,这就不利于定时钟信息的提取。 为了克服这一缺点,引出了HDB3码。
信道是各种电缆,其传递函数是L(), n(t)为噪声干扰。
接收滤波器的传递函数为E( ), 其作用是限制带外噪声进入接收系统以 提高判决点的信噪比,另外还参与信号 的波形形成(形成判决点的波形)。
接收滤波器的输出端(称为抽样判决 点或简称判决点)波形用R(t)表示,其 频谱为R( )。

通信原理第5章数字信号的基带传输

通信原理第5章数字信号的基带传输
和带宽利用率。
影响因素
带宽效率受到多种因素的影响, 包括信号的频谱特性、传输通道
的带宽限制、多径干扰等。
提高方法
为了提高带宽效率,可以采用高 阶调制技术、多载波调制技术、 高效编码技术等措施,以提高数 字信号的传输速率和带宽利用率。
05 基带传输的未来发展与挑 战
高频谱效率的基带传输技术
高级编码调制技术
简化的信号处理算法
研究和发展简化的信号处理算法,降低基带传输的复杂度,提高 实时性和能效。
低复杂度调制解调技术
采用低复杂度的调制解调技术,如QPSK、16-QAM等,降低实现 难度和功耗。
硬件加速技术
利用硬件加速技术,如FPGA和ASIC,实现高速数字信号处理,降 低计算复杂度。
基带传输在物联网中的应用与挑战
基带传输的应用场景
有线局域网
基带传输在有线局域网中广泛应用, 如以太网(Ethernet)。
光纤通信
在光纤通信中,基带传输常用于短距 离、高速率的信号传输。
无线局域网(WLAN)
WLAN中的信号传输通常采用基带传 输方式。
数字电视信号传输
数字电视信号通常采用基带传输方式, 通过同轴电缆或光纤进行传输。
04 基带传输的性能指标
误码率
01
02
03
误码率
是指在传输过程中,错误 接收的码元与总传输码元 的比值,是衡量数字通信 系统可靠性的重要指标。
影响因素
误码率受到多种因素的影 响,包括信噪比、信号的 频谱特性、传输通道的畸 变、多径干扰等。
降低方法
为了降低误码率,可以采 用差分编码、信道编码、 均衡技术等措施,以提高 数字信号的抗干扰能力。
信噪比
信噪比

通信原理樊昌信版第6章数字基带传输系统3

通信原理樊昌信版第6章数字基带传输系统3
12
6.5.2 二进制单极性基带系统
f0 ( x )
f1( x )
-A 0 A
f0 ( x )
x
f1 ( x )
13
1、最佳判决门限
2 A P(0) n vd ln 2 A P(1)
(6.5-12)
A 当P(1)=P(0)=1/2时 v 2 2、误码率(设V*d=A/2)
d
眼图可以用来指示接收滤波器的调整,以减 小码间串扰,改善系统性能。
23
眼图的模型
最佳抽样时刻:“眼睛”张开最大的时刻; 判决门限电平:眼图中央的横轴位置对应于判 决门限电平; 对定时误差的灵敏度:眼图斜边的斜率决定了 系统对抽样定时误差的灵敏程度,斜率越大, 对定时误差越灵敏,即要求定时准确;
6.7.1部分响应系统
• 研究问题:基带传输中的有效性问题 • 研究目的:如何设计频带利用率高又可实 现的基带传输系统 • 研究方法:放宽对无码间串扰的要求以提 高有效性
30
问题的提出 由奈奎斯特第一准则知,基带系统的总特性 设计成理想低通特性, 能达到理论上的极限传 输速率,达到最高的频带利用率(2B/Hz)。理 想低通传输特性实现困难,且h(t)的尾巴振荡 幅度大、收敛慢,而对定时要求十分严格。 余弦滚降特性所需的频带加宽了,降低了系 统的频带利用率。 问题:能否找到频带利用率为2B/Hz,满足 “尾巴”衰减大、收敛快,又可实际实现的传 输特性?
34
•讨论g(t)的波形特点
4 cos t / TS g t 2 2 1 4t / TS Ts kTs g (0) 4 , g 1, g 0, k 3 , 5 , 2 2
除了在相邻的取样时刻 t=Ts/2 处 g(t)=1 外, 其余的取样时刻上,g(t) 具有等间隔零点。 g(t)波形的拖尾幅度与t 2成反比,说明g(t)波 形拖尾的衰减速度加快了。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字基带信号的表示式:表示信息码元的单个脉冲 的波形并非一定是矩形的。
若表示各码元的波形相同而电平取值不同,则 数字基带信号可表示为:
s(t) an g(t nTs ) n
式中,an - 第n个码元所对应的电平值 Ts - 码元持续时间
g(t) -某种脉冲波形
一般情况下,数字基带信号可表示为一随机脉冲序
5
第6章 数字基带传输系统
差分波形:用相邻码元的电平的跳变和不变来表示消息代码 , 图中,以电平跳变表示“1”,以电平不变表示“0”。它也称 相对码波形。用差分波形传送代码可以消除设备初始状态的 影响。
多电平波形:可以提高频带利用率。图中给出了一个四电平 波形2B1Q。
6
第6章 数字基带传输系统
通信原理
第6章 数字基带传输系统
1
第6章 数字基带传输系统
概述
数字基带信号 - 未经调制的数字信号,它所占据的频 谱是从零频或很低频率开始的。
数字基带传输系统 -不经载波调制而直接传输数字基 带信号的系统,常用于传输距离不太远的情况下。
数字带通传输系统 -包括调制和解调过程的传输系统 研究数字基带传输系统的原因:
4
第6章 数字基带传输系统
单极性归零(RZ)波形:信号电压在一个码元终止时刻前总要 回到零电平。通常,归零波形使用半占空码,即占空比为 50%。从单极性RZ波形可以直接提取定时信息 。 与归零波形相对应,上面的单极性波形和双极性波形属 于非归零(NRZ)波形,其占空比等于100%。
双极性归零波形:兼有双极性和归零波形的特点。使得接收 端很容易识别出每个码元的起止时刻,便于同步。
s(t) sn (t) n
式中
sn
(t)
g1(t nTS ) , g(2 t nTS),
以概率 P 出现 以概率(1 P)出现
10
第6章 数字基带传输系统
为了使频谱分析的物理概念清楚,推导过程简化,我们可以 把s(t)分解成稳态波v(t)和交变波u(t) 。所谓稳态波,即随机 序列s(t)的统计平均分量,它取决于每个码元内出现g1(t)和 g2(t) 的概率加权平均,因此可表示成
m
fS
t
dt
2
13
第6章 数字基带传输系统
又由于 Pg1(t) (1 P)g2 (t)
只存在于(-Ts/2,Ts/2)范围内,所以上式的积分限可以改 为从 - 到 ,因此
其中
Cm
1 Ts
[
Pg1
(t
)
(1
P)
g
2
(t
)]e
j
2
m
fS
t
dt
G1(mf s )
g1
(t
)e
j
2mfS
t
dt
G2 (mf s )
近程数据通信系统中广泛采用 基带传输方式也有迅速发展的趋势 基带传输中包含带通传输的许多基本问题 任何一个采用线性调制的带通传输系统,可以等效
为一个基带传输系统来研究。
2
第6章 数字基带传输系统
6.1 数字基带信号及其频谱特性
6.1.1 数字基带信号
几种基本的基带信号波形
3
第6章 数字基带传输系统
或写成
un (t) an[g1 (t nTs ) g2 (t nTs )]
其中
1 P, 以概率P an P, 以概率(1 P)
显然, u(t)是一个随机脉冲序列 。
12
第6章 数字基带传输系统
v(t)的功率谱密度Pv(f)
由于v(t)是以为Ts周期的周期信号,故 v(t) [Pg1 (t nTs ) (1 P)g2 (t nTs )] n
单极性波形:该波形的特点是电脉冲之间无间隔,极性单一, 易于用TTL、CMOS电路产生;缺点是有直流分量,要求传 输线路具有直流传输能力,因而不适应有交流耦合的远距离 传输,只适用于计算机内部或极近距离的传输。
双极性波形:当“1”和“0”等概率出现时无直流分量,有利 于在信道中传输,并且在接收端恢复信号的判决电平为零值, 因而不受信道特性变化的影响,抗干扰能力也较强。
式中,
g1(t nTs ) Pg1(t nTs ) (1 P)g2 (t nTs )
un
(t
)
(1 P)[g1(t nTs ) g2 (t nTs )], 以概率P g2 (t nTs ) Pg1(t nTs ) (1 P)g2 (t nTs )
P[g1(t nTs ) g2 (t nTs )], 以概率(1 P)
v(t) [Pg1 (t nTs ) (1 P)g2 (t nTs )] vn (t)
n
n
由于v(t)在每个码元内的统计平均波形相同,故v(t)是以Ts为 周期的周期信号。
11
第6章 数字基带传输系统
交变波u(t)是s(t)与v(t)之差,即
u(t) s(t) v(t)
于是
u(t) un (t) n
随机脉冲序列的表示式
设一个二进制的随机脉冲序列如下图所示:
9
第6章 数字基带传输系统
图中
Ts - 码元宽度
g1(t)和g2(t) - 分别表示消息码“0”和“1”,为任意波形。
设序列中任一码元时间Ts内g1(t)和g2(t)出现的概率分别为P和 (1-P),且认为它们的出现是统计独立的,则该序列可表示为
可以展成傅里叶级数
v(t)
C e j2 m fS t m
m
式中
CmLeabharlann 1 TsTs2 Ts
v(t)e j2 m
fS t dt
2
由于在(-Ts/2,Ts/2)范围内, v(t) Pg1(t) (1 P)g2 (t)
所以
Cm
1 Ts
Ts
2 Ts
[Pg1
(t)
(1
P) g 2
(t )]e
j 2
g
2
(t
)e
j
2mfS
t
dt
于是,根据周期信号的功率谱密度与傅里叶系数的关系式得
到的功率谱密度为
Pv f
fS [PG1(mfS ) (1 P)G2 (mfS )] 2 ( f mfs )
m
14
第6章 数字基带传输系统
u(t)的功率谱密度Pu(f)
由于是一个功率型的随机脉冲序列,它的功率谱密度
列:
s(t) sn (t) n
式中,sn(t)可以有N种不同的脉冲波形。
7
第6章 数字基带传输系统
6.1.2 基带信号的频谱特性
本小节讨论的问题
由于数字基带信号是一个随机脉冲序列,没有确定的 频谱函数,所以只能用功率谱来描述它的频谱特性。
这里将从随机过程功率谱的原始定义出发,求出数字 随机序列的功率谱公式。
相关文档
最新文档