第一章《整式的乘除》专项训练
北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。
北师大版七年级数学下册第一章整式的乘除——整式混合运算及化简求值专项练习(含答案)

整式的乘除——整式混合运算及化简求值专项练习一、单选题(共6小题)1.下列计算中正确的是( )A.m÷n·1n=m B.m·n÷m·n=1C.n·1n ·m·1m=1 D.m3÷1m÷m2=12.已知除式是x2+2x,商式是x,余式是-1,则被除式是( )A.x3+2x2−1B.x2+2xC.x2−1D.x2−3x+13.已知2a2−a−3=0,则(2a+3)(2a−3)+(2a−1)2的值是( )A.6B.−5C.−3D.44.现规定一种运算:a△b=ab+a−b,其中a,b为实数,则a△b△a等于( )A.a2b+a2+bB.a2b−a2+bC.a2b+a2−bD.a2b−a2−b5.若m是任意整数,则代数式2[m(m−1)+m(m+1)]·[m(m−1)−m(m+1)]的值可能为( )A.4B.8C.−27D.−366.计算(x−1)(2x+1)−(x2+x−2)的结果,与下列哪一个式子相同( )A.x2−2x−3B.x2−2x+1C.x2+x−3D.x2−3二、填空题(共6小题)7.已知x+y=3,xy=1,则(x−1)(y−1)的值等于.8.如果长方形的长为(2a+b)米,宽为(a−2b)米,则其周长为米.9.若(−2x2)(3x2−ax−6)−3x3+x2中不含x的三次项,则a=.10.若M=(x−2)(x−8),N=(x−3)(x−7),则M−N=.11.规定a∗b=ab+a−b,其中a,b为实数,则a∗b+(b−a)∗b=12.A·(x+y)=x2−y2,则A=.三、解答题(共9小题)13.化简:(1)(x+5)2−(4+x)(4−x);(2)4x(x2+x+3)+(−2x−5)(2x−5)−(−2x)2;(3)(3x−4y)(3x+4y)−(3x+y)214. 已知x=13,求(2x+1)(2x−1)+x(3−4x)的值.15. 已知3x2−2x−3=0,求的值.16. 先化简,再求值:(2−a)(2+a)−2a(a+3)+3a2,其中a=−13.17. 先化简,再求值:(2x+y)2−(2x+y)(2x−y)−2y(x+y),其中x=(12)2023,y=22022.18.先化简,再求值:−a2b+(3a b2−a2b)−2(2a b2−a2b),其中a=1,b=−2.19.先化简,再求值:(x−y)2+y(4x−y)−8x]÷2x,其中x=8,y=2021.20.已知m2−m−2=0,求代数式m(m−1)+(m+1)(m−2)的值.21.先化简,再求值:[(3m+4n)(3m+2n)−2n(3m+4n)]÷(−6m),其中m=2,n=3.参考答案1.C2.A3.D4.C5.B6.B7.−18.(6a−2b)9.3210.−511.b²−b12.x−y【解析】A=(x2−y2)÷(x+y)=[(x+y)(x−y)]÷(x+y)=x−y,故答案为:x−y.13.(1)解:原式=x2+10x+25−16+x2=2x2+10x+9.(2)原式=4x3+4x2+12x+25−4x2−4x2=4x3−4x2+12x+25.(3)原式=9x2−16y2−9x2−6xy−y2=−17y2−6xy.14.解:(2x+1)(2x−1)+x(3−4x)=4x2−1+3x−4x2=−1+3x.当x=13时,原式=−1+3×13=0.15.解:原式=x2−2x+1+x2+23x=2x2−43x+1,∵3x2−2x−3=0,∴x2−23x=1,∴原式=2×1+1=3.16.解:(2−a)(2+a)−2a(a+3)+3a2,=4−a2−2a2−6a+3a2,=4−6a;当a=−13时,原式=4−6×(−13)=4+2=6.17.解:原式=4x2+4xy+y2−(4x2−y2)−2xy−2y2 =4x2+4xy+y2−4x2+y2−2xy−2y2=2xy.当x=(12)2023,y=22022时,原式=2×(12)2023×22022=2×12×(12)2022×22022=1.18.解:原式=−a2b+3a b2−a2b−4a b2+2a2b=(−1−1+2)a2b+(3−4)a b2=−a b2.当a=1,b=−2时,原式=−1×(−2)2=−4.19.解:[(x−y)2+y(4x−y)−8x]÷2x=(x2−2xy+y2+4xy−y2−8x)÷2x=(x2+2xy−8x)÷2x=12x+y−4.当x=8,y=2021时,原式=12×8+2021−4=2021.20.解:原式=m2−m+m2−2m+m−2=2m2−2m−2=2(m2−m)−2.∵m2−m−2=0,∴m2−m=2,∴原式=2×2−2=2.21.解:原式=(9m2+18mn+8n2−6mn−8n2)÷(−6m) =(9m2+12mn)÷(−6m)=−3m−2n,2当m=2,n=3时,原式=−3×2−2×3=−9.2。
北师大版数学七下第一章《整式的乘除》计算题专项训练

北师大版数学七下第一章《整式的乘除》计算题专项训练1、4(a+b)+2(a+b)-5(a+b)化简得:(4+2-5)(a+b)=a+b答案为:a+b2、(3mn+1)(3mn-1)-8mn化简得:9m^2n^2-1-8mn=9m^2n^2-8mn-1答案为:9m^2n^2-8mn-13、-2-3×(1-(-1)÷2^2)×22÷7化简得:-2-3×(1-(-1)÷4)×2= -2-3×(1+0.25)×2=-16.5答案为:-16.54、[(xy-2)(xy+2)-2xy+4]÷(xy)化简得:(x^2y-4+2xy+4)÷xy=(x^2y+2xy)÷xy=x+2答案为:x+25、(2a-1)^2+(2a-1)(a+4),其中a=-2化简得:(2(-2)-1)^2+(2(-2)-1)(-2+4)=(-5)^2+(-10)(2)=45答案为:456、(1÷2ab)×(-2ab^2)^2÷4÷(1÷2x)^3化简得:-2a^2b^4×8x^3=-16a^2b^4x^3答案为:-16a^2b^4x^37、2(x^2+5xy)-6(2xy-x^2)化简得:2x^2+10xy-12xy+6x^2=8x^2-2xy答案为:8x^2-2xy8、(x+2)(x-3)-(x+1)(x-2)化简得:x^2-x-6-x^2+x+2x-2=x-4答案为:x-410、(x+2y)^2-(x+y)(x-y),其中x=-2,y=3化简得:(2(-2)+6)^2-(2(-2)+3)(2(-2)-3)=16-(-13)=29 答案为:2911、(-x-y)(x-y)+(x+y)^2化简得:-x^2+xy+xy-y^2+x^2+2xy+y^2=4xy答案为:4xy13、x^2-(x+2)(x-2)化简得:x^2-(x^2-4)=4答案为:414、(-3x^3)^2-(-2x^2)^3化简得:9x^6-8x^6=x^6答案为:x^615、(2a+b)^4÷(2a+b)^2化简得:(2a+b)^2=4a^2+4ab+b^2答案为:4a^2+4ab+b^216、123-124×122利用乘法公式计算124×122=化简得:123-=-答案为:-17、[(x+1)(x+2)-2]÷(-x)化简得:-(x^2+3x)=-(x(x+3))答案为:-(x(x+3))18、(2xy)·(-7xy)÷(14xy)化简得:-1/2答案为:-1/219、[(2x+y)^2+(2x+y)(2x-y)-4xy]÷(-2x),其中x=2,y=1化简得:[(2(2)+1)^2+(2(2)+1)(2(2)-1)-4(2)]÷(-2(2))=-15 答案为:-1520、-2a(3a-4b^2)÷5化简得:6a^2-8b^2÷5=-8/5(5-3a)(5+3a)答案为:-8/5(5-3a)(5+3a)21、(a+2b)(a-2b)化简得:a^2-4b^2答案为:a^2-4b^222、(x-1)(2x+3)化简得:2x^2+x-3答案为:2x^2+x-323、(a-3b)^2-9b^2-3.14化简得:a^2-6ab+9b^2-9b^2-3.14=a^2-6ab-3.14答案为:a^2-6ab-3.1424、3x^2y(-4xy^2)+5xy(-6xy)^2,其中x=2,y=3化简得:-36x^4y^3+5(-216x^3y^3)=-36x^4y^3-1080x^3y^3 答案为:-36x^4y^3-1080x^3y^325、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:326、(9abc)÷(2ab)·(-abc)化简得:-18c答案为:-18c27、(15xy-12xy-3x)÷(-3x)化简得:-1答案为:-128、(a+b)-4(2a-3b)+(3a-2b)化简得:a+b-8a+12b+3a-2b=-4a+11b答案为:-4a+11b30、(x+2)^2-(x-1)(x+1)化简得:x^2+4x+4-(x^2-1)=5x+5答案为:5x+531、3+0+(-2)+(892-890)化简得:3+0+(-2)+2=3答案为:332、(a-b)(a+ab+b)+b(a+b)化简得:a^2+ab^2+2ab+b^2答案为:a^2+ab^2+2ab+b^21.题目中的符号应该使用正确的数学符号,比如乘号用*代替,除号用/代替。
北师大版七年级数学下册第一章《整式的乘除》单元测试卷附答案

第一章《整式的乘除》单元测试卷(最新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)0等于()A.1B.0C.-2D.122.(跨学科融合)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.000 05米.其中,0.000 05用科学记数法表示为()A.5×10-5B.5×10-4C.0.5×10-4D.50×10-33.下列各式计算正确的是()A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2bD.2ab·ab=2ab24.若24×22=2m,则m的值为()A.8B.6C.5D.25.计算(8a2b3-2a3b2+ab)÷ab的结果是()A.8ab2-2a2b+1B.8ab2-2a2bC.8a2b2-2a2b+1D.8a2b-2a2b+16.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-67.若(a+2b)2=(a-2b)2+A,则A等于()A.-8abB.8abC.8b2D.4ab8.下面四个整式中,不能表示图中阴影部分面积的是()A.(m+5)(m+3)-3mB.m(m+5)+15C.m2+5(m+3)D.m2+8m第8题图第10题图9.已知M=79a-1,N=a2-119a(a≠1),则M,N的大小关系为()A.M=NB.M<NC.M>ND.不能确定10.(创新题)如图,两个正方形的边长分别为a,b,若a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二、填空题(本大题共5小题,每小题3分,共15分)11.比较大小:2-2π0.(选填“>”“<”或“=”)12.计算:2a2(3a2-5b)=.13.若x2-(m+1)x+1是完全平方式,则m的值为.14.若a+3b-2=0,则3a·27b=.15.(数学文化)我国宋朝数学家杨辉在其著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律:杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.例如:(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,中间项系数2等于上方数字1加1,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,中间项系数3等于上方数字1加2,系数分别为1,3,3,1,系数和为8;……则(a+b)4的展开式中系数和为.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:2-1+(π-3.14)0+(-2)-(-1)2 023.。
完整版第一章整式的乘除单元测试题

第一章《整式的乘除》单元测试题一、选择题(每题 3 分,共 30 分)1.以下运算中,错误的选项是()A. 201B. 313C. a2 a 3 a 5D. ( a 2 ) 3a6 2.化简( a2)3的结果是()A .a5B.a5C.a6D.a63.以下计算正确的选项是()A .a3+a4=a7B. a3·a4=a7C.(a3)4=a7D. a6÷a3=a24.设 a m =8,a n =16,则 a m n =()A.245.PM2.5 是指大气中直径小于或等于0.000 002 5 m 的颗粒物,将0.000 002 5 用科学记数法表示为 ()-5B.0.25 ×10-6C.×-5D.×-6A . 0.25 ×10 2.5 10 2.5 106.李老师做了个长方形教具,此中一边长为2a+ b,另一边长为 a-b,则该长方形的面积为 ()A . 6a+b B.2a 2-ab-b2C.3a D.10a-b7. 计算( x- 3y)(x+3y)的结果是()x2y2Bx2y2Cx2y2Dx2y2A .-3.-6.-9. + 98. 以下计算结果正确的选项是()A .(3 xy )2 3 x2 y 2.B.2x2y32xy2x3y4.C. 28x4y27x3y 4xy.D.( 3a2)(3a2) 9a249.计算x2x5x 1 的结果,正确的选项是().A .4x5 B. x24x5 C.4x5 D. x24x510.如图,表示暗影部分面积的代数式是()A . ab bc B.ad c(b d)二、填空题(每空 3 分,共 18 分)1.所表示的小数是 ________________.2.若 x 2 2x24x m,则 m=_____.3.计算: (2a3a2 )a2______________.4.假如x y4, x y8 ,那么代数式x2y2的值是.5.一台电子计算机每秒可运转4×109 次运算,则它工作5×10 2秒可作的运算是________________________次 .6.任意给定一个非零数,按以下程序计算,最后输出的结果是(用含 m 的代数式表示)三、计算题(每题 6 分,共 36 分)(1)( 1)20141)2(3.14 )0()( 2 899 901 1 2(3)2a (3a2 a 3)(4)24x2y6xy(5) (xy 4)( xy 4)(6)(a3)(a 1) a(a 2)四、解答题(每题 8 分,共 16 分)1、( 8 分)先化简,再求值:(a b)(a b) (a b)22a2,此中a3,b 1 .32212、( 8 分)化简求值:xy 2 xy 2 2x y 4 xy,此中x 10, y5附带题:(10 分)小明想把一长是 60cm,宽为 40cm 的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形的四个角各剪去一个同样小正方形(如图)。
第一章 整式的乘除 单元测试

第一章整式的乘除单元测试(基础过关)一、单选题1.下列计算正确的是()A.2a+3b=5ab B.x8÷x2=x6C.(ab3)2=ab6D.(x+2)2=x2+4【答案】B【分析】由相关运算法则计算判断即可.【解析】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.2.下列计算正确的是( )A.(﹣p2q)3=﹣p5q3B.12a2b3c÷6ab2=2abC.(x2﹣4x)÷x=x﹣4D.(a+3b)2=a2+9b2【答案】C根据积的乘方运算,整式除法运算以及完全平方公式分别求解验证即可.【解析】解:A、原式=﹣p6q3,原计算错误,不符合题意;B、原式=2abc,原计算错误,不符合题意;C、原式=x﹣4,原计算正确,符合题意;D、原式=a2+6ab+9b2,原计算错误,不符合题意;故选:C.【点睛】本题考查积的乘方运算,整式的除法运算以及完全平方公式,熟记和熟练运用基本公式和法则是解题关键.3.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为( )A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米【答案】B【分析】直接利用整式的除法运算法则计算得出答案.【解析】解:∵长方形空地的面积为(3ab+b)平方米,宽为b米,∴这块空地的长为:(3ab+b)÷b=(3a+1)米.【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.4.计算2202120192023-´的结果为()A .4B .3C .2D .1【答案】A【分析】根据2019=2021-2,2023=2021+2可把原式变形,然后根据平方差公式进行计算即可.【解析】解:2202120192023-´=()()220212*********-´+-=22202120214-+=4;故选A .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab =4a 2b +2ab 3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( )A .(2a +b 2)B .(a +2b )C .(3ab +2b 2)D .(2ab +b 2)【答案】A【分析】根据多项式除单项式的运算法则计算即可.【解析】∵(4a 2b +2ab 3)÷2ab =2a +b 2,∴被墨汁遮住的一项是2a +b 2.故选:A .【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.6.已知2m +3n =4,则48m n ´的值为()A .8B .12C .16D .20【答案】C【分析】根据()()2323234822222m n m n m n m n +´=´=´=进行求解即可.【解析】解:∵234m n +=,∴()()23232344822222216m n m n m n m n +´=´=´===,故选C .【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,熟知相关计算法则是解题的关键.7.若2223a b -=,12a b +=,则-a b 的值为( )A .12-B .43C .32D .2【答案】B【分析】根据平方差公式计算即可得到答案【解析】解:∵()()22a b a b a b +-=-,∴()1223a b ´-=,∴()43a b -=.故选B .【点睛】此题考查平方差公式,熟记公式并熟练应用是解题的关键.8.如图所示,有三种卡片,其中边长为a 的正方形卡片有1张,长为a 、宽为b 的矩形卡片有4张,边长为b 的正方形卡片有4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为( )A .2+a bB .22a b +C .2a b +D .a b+【答案】A 【分析】可根据拼前与拼后面积不变,求出正方形的边长.【解析】解:设拼成后大正方形的边长为x,则a2+4ab+4b2=x2,则(a+2b)2=x2,∴x=a+2b,故选A.【点睛】本题考查了完全平方公式的几何背景以及整式的混合运算,解题的关键是依据面积相等列方程.9.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是( )A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.b(a-b)=ab-b2D.a2-b2=(a+b)(a-b)【答案】D【分析】观察图1与图2,根据两图形阴影部分面积相等,即可写出一个正确的等式.【解析】解:根据图形得:图1中阴影部分面积=a2-b2,图2中阴影部分面积=(a+b)(a-b),∴a2-b2=(a+b)(a-b),故选D.【点睛】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.10.我国宋代数学家杨辉发现了()nn=,1,2,3,…)展开式系数的规律:a b+(0以上系数三角表称为“杨辉三角”,根据上述规律,()8+展开式的系数和是()a bA.64B.128C.256D.612【答案】C【分析】由“杨辉三角”的规律可知,(a+b)8所有项的系数和为28,即可得出答案.【解析】解:由“杨辉三角”的规律可知,()0+展开式中所有项的系数和为1,a b()1+展开式中所有项的系数和为2,a b()2+展开式中所有项的系数和为4,a b()3a b +展开式中所有项的系数和为8,……()n a b +展开式中所有项的系数和为2n ,()8a b +展开式中所有项的系数和为82256=.故选:C .【点睛】本题考查了“杨辉三角”展开式中所有项的系数和的求法,解题关键是通过观察得出系数和的规律.二、填空题11.计算22-的结果是______.【答案】14【分析】根据负整数指数幂的运算法则计算即可.【解析】解:2211224-==,故答案为:14.【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键.12.计算:(xy )2=_____.(﹣m 2)3=_____.2a •(﹣3b )=_____.(a 6﹣2a 3)÷a 3=_____.【答案】x2y2﹣m6-6ab a3﹣2a3【分析】根据单项式的乘法,积的乘方、幂的乘方的性质,多项式除以单项式分别计算求解即可.【解析】解:(xy)2=x2y2;(﹣m2)3=﹣m6;2a•(﹣3b)=-6ab;(a6﹣2a3)÷a3=a6÷a3﹣2a3÷a3= a3﹣2.故答案为:x2y2;﹣m6;-6ab;a3﹣2.【点睛】本题考查了单项式的乘法,积的乘方、幂的乘方,多项式除以单项式,熟练掌握运算法则和性质是解题的关键.13.用科学记数法表示0.00000012为________.【答案】71.210-´【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解析】解:0.00000012=1.2×10-7.故答案为:1.2×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.若式子x2+16x+k是一个完全平方式,则k=______.【答案】64【分析】根据完全平方公式解答即可.【解析】解:∵(x+8)2=x2+16x+64=x2+16x+k,∴k=64.故填64.【点睛】本题主要考查了完全平方公式,掌握完全平方公式的结构特点成为解答本题的关键.15.(8x2+4x)(-8x2+4x)=_______.【答案】16x2 - 64x4x4+16x2【分析】利用平方差公式进行计算.【解析】解:原式=(4x)2-(8x2)2=16x2 - 64x4,故答案为:16x2 - 64x4.【点睛】本题考查平方差公式,掌握平方差公式(a +b )(a -b )=a 2-b 2的结构是解题关键.16.(23)(23)a b c a b c -++-=______.【答案】2224129a b bc c -+-【分析】根据整式的乘法运算法则,平方差公式以及完全平方公式计算求解即可.【解析】解:(23)(23)a b c a b c -++-,[(23)][(23)]a b c a b c =--+-,22(23)a b c =--,()2224129a b bc c =--+,2224129a b bc c =-+-.故答案为:2224129a b bc c -+-.【点睛】此题考查了整式的乘法运算和平方差公式,解题的关键是熟练掌握整式的乘法运算法则,平方差公式和完全平方公式.17.若x m -与23x +的乘积中不含一次项,则m 的值为____________.【答案】32【分析】先计算()()()2232323x m x x m x m -+=+--,再由乘积中不含x 的一次项,可得320m -=从而可得答案.【解析】解:∵()()()222322332323x m x x mx x m x m x m -+=-+-=+--且2x m +与2x +的乘积中不含x 的一次项,∴320m -= ∴32m = 故答案为:32.【点睛】本题考查的是多项式的乘法运算,多项式中不含某项,掌握以上知识是解题的关键.18.对a ,b ,c ,d 定义一种新运算:a c ad bcb d =-,如232413514=´-´=,计算2x y x x y=+_________.【答案】22x xy+【分析】根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.【解析】解:()2222222xy x x y xy x xy xy x xy x x y=+-=+-=++.故答案为:22x xy +.【点睛】本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.19.1921年伟大的中国共产党成立,2021年中国共产党迎来了百年华诞,若()()19212021520a a ++=,则()()2219212021a a +++的值为 _____.【答案】11040【分析】利用完全平方公式列出关系式,把各自的值代入计算即可求出所求.【解析】解:∵()()19212021520a a ++=,()()2021192120211921100a a a a +-+=+--=,∴()()()()()()2222021192119212021219212021a a a a a a +-++++++éëû=-ù,∴()()2210000192120211040a a +-=++,则()()221921202111040a a =+++.故答案为:11040.【点睛】本题考查完全平方公式的变形运用,理解并熟练运用完全平方公式,运用整体思想是解题关键.20.已知23,32a b ==,则1111a b +=++_______.【答案】1.【分析】利用幂的乘方与同底数幂相乘,得到2a +1=2a ×2=6,3b +1=3b ×3=6,进而得到111111116666a b a b +++++×==,求出答案即可.【解析】解:∵2a +1=2a ×2=3×2=6,3b +1=3b ×3=2×3=6,∴11111(2)62a a a +++==,11111(3)63b b b +++==,∴11111111666236a b a b +++++×==´=,∴11111a b +=++.故答案为:1.【点睛】本题考查幂的乘方与同底数幂相乘,掌握幂的乘方与同底数幂相乘的运算法则是解题关键.三、解答题21.计算:(1)()()22012011 3.142p -æö-+---ç÷èø(2)32332(2)(2)(2)(2)x y xy x y x ×-+-¸(3)()()222226633m n m n m m --¸-【答案】(1)4;(2)7312x y -;(3)2221-++n n 【分析】(1)利用-1的偶次幂的法则、负指数幂法则、零指数幂法则即可得到答案;(2)根据乘方法则再利用单项式乘除单项式法则即可得到答案;(3)根据多项式除以单项式法则计算即可得到答案;【解析】解:(1)()()22012011 3.142p -æö-+---ç÷èø1414=+-=;(2)32332(2)(2)(2)(2)x y xy x y x ×-+-¸629324(2)(8)2x y xy x y x =×-+-¸7373(8)(4)x y x y -+-=7312x y =-;(3)()()222226633m n m n m m --¸-=()()222221(3)3n n m m -++-¸-2221n n =-++;【点睛】本题考查了整式的混合运算,知识点有:-1的偶次幂的法则、负指数幂法则、零指数幂法则、单项式乘除单项式、多项式除以单项式,熟练掌握公式及法则是做题的关键.22.先化简,再求值.()()()()25222232m n n m n m n n n m éùæö--+++-¸ç÷êúèøëû,其中2m =,1n =-.【答案】−2n−m ;0【分析】先根据整式的混合运算的法则化简,再把2m =,1n =-代入即可【解析】解:()()()()25222232m n n m n m n n m m éùæö--+++-¸ç÷êúèøëû()22222442543m mn n mn n n m m éù=-+--+-¸ëû()26332mn m m n méù=--¸=--ëû当2m =,1n =-时,原式=2-2=0【点睛】本题考查了整式的化简求值,熟练掌握相关的法则是解题的关键23.①先化简,再求值:(4x +3)(x -2)-2(x -1)(2x -3),x =-2;②若(x 2+px +q )(x 2-3x +2)的结果中不含x 3和x 2项,求p 和q 的值.【答案】①512x -,22-;②p =3,q =7.【分析】①先去括号再合并同类项,将x=-2代入化简后的结果计算;②先按照多项式乘以多项式将括号打开,再根据不含项的系数为0得到方程,解方程即可得到答案.【解析】①(4x +3)(x -2)-2(x -1)(2x -3),=2248362(2323)x x x x x x -+----+ ,=224564106x x x x ---+-,=512x -∵x =-2,∴原式=-10-12=-22;②(x 2+px +q )(x 2-3x +2),=432322323232x x x px px px qx qx q -++-++-+,=432(3)(23)(2)2x p x p q x p q x q +-+-++-+,∵结果中不含x 3和x 2项,∴30-=p ,230p q -+=,∴p=3,∴q=7.【点睛】此题考查整式的混合运算,整式的不含某项的化简求值,将整式正确化简计算是解题的关键.24.若m n a a =(0a >且1a ¹,m 、n 是正整数),则m n =.你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!(1)若228x ´=,求x 的值;(2)若()2893x =,求x 的值.【答案】(1)2;(2)2【分析】(1)根据a m =a n (a >0且a≠1,m 、n 是正整数),则m=n ,对方程变形可得答案;(2)根据a m =a n (a >0且a≠1,m 、n 是正整数),则m=n ,对方程变形可得答案.【解析】解:(1)原方程等价于2x+1=23,∴x+1=3,解得x=2;(2)原方程等价于34x =38,∴4x=8,解得x=2.【点睛】此题考查了同底数幂乘法与幂的乘方,利用相关运算法则化成底数相同的幂是解题关键.25.如图1,在一个边长为a 的正方形木板上锯掉一个边长为b 的正方形, 并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积图1得: ; 图2得 ;(2)由图1与图2 面积关系,可以得到一个等式: ;(3)利用(2)中的等式,已知2216a b -=,且a+b=8,则a-b= .【答案】(1)22a b -,()()a b a b +-;(2)()()22a b a b a b -=+-;(3)2.【分析】(1)图1用大正方形的面积减去小正方形的面积表示阴影部分的面积;图2根据梯形的面积公式表示阴影部分的面积;(2)根据阴影部分的面积相等,可直接得出等式;(3)利用(2)中的等式,代入数据求解即可【解析】解:(1)图1得:22a b -;图2得:()()()()222b a a b a b a b +×-=+-;故答案为:22a b -,()()a b a b +-;(2)由图1与图2阴影部分的面积相等可得:()()22a b a b a b -=+-;故答案为:()()22a b a b a b -=+-;(3)∵2216a b -=,8a b +=,()()22a b a b a b -=+-,∴()168a b =-,∴2a b -=,故答案为:2.【点睛】本题考查了平方差公式的几何意义,正确的表示出阴影部分的面积是解题关键.26.如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分如图剪开,拼成图②的长方形(1)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示)(2)请应用这个公式完成下列各题①计算:(2)a b c +- (2)a b c -+②计算:222222221009998974321-+-+¼¼+-+-【答案】(1)22()()a b a b a b -=-+;(2)①22242a b bc c -+-;②5050.【分析】(1)分别由图①、②求出阴影部分的面积,即可得出结论;(2)①利用添括号法则将b-c 看成一个整体,然后利用平方差公式和完全平方公式计算即可;②利用平方差公式计算即可.【解析】解:(1)由图①可知:阴影部分的面积为22a b -;由图②可知:阴影部分的面积为()()a b a b -+∴22()()a b a b a b -=-+故答案为:22()()a b a b a b -=-+;(2)①(2)(2)a b c a b c +--+22(2)()a b c =--22242a b bc c =-+-;②原式(10099)(10099)(9897)(9897)(21)(21)=+-++-+¼¼++-1009998974321=++++¼¼++++5050=.【点睛】此题考查的是平方差公式的几何意义和平方差公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.27.如图,将边长为x 的正方形分割成两个正方形和两个长方形.两个正方形的面积分别为y 和25,仔细观察图形.(1)用x 的代数式表示y(2)若(1)得到的算式中,x 、y 表示任何非负数,求满足下列条件的x 、y 的值:①用x 、y 、5、6组成4个连续的整数;②当x 为何值时,y 有最小值?【答案】(1)()()255y x x =-³;(2)①3x =,4y =或7x =,4y =.②当5x =时,y 最小值是0【分析】(1)根据图形中的面积关系,即可得到答案;(2)①对“6”分3类讨论:“当6为最大的数”或“当6为较大的数”或“当6为较小的数”分别求出满足条件的x ,y 的值,即可.②根据()250y x =-³,即可求出y 的最小值和对应的x 的值.【解析】(1)()()255y x x =-³(2)①当6为最大的数时,3x =,4y =,符合21025y x x =-+;当6为较大的数时,7x =,4y =,21025y x x =-+;当6为较小的数时,8x =,7y =,不符合21025y x x =-+;3x \=,4y =或7x =,4y =.②()2210255y x x x =-+=-Q ,\当5x =时,y 最小值是0.【点睛】本题主要考查根据图形列等式,用代数式表示图形各个相关的量,是解题的关键.28.探索题:()()2111x x x -+=-;()()23111x x x x -++=-;()()324111x x x x x -+++=-;()()4325111x x x x x x -++++=-…根据前面的规律,回答下列问题:(1)()()4123211n n x x x x x x x ---+++++++=L ______.(2)当3x =时,()()20192018201732313333331-+++++++=L ______.(3)求:202020192018322222221+++++++L 的值(请写出解题过程).【答案】(1)11x x +-;(2)202031-;(3)见解析,202121-.【分析】(1)根据所给的四个等式归纳规律解答即可;(2)把x=3,n=20119代入(1)中的等式求值即可;(3)根据(1)中得到的规律,在所求的代数式前添加(2-1),然后再计算即可.【解析】解:(1)由所给的四个等式,可归纳出:()()12321111n n n n x x x x x x x x --+-+++++++=-L ;故答案为:11x x +-;(2)当3x =时,()()20152018201732202031333333131-+++++++=-L ;故答案为:202031-;(3)当2x =时,()()20202019201832202121222222121-+++++++=-L ,∴202020192018322021222222121+++++++=-L .【点睛】本题考查了平方差公式,乘方的末位数字的规律,根据所给等式归纳出规律是解答本题的关键.29.(探究)如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图① 图② ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母a 、b 表示);(应用)请应用这个公式完成下列各题:①已知2m ﹣n =3,2m +n =4,则4m 2﹣n 2的值为 ;②计算:(x ﹣3)(x +3)(x 2+9).(拓展)计算()()()()()248322121212121+++++L 的结果为 .【答案】探究:(1)22a b -,()()a b a b +-;(2)22()()a b a b a b +-=-;应用:①12;②481x -;拓展:6421-.【分析】探究:(1)图①阴影部分的面积等于两个正方形的面积差,图②阴影部分的面积等于一个大长方形的面积;(2)根据图①与图②的面积相等即可得;应用:①根据上述得到的乘法公式(平方差公式)即可得;②利用两次平方差公式即可得;拓展:将原式改写成()()()()()()24832212121221211+++-++L ,再多次利用平方差公式即可得.【解析】探究:(1)图①阴影部分的面积为两个正方形的面积差,即22a b -,图②的阴影部分为长为()a b +,宽为()-a b 的矩形,则其面积为()()a b a b +-,故答案为:22a b -,()()a b a b +-;(2)由图①与图②的面积相等可得到乘法公式:22()()a b a b a b +-=-,故答案为:22()()a b a b a b +-=-;应用:①22()(422342)1m n m n m n -+=´=-=,故答案为:12;②原式22(9)(9)x x =-+,222()9x =-,481x =-;拓展:原式()()()()()()24832212121212211+++=-++L ,()()()()()2248322121212121++=-++L ,()()()()4348221212121=++-+L ,()()()8328212121=-++L ,()()32322121=-+,6421=-.【点睛】本题考查了平方差公式与几何图形、以及应用,熟练掌握平方差公式是解题关键.。
七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。
2022年北师七下第一章《整式的乘除》专项练习(附答案)(全章)

第一章 整式的乘除 单元检测题11一、单项选择题〔每题3分,共30分〕1. 以下计算正确的选项是〔 〕A. a 4÷a 3=1B. a 4+a 3=a 7C. 〔2a 3 〕4=8a 12D. a 4⋅a 3=a 7【答案】D2. 计算20212﹣2021×2021的结果是〔 〕A. 1B. ﹣1C. 2D. ﹣2【答案】A3. 假设x 2+mxy+4y 2是完全平方式,那么常数m 的值为〔 〕A. 4B. ﹣4C. ±4D. 以上结果都不对【答案】Ca 2+〔k ﹣3〕a +9是一个完全平方式,那么k 的值是〔 〕A. ±30B. 31或﹣29C. 32或﹣28D. 33或﹣27【答案】D5. 3a =1,3b =2,那么3a+b 的值为〔 〕A. 1B. 2C. 3D. 27【答案】C6.计算2x(9x 2-3ax+a 2)+a(6x 2-2ax+a 2)等于( )A. 18x 3-a 3B. 18x 3+a 3C. 18x 3+4ax 2D. 18x 3+3a 3【答案】B7. 计算3n ·(-9)·3n+2的结果是( ) A. -33n -2 B. -3n +4 C. -32n +4 D. -3n +6【答案】C8. 计算()()()()241111a a a a +-++的结果是〔 〕.A. 81a -B. 81a +C. 161a -D. 以上答案都不对【答案】A9. 无论a 、b 为何值,代数式a 2+b 2-2a+4b+5的值总是( )A. 负数B. 0C. 正数D. 非负数【答案】D10. 假设()224252x kx x a ++=+,那么k a +的值可以是〔 〕A. 25-B. 15-C. 15D. 20【答案】A二、填空题〔每题3分;共30分〕11. ()()()324x y x y x y -⋅-⋅-=________.【答案】(x-y)912. ()5n m x x =,那么()1mn mn -的值为______________________.【答案】2013. 10a =5,10b =25,那么103a -b =____________.【答案】514. 27×9×3= 3x ,那么 x = .【答案】615.假设(7x-a )2=49x 2-bx+9,那么|a+b|=_________.【答案】452m a =, 32n b = ,m ,n 是正整数,那么用a ,b 的式子表示3102m n -=_________.【答案】32a b17. 定义|a b c d 为二阶行列式,规定它的运算法那么为|a b c d=ad -bc .那么二阶行列式34|23x x x x ----的值为___. 【答案】118. 假设,,那么的值是__________. 【答案】19. 假设n 满足()()201020176n n --=,那么()224027n -=__________.【答案】2520. a +b =8,a 2b 2=4,那么222a b +-ab =___________________________. 三、解答题〔共60分〕21. 〔7分〕22360a a +-=.求代数式 ()()()3212121a a a a +-+-的值.【答案】722. 〔7分〕先化简,再求值:x 〔x ﹣2〕+〔x+1〕2,其中x=1.【答案】323. 〔7分〕当a=3,b=﹣1时,求以下代数式的值.〔1〕〔a+b 〕〔a ﹣b 〕;〔2〕a 2+2ab+b 2.【答案】〔1〕8;〔2〕424. 〔7分〕()()()2222A x x x =-++-〔1〕化简A ;〔2〕假设2210x x -+=,求A 的值.【答案】〔1〕2x 2-4x ;〔2〕-225. 〔10分〕 a m =2,a n =4,a k =32〔a≠0〕.〔1〕求a 3m+2n-k 的值;〔2〕求k-3m-n 的值.【答案】〔1〕4〔2〕026. 〔10分〕“4m a =, 20m n a +=,求n a 的值.〞这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得: m n m n a a a +=,所以 204n a =, 所以 5n a =. 请利用这样的思考方法解决以下问题:3m a =, 5n a =,求以下代数的值:〔1〕2m n a +; 〔2〕3m n a -.【答案】〔1〕45;〔2〕3125.27. 〔12分〕.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数〞.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2021这两个数是神秘数吗为什么(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗为什么(3)两个连续奇数的平方差(取正数)是神秘数吗为什么【答案】(1)28和2021都是神秘数(2)这两个连续偶数构造的神秘数是4的倍数(3)两个连续奇数的平方差不是神秘数.第三章变量之间的关系单元检测题1一、选择题1.圆的周长公式为C=2πr,以下说法正确的选项是〔〕A. 常量是2B. 变量是C、π、rC. 变量是C、rD. 常量是2、r2.函数y=中自变量x的取值范围是〔〕A. x≤2B. x≥2C. x<2D. x>23.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是〔〕A. y=0.05xB. y=5xC. y=100xD. y=0.05x+1004.如下图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x〔h〕,两车之间的距离为y〔km〕,图中的折线表示y与x之间的函数关系.以下说法中正确的选项是〔〕A. B点表示此时快车到达乙地B. B﹣C﹣D段表示慢车先加速后减速最后到达甲地C. 快车的速度为km/hD. 慢车的速度为125km/h5.柿子熟了,从树上落下来.下面的〔〕图可以大致刻画出柿子下落过程中〔即落地前〕的速度变化情况.A. B. C. D.6.一个长方体木箱的长为4㎝,宽为,高为宽的2倍,那么这个长方体的外表积S与的关系及长方体的体积V与的关系分别是〔〕A. ,B. ,C. ,D. ,7.“龟兔赛跑〞讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1、s2分别表示乌龟和兔子所行的路程,t为时间,那么以下图象中与故事情节相吻合的是〔〕A. B.C. D.8.自行车以10千米/小时的速度行驶,它所行走的路程S〔千米〕与所用的时间t〔时〕之间的关系为〔〕A. S=10+tB.C. S=D. S=10t9.根据科学研究说明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y 〔cm〕与所挂的物体的重量x〔kg〕间有下表的关系:以下说法不正确的选项是〔〕x/kg 0 1 2 3 4 5y/cm 20 21 22A. 弹簧不挂重物时的长度为0cmB. x与y都是变量,且x是自变量,y是因变量C. 随着所挂物体的重量增加,弹簧长度逐渐边长10.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如下图的四个图象中〔S为距离,t为时间〕,符合以上情况的是〔〕A. B. C. D.11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末方案才离开,为了不让妈妈久等,小华快步跑到学校门口,那么小华离学校门口的距离y与时间t之间的函数关系的大致图象是〔〕A. B.C. D.二、填空题中,自变量x的取值范围是________ .13.为鼓励居民节约用电,某市自2021年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时〔含180千瓦时〕以内的局部,执行根本价格;第二档为用电量在180千瓦时到450千瓦时〔含450千瓦时〕的局部,实行提高电价;第三档为用电量超出450千瓦时的局部,执行市场调节价格.该市一位同学家2021年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.如果该同学家4月份用电410千瓦时,那么电费为________ 元.14.观察以下数据:a2,,,,…,它们是按一定规律排列的,试用一个函数解析式表示此变化规律为________ .15.在匀速运动公式S=3t中,3表示速度,t表示时间,S表示在时间t内所走的路程,那么变量是________ ,常量是________ .16.函数的三种表示方式分别是________ .的自变量x的取值范围是________ .18.如图1,在长方形ABCD中,动点R从点B出发,沿B→C→D→A方向运动至点A处停止,在这个变化过程中,变量x表示点R运动的路程,变量y表示△ABR的面积,图2表示变量y随x的变化情况,那么当y=9时,点R所在的边是________19.一辆汽车以40千米/时的速度行驶,那么行驶的路程S〔千米〕与行驶的时间t〔时〕两变量之间的关系式是________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《整式的乘除》专项训练同底数幂的乘法:底数不变,指(次)数相加。
公式:a m·a n=a m+n1、填空:(1)=⋅53x x ; =⋅⋅32a a a ; =⋅2x x n ;(2)=-⋅-32)()(a a ;=⋅⋅b b b 32 ⋅2x =6x ;(3)=⋅-32)(x x ;=⋅10104 ;=⨯⨯32333 ;(4)34a a a ⋅⋅ = ; ()()()53222--- = ;(5)()()()352a a a -⋅-⋅-- = ;(1)32a a ⋅=___________;(7)=-⋅-43)()(a b a b ;=⋅2x x n ;(8)=⎪⎭⎫ ⎝⎛-⨯-6231)31( ;=⨯4610102、简单计算:(1)=⋅64a a (2)=⋅5b b (3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c 3.计算:(1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32 (10)=--⋅54)2()2( 4.下面的计算对不对?如果不对,应怎样改正?(1)523632=⨯; (2)633a a a =+; (3)n n n y y y 22=⨯; (4)22m m m =⋅; (5)422)()(a a a =-⋅-; (6)1243a a a =⋅;二、幂的乘方:幂的乘方,底数不变,指数相乘.即:(a m )n =a mn 1、填空:(1) )2(24-=___________ (2) )3(32-=___________(3))2(22-=___________ (4))2(22-=___________(5))(77m = ___________ (6))(335mm = ___________2、计算 : (1)(22)2;(2)(y 2)5 (3)(x 4)3(4))(3bm -(4)(y 3)2 • (y 2)3(5))()(45a a a --•• (6)x x x 72)(23-•三、积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n =a n b n1、填空:(1)(2x )2=___________(ab )3 =_________(ac)4. =__________ (2)(-2x )3=___________)2(22a-=_________)(42a =_________(3))2(23b a - =_______)2(422ba -=_________Cnmn m 2523)(= D222mnn m=•四、整式的乘法1、单项式乘单项式1、2(3)x -·32x 2、33a ·44a 4、23(5)a b 2(3)a -5、2x ·x ·5x 6、(3)x -·2xy 8、2(5)a b -·(3)a -10、34b c ·12abc 11、32x ·2(3)x - 12、4y ·2(2)xy - 13、2(3)x y -·21()3xy 14、4(210)⨯·5(410)-⨯ 15、47x ·32x16、433a b ·232(4)a b c - 17、19、2x ·232()y xy -18、23(5)a b ·23()ab c - 19、3(2)a -·2(3)a - 20、5m -·42(10)m - 21、3m nx+-·4m nx- 22、23(3)x y ·(4)x - 23、24ab ·21()8a c -24、(5)ax -·22(3)x y 25、242()m a b -·2()mab - 26、54x y ·232()x y z -27、33(3)a bc -·22(2)ab - 28、4()3ab -·2(3)ab - 29、3(2)x ·2(5)xy - 30、34322(2)()x y x yc -- 31、24xy ·233()8x yz - 32、32(2)ab c -·2(2)x33、232(3)a b -·33(2)ab c - 34、323331()(2)73a b a b c - 35、2(4)x y -·22()x y -·31()2y 36、24xy ·32(5)x y -·2(2)x y - 37、22(2)x y -·1()2xyz -·3335x z38、1()2xyz -·2223x y ·33()5yz - 39、26m n -·3()x y -·2()y x -40、221()2ab c ·231()3abc -·31()2a 41、、2xy ·221()2x y z -·33(3)x y -42、331()2ab -·1()4ab -·222(8)a b - 43、26a b ·3()x y -·213ab ·2()y x -44、2(4)x y -·22()x y -·312y二、单项式乘多项式:(利用乘法分配率,转变为单项式乘单项式,然后把结果相加减) 1、2(34)m x y + 2、11()22ab ab + 3、2(1)x x x -- 4、22(321)a a b +- 5、23(21)x x x -- 6、4(3)x x y - 7、()ab a b + 8、6(21)x x + 9、(1)x x + 10、3(52)a a b - 11、3(25)x x -- 12、212()2x x -13、2323(2)a a b a - 14、(3)(6)x y x -- 15、22()x x y xy - 16、2(4)(2)a b b --17、2(31)(2)x x -+- 18、(2)a -·31(1)4a - 19、2323()(21)2x x x -+-20、22(2)3ab ab -·12ab 21、224(35)m m n mn -+ 22、2(3)(22)ab a b ab --+ 23、5ab ·(20.2)a b -+ 24、224(2)39a a --·(9)a - 25、23(251)x x x ---26、22(1)x x x --+ 27、2x ·21(1)2x - 28、2123()33x x +29、24(231)a a a -+- 30、22(3)(21)x x x --+- 31、25(1)xy x y +-32、212(3)2x y xy y -+ 33、2223(34)xy x y xy -- 34、223()ab a b ab ab -+35、22(232)ab a ab a -+ 36、213a b -·22(639)a ab b -+ 37、321(248)()2x x x ---- 38、322(356)x x x --- 39、3223(36)4a b c ac -+·13ab40、(1)2(1)3(25)x x x x x x +++--41、()()()a b c b c a c a b ---+- 42、223121(3)()232x y y xy +-- 43、221(2)2x y xy y -+·(4)xy - 43、2325101(1)()335a b a b ab -+-44、、221(2)(4)2x y xy y xy -+-三、多项式乘多项式:(转化为单项式乘多项式,然后在转化为单项式乘单项式) 1、(31)(2)x x ++ 2、(8)()x y x y -- 3、(1)(5)x x ++ 4、(21)(3)x x ++ 5、(2)(3)m n m n +- 6、(3)(3)a b a b +- 7、2(21)(4)x x -- 8、2(3)(25)x x +- 9、(2)(3)x x ++ 10、(4)(1)x x -+ 11、(4)(2)y y +- 12、(5)(3)y y -- 13、()()x p x q ++ 14、(6)(3)x x -- 15、11()()23x x +- 16、(32)(2)x x ++ 17、(41)(5)y y -- 18、2(2)(4)x x -+ 19、(4)(8)x x -- 20、(4)(9)x x ++ 21、(2)(18)x x -- 22、(3)()x x p ++ 23、(6)()x x p -- 24、(7)(5)x x ++ 25、(1)(5)x x ++ 26、11()()32y y +- 27、(2)(3)a b a b -+ 28、(3)(23)t t +-29、2(45)(2)x xy x y +- 30、(3)(34)y y -+ 31、(3)(2)x x +- 32、(2)(2)a b a b +-33、(23)(3)x x +- 34、(3)()x x a ++ 35、(1)(3)x x -+ 36、(2)(2)a b -- 37、(32)(23)x y x y ++ 38、(6)(1)x x +- 39、(3)(34)x y x y -+ 40、(2)(1)x x -+- 41、(23)(32)x y x y +- 42、2(1)(1)x x x -++ 43、22()()a b a ab b +-+ 44、22(321)(231)x x x x +++- 45、22()()a b a ab b -++46、22()()x xy y x y ++- 47、22()()x a x ax a -++ 48、22()()x y x xy y -++ 49、4242(331)(2)x x x x -++- 50、22()()x y x xy y +-+四、平方差公式和完全平方公式1、(1)(1)x x +-2、(21)(21)x x +-3、(5)(5)x y x y +-4、(32)(32)x x +-5、(2)(2)b a a b +-6、(2)(2)x y x y -+--7、()()a b b a +-+8、 ()()a b a b ---9、(32)(32)a b a b +- 10、5252()()a b a b -+ 11、(25)(25)a a +- 12、(1)(1)m m --- 13、11()()22a b a b --- 14、(2)(2)ab ab --- 15、10298⨯ 16、97103⨯ 17、4753⨯ 18、22()()()a b a b a b +-+19、(32)(32)a b a b +- 20、(711)(117)m n n m --- 21、(2)(2)y x x y --- 22、(4)(4)a a +-+ 23、(25)(25)a a -+ 24、(3)(3)a b a b +- 25、(2)(2)x y x y +-完全平方:1、2(1)p + 2、2(1)p - 3、2()a b - 4、2()a b + 5、2(2)m + 6、2(2)m - 7、2(4)m n + 8、21()2y - 9、2(3)x y - 10、2(2)a b -- 11、21()a a+ 12、2(52)x y -- 13、2(2)a b - 14、21()2x y - 15、2(23)a b + 16、2(32)x y - 17、2(2)m n -- 18、2(22)a c + 19、2(23)a -+ 20、21(3)3x y + 21、2(32)a b + 22、222()a b -+ 23、22(23)x y -- 24、2(1)xy - 25、222(1)x y - 五、同底数幂的除法:底数不变,指数相减。