第10章 第1节 随机事件的概率

合集下载

2021_2022学年新教材高中数学第10章概率10.1.4概率的基本性质课件新人教A版必修第二册

2021_2022学年新教材高中数学第10章概率10.1.4概率的基本性质课件新人教A版必修第二册
∴至多有一人每周阅读时间在[7.5,8.5)内的概率为P(A)=195=35.
解决与古典概型交汇命题的问题时,把相关的知识转化为事 件,列举基本事件,求出基本事件和随机事件的个数,然后利用古 典概型的概率计算公式进行计算.
[跟进训练] 2.已知国家某5A级大型景区对拥挤等级与每日游客数量n(单 位:百人)的关系有如下规定:当n∈[0,100)时,拥挤等级为 “优”;当n∈[100,200)时,拥挤等级为“良”;当n∈[200,300) 时,拥挤等级为“拥挤”;当n≥300时,拥挤等级为“严重拥 挤”.该景区对6月份的游客数量作出如图的统计数据:
“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发
生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即
中国队夺得女子乒乓球单打冠军的概率为37+14=1298.]
4.若P(A∪B)=0.7,P(A)=0.4,P(B)=0.6,则P(A∩B) =________.
0.3 [因为P(A∪B)= P(A)+P(B)-P(A∩B), 所以P(A∩B)=P(A)+P(B)-P(A∪B)=0.4+0.6-0.7=0.3.]
()
(2)若P(A)+P(B)=1,则事件A与B为对立事件.
()
(3)某班统计同学们的数学测试成绩,事件“所有同学的成绩都
在60分以上”的对立事件为“所有同学的成绩都在60分以下”.
[答案] (1)× (2)× (3)×
()
2.甲、乙两名乒乓球运动员在一场比赛中甲获胜的概率
是0.2,若不出现平局,那么乙获胜的概率为( )
[解] 记“射击一次,命中k环”为事件Ak(k=7,8,9,10). (1)因为A9与A10互斥,所以P(A9∪A10)=P(A9)+P(A10)=0.28+ 0.32=0.60. (2)记“至少命中8环”为事件B,则B=A8+A9+A10,又A8, A9,A10两两互斥, 所以P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.

随机事件的概率(1)(共27张PPT)

随机事件的概率(1)(共27张PPT)

0≤ ≤1.

(2)概率及其记法:对于给定的随机事件 A,如果随着试验次数的增
加,事件 A 发生的频率 fn(A)稳定在某个常数上,把这个常数记作 P(A),称
为事件 A 的概率,简称为 A 的概率.
一般来说,随机事件 A 在每次试验中是否发生是不能预知的,但是
在大量的重复试验后,随着试验次数的增加,事件 A 发生的频率会逐渐
录如下:
射击次数
100
120
150
100
150
160
150
击中飞碟数
81
95
123
82
119
127
121
击中飞碟的频率
(1)计算各次记录击中飞碟的频率;
(2)这个运动员击中飞碟的概率约为多少?
解:(1)射击次数 100,击中飞碟数是 81,故击中飞碟的频率是
81
=0.810,同理可求得题表中的频率依次是
(5)从分别标有号码 1,2,3,4,5 的 5 个号签中任取一个,得到 4 号签;
(6)导体通电后,发热;
(7)三角形的内角和为 360°;
(8)某电话机在 1 分钟内收到 4 次呼叫.
解:(1)(6)是必然事件;(3)(7)是不可能事件;(2)(4)(5)(8)是随机事件.
目录
退出
4.某人射击 10 次,击中靶心 8 次,则击中靶心的概率为 0.8.这种说法
件的是(
)
A.③
B.①
C.①④
D.④
解析:①是不可能事件,②是不可能事件,③是随机事件,④是必然事
件.
答案:D
目录
退出
2.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:

人教A版高中数学必修第二册教学课件-第十章 -10-1-1有限样本空间与随机事件

人教A版高中数学必修第二册教学课件-第十章 -10-1-1有限样本空间与随机事件
解 事件M的含义是“从3双不同的鞋中随机抽取2只,取出的2只鞋不成双”.
高中数学 必修第二册 RJ·A
(2)N={A1B1,B1C1,A1C1}; 解 事件N的含义是“从3双不同的鞋中,随机抽取2只,取出的2只 鞋都是左脚的”.
(3)P={A1B2,A1C2,A2B1,A2C1,B1C2,B2C1}. 解 事件P的含义是“从3双不同的鞋中,随机抽取2只,取到的鞋一 只是左脚的,一只是右脚的,且不成双”.
高中数学 必修第二册 RJ·A
典例剖析
一、样本空间的求法
例1 写出下列试验的样本空间: (1)同时抛掷三枚骰子,记录三颗骰子出现的点数之和;
解 该试验的样本空间Ω1={3,4,5,…,18}.
高中数学 必修第二册 RJ·A
(2)从含有两件正品a1,a2和两件次品b1,b2的四件产品中任取两件,观察取出产品的结果; 解 该试验所有可能的结果如图所示,
高中数学 必修第二册 RJ·A
解 设石头为w1,剪刀为w2,布为w3,用(i,j)表示游戏的结果,其中i表示甲出的拳, j表示乙出的拳,则样本空间E={(w1,w1),(w1,w2),(w1,w3),(w2,w1),(w2,w2), (w2,w3),(w3,w1),(w3,w2),(w3,w3)}. 因为事件A表示随机事件“甲乙平局”, 则满足要求的样本点共有3个:(w1,w1),(w2,w2),(w3,w3), 所以事件A={(w1,w1),(w2,w2),(w3,w3)}. 事件B表示“甲赢得游戏”, 则满足要求的样本点共有3个:(w1,w2),(w2,w3),(w3,w1), 所以事件B={(w1,w2),(w2,w3),(w3,w1)}.
解 事件C中所含样本点中两个数的差的绝对值为2,且样本空间中两个数的差的绝对值 为2的样本点都在事件C中,故事件C的含义为连续抛掷一枚均匀的骰子2次,两次掷出的 点数之差的绝对值为2.

随机事件的概率

随机事件的概率

随机事件的概率导言:随机事件是指在一定条件下,由于种种因素的不确定性而发生的事件。

生活中的许多事情都是随机事件,无法预测和控制。

我们对于随机事件的发生与否往往抱有一定的期望或预测,这就引出了随机事件的概率。

一、什么是概率?概率(probability)是现代数学中研究事件发生的一种数学方法。

概率既是一种数学工具,同时也是描述随机现象出现“规律”的一种观念。

概率的大小通常用数字来表示,范围在0到1之间,概率越大,表示事件发生的可能性越大。

二、概率的计算方法1. 古典概率:古典概率也叫“理论概率”,它是指当各种结果发生的机会是等可能的时候,可以根据有限的样本空间中可能结果的数目比来计算。

例如投掷均匀的骰子,每一个面都有相同的机会出现,那么每一个面出现的概率就是1/6。

2. 频率概率:频率概率也叫“实验概率”,它是指在实际的重复试验中,事件发生的次数与总的试验次数的比例。

例如,我们可以通过多次投掷骰子的实验来计算每个面出现的概率,通过实验的结果来估计概率。

3. 主观概率:主观概率也叫“人为概率”,它是指个人根据经验、直觉和一些可能的关联性来估计事件发生的概率。

这种概率是主观的,因为它依赖于个人的判断和看法。

三、随机事件的应用随机事件的概率在现实生活中有着广泛的应用,下面举几个例子进行阐述:1. 赌场中的赌博:在赌场中,很多赌博游戏都基于随机事件的概率来决定输赢。

例如,在轮盘赌中,赌徒根据小球停在哪一个数字上来下注,而小球停留在哪个数字上是完全由随机事件决定的。

赌徒可以根据每个数字出现的概率来决定下注的策略。

2. 保险业的风险评估:在保险业中,概率是一个非常重要的概念。

保险公司需要根据客户的信息以及历史数据来评估风险,并计算出合理的保险费用。

例如,在车险中,保险公司需要根据客户的驾驶记录和车辆信息来评估客户发生车祸的概率,并根据概率来决定保险费用的高低。

3. 股票市场:在股票市场中,投资者根据股票的历史数据和一些基本面分析来预测股票的未来涨跌。

高中数学第十章概率之随机事件与概率(精讲)(必修第二册)(教师版含解析)

高中数学第十章概率之随机事件与概率(精讲)(必修第二册)(教师版含解析)

10.1 随机事件与概率(精讲)思维导图考法一 有限样本空间与随机事件【例1-1】(2021·全国高一)给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;②“当x 为某一实数时,可使x 2≤0”是不可能事件;③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件.其中正确命题的个数是( )A .0B .1C .2D .3 【答案】C【解析】对于①,三个球全部放入两个盒子,有两种情况:1+2和3+0,故必有一个盒子有一个以上的球,所以该事件是必然事件,①正确;对于②,x =0时x 2=0,所以该事件不是不可能事件,②错误; 对于③,“明天天津市要下雨”是偶然事件,所以该事件是随机事件,③错误;对于④,“从100个灯泡(含有10个次品)中取出5个,5个全是次品”,发生与否是随机的,所以该事件是随机事件,④正确.故正确命题有2个.故选:C .【例1-2】(2020·全国高一)袋子中有4个大小和质地相同的球,标号为1,2,3,4,从中随机摸出一个球,记录球的编号,先后摸两次.(1)若第一次摸出的球不放回,写出试验的样本空间;(2)若第一次摸出的球放回,写出试验的样本空间.【答案】(1)详见解析(2)详见解析 【解析】m 表示第一次摸出球的编号,用n 表示第二次摸出球的编号,则样本点可用(),m n ,{},1,2,3,4m n ∈表示.(1)若第一次摸出的球不放回,则m n ≠,此时的样本空间可表示为()()()()()()()()()()()(){}1,2,1,3,1,4,2,1,,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3Ω=,共有12个样本点.(2)若第一次摸出的球放回,则m ,n 可以相同.此时试验的样本空间可表示为(){}{},,1,2,3,4m n m n Ω=∈,常见考法共有16个样本点.【举一反三】1.(2021·全国高一课时练习)下列事件中,随机事件的个数为( )①连续两次抛掷一枚骰子,两次都出现2点向上;②13个人中至少有两个人生肖相同;③某人买彩票中奖;④在标准大气压下,水加热到90℃会沸腾.A .1个B .2个C .3个D .4个【答案】B【解析】抛掷一枚骰子,每一面出现都是随机的,所以①是随机事件;一年只有12生肖,所以13个人中至少有两个人生肖相同是必然事件,所以②是必然事件;购买彩票号码是随机的,某人买彩票中奖也是随机的,所以③是随机事件;在标准大气压下,水加热到100℃才会沸腾.故④是不可能事件故选:B2.(多选)(2020·全国高一单元测试)下列事件中,是随机事件的是( )A .2021年8月18日,北京市不下雨B .在标准大气压下,水在4C 时结冰C .从标有1,2,3,4的4张号签中任取一张,恰为1号签D .若x ∈R ,则20x ≥【答案】AC【解析】A 选项与C 选项为随机事件,B 为不可能事件,D 为必然事件.故选:AC .3.(2020·全国高一课时练习)写出下列各随机试验的样本空间:(1)采用抽签的方式,随机选择一名同学,并记录其性别;(2)采用抽签的方式,随机选择一名同学,观察其ABO 血型;(3)随机选择一个有两个小孩的家庭,观察两个孩子的性别;(4)射击靶3次,观察各次射击中靶或脱靶情况;(5)射击靶3次,观察中靶的次数.【答案】(1)详见解析(2)详见解析(3)详见解析(4)详见解析(5)详见解析【解析】解:(1)一名同学的性别有两种可能结果:男或女.故该试验的样本室间可以表示为Ω={男,女};(2)一名同学的血型有四种可能结果:A 型、B 型、AB 型、O 型.故该试验的样本空间可表示为{},,,A B AB O Ω=;(3)每个小孩的性别有男或女两种可能,两个小孩的性别情况有四种可能,故该试验的样本空间可表示为{(男、男),(男,女),(女,男),(女,女)};(4)每次射击有中靶或脱靶两种可能,射击3次有八种可能,用1表示中靶,用0表示脱靶,该试验的样本空间可表示为()()()()()()()(){}0,0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,1,1N =;(5)射击3次,中靶的次数可能是0,1,2,3,故该试验的样本空间可以表示为{}0,1,2,3N =.4.(2021·全国高一)写出下列试验的样本空间:(1)设袋中装有4个白球和6个黑球,从中不放回逐个取出,直到白球全部取出为止,记录取球的次数;(2)甲、乙、丙三位同学参加演讲比赛,通过抽签确定演讲的顺序,记录抽签的结果.【答案】(1)详见解析(2)详见解析【解析】(1)从中不放回逐个取出,直到白球全部取出为止,则取球次数为{}4,5,6,7,8,9,10N =;(2)由抽签确定演讲的顺序,抽签的结果即样本空间可表示为{(甲,乙,丙),(甲,丙,乙),(丙,甲,乙),(丙,乙,甲),(乙,甲,丙),(乙,丙,甲)}.考法二 事件的关系与运算【例2-1】(2020·全国高一课时练习)盒子里有6个红球,4个白球,现从中任取3个球.设事件A =“1个红球和2个白球”,事件B =“2个红球和1个白球”,事件C =“至少有1个红球”,事件D“既有红球又有白球”,则:(1)事件D 与事件,A B 是什么关系?(2)事件C 与事件A 的交事件与事件A 是什么关系?【答案】(1)D A B =⋃.(2)事件C 与事件A 的交事件与事件A 相等.【解析】(1)对于事件D ,可能的结果为1个红球和2个白球或2个红球和1个白球,故D A B =⋃.(2)对于事件C ,可能的结果为1个红球和2个白球,2个红球和1个白球或3个红球,故C A A ⋂=,所以事件C 与事件A 的交事件与事件A 相等.【例2-2】(2021·全国高一)掷一枚骰子,给出下列事件:A =“出现奇数点”,B =“出现偶数点”,C =“出现的点数小于3”. 求:(1)A B ,B C ⋂;(2)A B ,B C ⋃.【答案】(1)A B =∅,B C ⋂=“出现2点”. (2)A B =“出现1,2,3,4,5或6点”,B C =∪“出现1,2,4或6点”.【解析】由题意知:A =“出现奇数点”{}1,3,5=,B =“出现偶数点”{}2,4,6=,C =“出现的点数小于3”{}1,2=,(1)AB =∅,{}2BC ⋂==出现2点”; (2){}1,2,3,4,5,6A B ==“出现1,2,3,4,5或6点”,{}1,2,4,6B C ⋃==“出现1,2,4或6点”.【举一反三】1.(2020·全国高一课时练习)用红、黄、蓝三种不同的颜色给大小相同的三个圆随机涂色,每个圆只涂一种颜色.设事件A =“三个圆的颜色全不相同”,事件B =“三个圆的颜色不全相同”,事件C =“其中两个圆的颜色相同”,事件D“三个圆的颜色全相同”.(1)写出试验的样本空间.(2)用集合的形式表示事件,,,A B C D .(3)事件B 与事件C 有什么关系?事件A 和B 的交事件与事件D 有什么关系?并说明理由.【答案】(1)见解析;(2)见解析;(3)事件B 包含事件C ,事件A 和B 的交事件与事件D 互斥.见解析【解析】(1)由题意可知3个球可能颜色一样,可能有2个一样,另1个异色,或者三个球都异色.则试验的样本空间Ω={(红,红,红),(黄,黄,黄),(蓝,蓝,蓝),(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}.(2)A ={(红,黄,蓝)} B ={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}C ={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝)}.D {(红,红,红),(黄,黄,黄),(蓝,蓝,蓝)}.(3)由(2)可知事件B 包含事件C ,事件A 和B 的交事件与事件D 互斥.2.(2021·全国高一)记某射手一次射击训练中,射中10环、9环、8环、7环分别为事件A ,B ,C ,D ,指出下列事件的含义:(1)A B C ;(2)B C ∩;(3)B C D ∪∪.【答案】(1)射中10环或9环或8环.(2)射中9环.(3)射中10环或6环或5环或4环或3环或2环或1环或0环.【解析】(1)A=射中10环,B=射中9环,C=射中8环,∴A B C=∪∪射中10环或9环或8环. (2)C=射中8环,∴C=射中环数不是8环,则B C=∩射中9环.(3)B C D=∪∪射中9环或8环或7环,则B C D=∪∪射中10环或6环或5环或4环或3环或2环或1环或0环.3.(2021·全国高一)在试验“甲、乙、丙三人各射击1次,观察中靶的情况”中,事件A表示随机事件“甲中靶”,事件B表示随机事件“乙中靶”,事件C表示随机事件“丙中靶”,试用A,B,C的运算表示下列随机事件:(1)甲未中靶;(2)甲中靶而乙未中靶;(3)三人中只有丙未中靶;(4)三人中至少有一人中靶;(5)三人中恰有两人中靶.【答案】(1)A(2)AB(3)ABC(4)ABC(5)()()() ABC ABC ABC【解析】(1)甲未中靶:A.(2)甲中靶而乙未中靶:A B⋂,即AB.(3)三人中只有丙未中靶:A B C,即ABC.(4)三人中至少有一人中靶ABC.(5)三人中恰有两人中靶()()()ABC ABC ABC.考法三互斥与对立【例3】(多选)(2020·全国高一课时练习)袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是( )A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球【答案】BD【解析】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B 中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B 成立;在C 中,至少一个白球与至多有一个红球,能同时发生,故C 不成立;在D 中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D 成立;故选:BD.【举一反三】1.(多选)(2020·全国高一课时练习)一个人连续射击2次,则下列各事件关系中,说法正确的是( )A .事件“两次均击中”与事件“至少一次击中”互为对立事件B .事件“恰有一次击中”与事件“两次均击中”互为互斥事件C .事件“第一次击中”与事件“第二次击中”互为互斥事件D .事件“两次均未击中”与事件“至少一次击中”互为对立事件【答案】BD【解析】对于A ,事件“至少一次击中”包含“一次击中”和“两次均击中“,所以不是对立事件,A 错误 对于B ,事件“恰有一次击中”是“一次击中、一次不中”它与事件“两次均击中”是互斥事件,B 正确 对于C ,事件“第一次击中”包含“第一次击中、第二次击中”和“第一次击中、第二次不中”,所以与事件“第二次击中”不是互斥事件,C 错误 对于D ,事件“两次均未击中”的对立事件是“至少一次击中”,D 正确故选:BD2.(多选)(2020·全国高一课时练习)下面结论正确的是( )A .若()()1P A PB +=,则事件A 与B 是互为对立事件B .若()()()P AB P A P B =,则事件A 与B 是相互独立事件C .若事件A 与B 是互斥事件,则A 与B 也是互斥事件D .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件【答案】BD【解析】对于A 选项,要使,A B 为对立事件,除()()1P A P B +=还需满足()0P AB =,也即,A B 不能同时发生,所以A 选项错误.对于C 选项,A 包含于B ,所以A 与B 不是互斥事件,所以C 选项错误.对于B 选项,根据相互独立事件的知识可知,B 选项正确.对于D 选项,根据相互独立事件的知识可知,D 选项正确.故选:BD3.(2020·全国高一课时练习)在试验E “连续抛掷一枚骰子2次,观察每次掷出的点数”中,事件A 表示随机事件“第一次掷出的点数为1”,事件j A 表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j ,事件B 表示随机事件“2次掷出的点数之和为6”,事件C 表示随机事件“第二次掷出的点数比第一次的大3”,(1)试用样本点表示事件A B 与A B ;(2)试判断事件A 与B ,A 与C ,B 与C 是否为互斥事件;(3)试用事件j A 表示随机事件A .【答案】(1)详见解析(2)事件A 与事件B ,事件A 与事件C 不是互斥事件,事件B 与事件C 是互斥事件.(3)123456A A A A A A A =【解析】由题意可知试验E 的样本空间为Ω=()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,()()()()()()2,1,2,2,2,3,2,4,2,5,2,6,()()()()()()3,1,3,2,3,3,3,4,3,5,3,6,()()()()()()4,1,4,2,4,3,4,4,4,5,4,6,()()()()()()5,1,5,2,5,3,5,4,5,5,5,6,()()()()()()}6,1,6,2,6,3,6,4,6,5,6,6. (1)因为事件A 表示随机事件“第一次掷出的点数为1”,所以满足条件的样本点有()()()()()()1,1,1,2,1,3,1,4,1,5,1,6,即()()()()()(){}1,1,1,2,1,3,1,4,1,5,1,6A =.因为事件B 表示随机事件“2次掷出的点数之和为6”,所以满足条件的样本点有()()()()()1,5,2,4,3,3,4,2,5,1,即()()()()(){}1,5,2,4,3,3,4,2,5,1B =.所以(){}1,5A B =,()()()()()()()()()(){}1,1,1,2,1,3,1,4,1,5,1,6,2,4,3,3,4,2,5,1A B =.(2)因为事件C 表示随机事件“第二次掷出的点数比第一次的大3”,所以()()(){}1,4,2,5,3,6C =.因为(){}1,5A B =≠∅,(){}1,4A C =≠∅,B C =∅,所以事件A 与事件B ,事件A 与事件C 不是互斥事件,事件B 与事件C 是互斥事件.(3)因为事件j A 表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j ”,所以(){}(){}(){}(){}(){}(){}1234561,1,1,2,1,3,1,4,1,5,1,6A A A A A A ======, 所以123456A A A A A A A =.考法四 古典概型【例4】(2020·全国高一课时练习)在一次语文考试的阅卷过程中,两位老师对一篇作文打出的分数都是两位的正整数,且十位数字都是5,则两位老师打出的分数之差的绝对值小于或等于1的概率为( )A .0.18B .0.2C .0.28D .0.32 【答案】C【解析】用(),x y 表示两位老师的打分,则(),x y 的所有可能情况有1010100⨯=种.当50x =时,y 可取50,51,共2种;当51x =,52,53,54,55,56,57,58时,y 的取值均有3种;当59x =时,y 可取58,59,共2种;综上可得两位老师打出的分数之差的绝对值小于或等于1的情况有28种,由古典概型的概率公式可得所求概率280.28100P ==故选:C. 【举一反三】1.(2020·全国高一课时练习)从数字1,2,3,4中任取两个数,则这两个数中其中一个数为另一个数的整数倍的概率为( )A .14B .12C .13D .23【答案】D【解析】基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中符合条件的基本事件为(1,2),(1,3),(1,4),(2,4)共4个,所求概率为4263P ==.故选:D 2.(2021·全国高一)把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为( )A .23B .13C .35D .14【答案】B【解析】分三类情况,第一类1,2连号,则甲、乙、丙三个人拿到的卡片可能为()12,3,4,()12,4,3,()3,12,4,()4,12,3,()3,4,12,()4,3,12,有6种分法;第二类2,3连号,则甲、乙、丙三个人拿到的卡片可能为()1,23,4,()4,23,1,()23,1,4,()23,4,1,()1,4,23,()4,1,23,有6种分法;第三类3,4连号,则甲、乙、丙三个人拿到的卡片可能为()1,2,34,()2,1,34,()34,1,2,()34,2,1,()1,34,2,()2,34,1,有6种分法;共有18种分法,则2,3连号的概率为61183P ==. 故选:B .3.(2021·全国高一)为了更好了解某年入伍新兵的身高情况,解放军某部随机抽取100名新兵,分别对他们的身高进行了测量,并将测量数据分为以下五组:[160,165),[165,170),[170,175),[175,180),[180,185]进行整理,如下表所示:组号分组 频数 第1组 [160,165)5 第2组[165,170) 35 第3组 [170,175)30 第4组 [175,180)20 第5组 [180,185]10 合计 100(1)在下面的图纸中,画出频率分布直方图;(2)若在第4,5两组中,用分层抽样的方法抽取6名新兵,再从这6名新兵中随机抽取2名新兵进行体能测试,求这2名新兵来自不同组的概率.【答案】(1)直方图见解析;(2)815.【解析】(1)频率分布直方图如下图所示:(2)因为第4,5组共有30名新兵,所以利用分层抽样从中抽取6名,每组应抽取的人数分别为:4组:206430⨯=名,第5组:106230⨯=名,设第4组抽取的4名新兵分别为1A,2A,3A,4A,第5组抽取的2名新兵分别为1B,2B.从这6名新兵中随机抽取2名新兵,有以下15种情况:12{,}A A,13{,}A A,14{,}A A,11{,}A B,12{,}A B,23{,}A A,24{,}A A,21{,}A B,22{,}A B,34{,}A A,31{,}A B,32{,}A B,41{,}A B,42{,}A B,12{,}B B,这2名新兵来自不同组的情况有以下8种:11{,}A B,12{,}A B,21{,}A B,22{,}A B,31{,}A B,32{,}A B,41{,}A B,42{,}A B,故所求的概率P=815.考法五概率的基本性质【例5-1】(2020·全国高一课时练习)老师讲一道数学题,李峰能听懂的概率是0.8,是指( )A .老师每讲一题,该题有80%的部分能听懂,20%的部分听不懂B .老师在讲的10道题中,李峰能听懂8道C .李峰听懂老师所讲这道题的可能性为80%D .以上解释都不对 【答案】C【解析】概率的意义就是事件发生的可能性大小,即李峰听懂老师所讲这道题的可能性为80%.故选:C 【例5-2】(2020·全国高一课时练习)在学校运动会开幕式上,100名学生组成一个方阵进行表演,他们按照性别(M (男)、F (女))及年级(1G (高一)、2G (高二)、3G (高三))分类统计的人数如下表:1G2G3GM 18 20 14 F17247若从这100名学生中随机选一名学生,求下列概率:()P M =____________,()P F =____________,()P MF =____________,()P MF =____________,()1P G =____________,()2P M G =____________,()3P FG =____________【答案】0.52 0.48 1 0 0.35 0.76 0.07 【解析】()()123182014520.52100100100100P M P MG MG MG ==++==; ()()10.48P F P M =-=; ()1P MF =;()()0P MF P =∅=;()()11118170.35100100P G P MG FG ==+=; ()()()()2220.520.440.200.76P MG P M P G P MG =+-=+-=;()370.07100P FG == 故答案为:(1)0.52;(2)0.48;(3)1;(4)0;(5)0.35;(6)0.76;(7)0.07 【举一反三】1.(2020·全国高一课时练习)在北京消费季活动中,某商场为促销举行购物抽奖活动,规定购物消费每满200元就可以参加一次抽奖活动,中奖的概率为110.那么以下理解正确的是( ) A .某顾客抽奖10次,一定能中奖1次 B .某顾客抽奖10次,可能1次也没中奖 C .某顾客消费210元,一定不能中奖 D .某顾客消费1000元,至少能中奖1次 【答案】B 【解析】中奖概率110表示每一次抽奖中奖的可能性都是110,故不论抽奖多少次,都可能一次也不中奖, 故选:B.2.(2020·全国高一课时练习)某射击运动员平时训练成绩的统计结果如下: 命中环数 6 7 8 9 10 频率0.10.150.250.30.2如果这名运动员只射击一次,以频率作为概率,求下列事件的概率; (1)命中10环;(2)命中的环数大于8环; (3)命中的环数小于9环; (4)命中的环数不超过5环.【答案】(1)0.2 (2)0.5 (3)0.5 (4)0 【解析】用x 表示命中的环数,由频率表可得. (1)(10)0.2P x ==;(2)(8)P x P >=(9x =或10x =)(9)(10)0.30.20.5P x P x ==+==+=; (3)(9)(6)(7)(8)0.10.150.250.5P x P x P x P x <==+=+==++=; (4)(5)1(6)1(0.10.150.250.30.2)0P x P x =-=-++++=.3.(2021·全国高一课时练习)判断下列说法是否正确,若错误,请举出反例 (1)互斥的事件一定是对立事件,对立事件不一定是互斥事件; (2)互斥的事件不一定是对立事件,对立事件一定是互斥事件;(3)事件A 与事件B 中至少有一个发生的概率一定比A 与B 中恰有一个发生的概率大;(4)事件A 与事件B 同时发生的概率一定比A 与B 中恰有一个发生的概率小.【答案】(1)错误,举例见解析;(2)正确;(3)错误,举例见解析;(4)错误,举例见解析. 【解析】(1)错误;(2)正确;(3)错误:(4)错误. 设某试验的样本空间为{1,2,3,4}Ω=.(1)中反例,取{1},{2}A B ==,则A ,B 互斥但不对立. (2)由互斥事件与对立事件的定义可知(2)正确(3)中反例,取{1},A B ==∅,则1()()4P A B P A ⋃==1()()()4P AB AB P AB P A ⋃===. (4)中反例,取{1},{1,2}A B ==,则1()()4P AB P A ==,1()()4P AB AB P AB ⋃==.4.(2020·全国高一课时练习)甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,求下列事件的概率: (1)两人都中靶; (2)恰好有一人中靶; (3)两人都脱靶; (4)至少有一人中靶.【答案】(1)0.72 (2)0.26 (3)0.02 (4)0.98【解析】设A =“甲中靶”, B =“乙中靶”,则A =“甲脱靶”,B =“乙脱靶”,由于两个人射击的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立 由已知可得,()()()()0.8,0.9,0.2,0.1P A P B P A P B ====. (1)AB = “两人都中靶”,由事件独立性的定义 得()()()0.80.90.72P AB P A P B =⋅=⨯= (2)“恰好有一人中靶” ABAB =,且AB 与AB 互斥根据概率的加法公式和事件独立性定义,得()()()P ABAB P AB P AB=+()()()()P A P B P A P B =⋅+⋅ 0.80.10.20.90.26=⨯+⨯=(3)事件“两人都脱靶”AB =, 所以()()()P AB P A P B =⋅()()10.810.90.02=-⨯-=(4)方法1:事件“至少有一人中靶”AB ABAB =,且AB ,AB 与AB 两两互斥,所以()P ABAB AB()()()P AB P AB P AB =++ ()()P AB P ABAB =+0.720.260.98=+=方法2:由于事件“至少有一人中靶”的对立事件是“两人都脱靶” 根据对立事件的性质,得事件“至少有一人中靶”的概率为()110.020.98P AB -=-=5.(2020·全国高一课时练习)已知n 是一个三位正整数,若n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如135,256,345等)现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由1,2,3,4,5,6组成的所有“三位递增数”中随机抽取1个数,且只抽取1次,若抽取的“三位递增数”是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.(1)由1,2,3,4,5,6可组成多少“三位递增数”?并一一列举出来. (2)这种选取规则对甲乙两名学生公平吗?并说明理由. 【答案】(1)见解析;(2)不公平,理由见解析.【解析】(1)由题意知,所有由1,2,3,4,5,6组成的“三位递增数共有20个.分别是123,124,125,126,134,135,136,145,146,156,234,235,236,245,246,256,345,346,356,456.(2)不公平由(1)知,所有由1,2,3,4,5,6组成的“三位递增数”有20个,记“甲参加数学竟赛”为事件A ,记“乙参加数学竞赛”为事件B.则事件A 含有基本事件有:124,134,234,126,136,146,156,236,246,256,346,356,456共13个. 由古典概型计算公式,得13()20A P A ==事件含有的基本事件的个数试验所有基本事件的总数,又A 与B 对立,所以137()1()12020P B P A =-=-=, 所以()()P A P B >.故选取规则对甲、乙两名学生不公平.。

2021新教材高中数学第10章概率 教学用书教案新人教A版必修第二册

2021新教材高中数学第10章概率 教学用书教案新人教A版必修第二册

第十章概率10.1 随机事件与概率10.1.1有限样本空间与随机事件素养目标·定方向素养目标学法指导1.理解样本点和有限样本空间的含义.(数学抽象)2.理解随机事件与样本点的关系.(逻辑推理)1.类比集合的有关概念来认识样本空间. 2.类比集合与集合之间的关系来认识随机事件.必备知识·探新知知识点1随机试验及样本空间1.随机试验的概念和特点(1)随机试验:我们把对__随机现象__的实现和对它的观察称为随机试验,简称试验,常用字母E来表示.(2)随机试验的特点:①试验可以在相同条件下__重复__进行;②试验的所有可能结果是__明确可知__的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的__每个可能的基本结果__称为样本点用__w__表示样本点样本空间全体__样本点__的集合称为试验E的样本空间用__Ω__表示样本空间有限样本空间如果一个随机试验有n个可能结果w1,w2,…,w n,则称样本空间Ω={w1,w2,…,w n}为有限样本空间Ω={w1,w2,…,w n}知识点2三种事件的定义随机事件我们将样本空间Ω的__子集__称为随机事件,简称事件,并把只包含__一个__样本点的事件称为基本事件,随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生必然事件Ω作为自身的子集,包含了__所有的__样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件不可能事件空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件[知识解读]1.随机试验的三个特点(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.关于样本点和样本空间(1)样本点是指随机试验的每个可能的基本结果,全体样本点的集合称为试验的样本空间;(2)只讨论样本空间为有限集的情况,即有限样本空间.3.事件与基本事件(1)随机事件是样本空间的子集.随机事件是由若干个基本事件构成的,当然,基本事件也是随机事件.(2)必然事件与不可能事件不具有随机性,是随机事件的两个极端情形.关键能力·攻重难题型探究题型一事件类型的判断典例1在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)如果a、b都是实数,那么a+b=b+a;(2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;(3)没有水分,种子发芽;(4)某电话总机在60秒内接到至少15个电话;(5)在标准大气压下,水的温度达到50 ℃时会沸腾;(6)同性电荷相互排斥.[分析]依据事件的分类及其定义,在给出的条件下,判断事件是否发生.[解析]结合必然事件、不可能事件、随机事件的定义可知.(1)对任意实数,都满足加法的交换律,故此事件是必然事件.(2)从6张号签中任取一张,得到4号签,此事件可能发生,也可能不发生,故此事件是随机事件.(3)适宜的温度和充足的水分,是种子萌发不可缺少的两个条件,没有水分,种子就不可能发芽,故此事件是不可能事件.(4)电话总机在60秒内接到至少15个电话,此事件可能发生,也可能不发生,故此事件是随机事件.(5)在标准大气压下,水的温度达到100 ℃时,开始沸腾,水温达到50 ℃,水不会沸腾,故此事件是不可能事件.(6)根据“同种电荷相互排斥,异种电荷相互吸引”的原理判断,该事件是必然事件.[归纳提升]判断一个事件是随机事件、必然事件还是不可能事件,首先一定要看条件,其次是看在该条件下所研究的事件是一定发生(必然事件)、不一定发生(随机事件),还是一定不发生(不可能事件).【对点练习】❶指出下列事件是必然事件、不可能事件,还是随机事件:(1)我国东南沿海某地明年将受到3次冷空气的侵袭;(2)抛掷硬币10次,至少有一次正面向上;(3)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标.[解析](1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件.(3)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件.题型二确定试验的样本空间典例2下列随机事件中,一次试验各指什么?试写出试验的样本空间.(1)先后抛掷两枚质地均匀的硬币多次;(2)从集合A={a,b,c,d}中任取3个元素;(3)从集合A={a,b,c,d}中任取2个元素.[解析](1)一次试验是指“先后抛掷两枚质地均匀的硬币一次”,试验的样本空间为:{(正,反),(正,正),(反,反),(反,正)}.(2)一次试验是指“从集合A中一次选取3个元素组成集合”,试验的样本空间为:{(a,b,c),(a,b,d),(a,c,d),(b,c,d)}.(3)一次试验是指“从集合A中一次选取2个元素”,试验的样本空间为:{(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)}.[归纳提升]不重不漏地列举试验的所有样本点的方法(1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确试验中的条件.(2)根据日常生活经验,按照一定的顺序列举出所有可能的结果,可应用画树状图、列表等方法解决.【对点练习】❷袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和样本空间.(1)从中任取1球;(2)从中任取2球.[解析](1)条件为:从袋中任取1球.样本空间为{红,白,黄,黑}.(2)条件为:从袋中任取2球.若记(红,白)表示一次试验中,取出的是红球与白球,样本空间为{(红,白),(红,黄),(红,黑),(白,黄),(白,黑),(黄,黑)}.题型三随机事件的表示典例3一个口袋内装有除颜色外完全相同的5个球,其中3个白球,2个黑球,从中一次摸出2个球.(1)一共有多少个样本点?(2)写出“2个球都是白球”这一事件的集合表示.[解析](1)分别记白球为1,2,3号,黑球为4,5号,则这个试验的样本点为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个[其中(1,2)表示摸到1号球和2号球].(2)记A表示“2个球都是白球”这一事件,则A={(1,2),(1,3),(2,3)}.[归纳提升]1.判随机事件的结果是相对于条件而言的,要确定样本空间,(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出所有样本点.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.2.试验中当试验的结果不唯一时,一定要将各种可能都要考虑到,尤其是有顺序和无顺序的情况最易出错.【对点练习】❸做抛掷红、蓝两枚骰子的试验,用(x,y)表示结果,其中x表示红色骰子出现的点数,y表示蓝色骰子出现的点数.写出:(1)这个试验的样本空间;(2)这个试验的结果的个数;(3)指出事件A={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}的含义;(4)写出“点数之和大于8”这一事件的集合表示.[解析](1)这个试验的样本空间Ω为{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}.(2)这个试验的结果的个数为36.(3)事件A的含义为抛掷红、蓝两枚骰子,掷出的点数之和为7.(4)记B=“点数之和大于8”,则B={(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)}.易错警示忽视试验结果与顺序的关系而致误典例4已知集合M={-2,3},N={-4,5,6},从这两个集合中各取一个元素分别作为点的横、纵坐标.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数.[错解](1)这个试验的基本事件空间Ω={(-2,-4),(-2,5),(-2,6),(3,-4),(3,5),(3,6)}.(2)这个试验的基本事件的总数是6.[错因分析]题中要求从两个集合中各取一个元素分别作为点的横、纵坐标,所以集合N中的元素也可以作为横坐标,错解中少了以下基本事件:(-4,-2),(-4,3),(5,-2),(5,3),(6,-2),(6,3).[正解](1)这个试验的基本事件空间Ω={(-2,-4),(-2,5),(-2,6),(3,-4),(3,5),(3,6),(-4,-2),(-4,3),(5,-2),(5,3),(6,-2),(6,3)}.(2)这个试验的基本事件的总数是12.【对点练习】❹同时抛掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的样本点的个数是(D)A.3B.4C.5D.6[解析](1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.10.1.2 事件的关系和运算素养目标·定方向素养目标学法指导1.理解事件的关系与运算.(逻辑推理)2.理解互斥事件和对立事件的概念.(数学抽象)本部分内容要类比集合的关系和运算来理解事件的关系和运算.必备知识·探新知知识点1事件的运算定义表示法图示并事件__事件A与事件B至少有一个发生__,称这个事件为事件A与事件B的并事件(或和事件)__A∪B__(或__A+B__)交事件__事件A与事件B同时发生__,称这样一个事件为事件A与事件B的交事件(或积事件)__A∩B__(或__AB__)知识点2事件的关系定义表示法图示包含关系若事件A发生,事件B__一定发生__,称事件B包含事件A(或事件A包含于事件B)__B⊇A__(或__A⊆B__)互斥事件如果事件A与事件B__不能同时发生__,称事件A与事件B互斥(且互不相容)若__A∩B=∅__,则A与B互斥对立事件如果事件A和事件B在任何一次试验中__有且仅有一个发生__,称事件A与事件B互为对立,事件A的对立事件记为A-若__A∩B=∅__,且A∪B=Ω,则A与B对立(1)区别:两个事件A与B是互斥事件,包括如下三种情况:①若事件A发生,则事件B就不发生;②若事件B发生,则事件A就不发生;③事件A,B都不发生.而两个事件A,B是对立事件,仅有前两种情况,因此事件A与B是对立事件,则A∪B是必然事件,但若A与B是互斥事件,则不一定是必然事件,即事件A的对立事件只有一个,而事件A的互斥事件可以有多个.(2)联系:互斥事件和对立事件在一次试验中都不可能同时发生,而事件对立是互斥的特殊情况,即对立必互斥,但互斥不一定对立.2.从集合的角度理解互斥事件与对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.关键能力·攻重难题型探究题型一互斥事件、对立事件的判定典例1(1)(2020·河南省南阳市期中)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是(A)A.两次都中靶B.至少有一次中靶C.两次都不中靶D.只有一次中靶(2)(2020·湖南省怀化市期末)一个人连续射击三次,则事件“至少击中两次”的对立事件是(D)A.恰有一次击中B.三次都没击中C.三次都击中D.至多击中一次[解析](1)事件“至多有一次中靶”包含“只有一次中靶”和“两次都不中靶”,因此不会与其同时发生的事件是“两次都中靶”.(2)根据题意,一个人连续射击三次,事件“至少击中两次”包括“击中两次”和“击中三次”两个事件,其对立事件为“一次都没有击中和击中一次”,即“至多击中一次”.[归纳提升]判断事件间关系的方法(1)要考虑试验的前提条件,无论是包含、相等,还是互斥、对立其发生的条件都是一样的.(2)考虑事件间的结果是否有交事件,可考虑利用Venn图分析,对较难判断关系的,也可列出全部结果,再进行分析.【对点练习】❶有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向,事件“甲向南”与事件“乙向南”是(A) A.互斥但非对立事件B.对立事件C.非互斥事件D.以上都不对[解析]由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.题型二事件的运算典例2在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;(2)利用和事件的定义,判断上述哪些事件是和事件.[解析](1)因为事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3.同理可得,事件E包含事件C1,C2,C3,C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.且易知事件C1与事件D1相等,即C1=D1.(2)因为事件D2={出现的点数大于3}={出现4点或出现5点或出现6点},所以D2=C4∪C5∪C6(或D2=C4+C5+C6).同理可得,D3=C1+C2+C3+C4,E=C1+C2+C3+C4+C5+C6,F=C2+C4+C6,G =C1+C3+C5.[归纳提升]事件运算应注意的2个问题(1)进行事件的运算时,一是要紧扣运算的定义,二是要全面考查同一条件下的试验可能出现的全部结果,必要时可利用Venn图或列出全部的试验结果进行分析.(2)在一些比较简单的题目中,需要判断事件之间的关系时,可以根据常识来判断.但如果遇到比较复杂的题目,就得严格按照事件之间关系的定义来推理.【对点练习】❷盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球2个白球},事件B={3个球中有2个红球1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.问:(1)事件D与A,B是什么样的运算关系?(2)事件C与A的交事件是什么事件?(3)设事件E={3个红球},事件F={3个球中至少有1个白球},那么事件C与B,E 是什么运算关系?C与F的交事件是什么?[解析](1)对于事件D,可能的结果为1个红球2个白球或2个红球1个白球,故D=A∪B.(2)对于事件C,可能的结果为1个红球2个白球或2个红球1个白球或3个均为红球,故C∩A=A.(3)由事件C包括的可能结果有1个红球2个白球,2个红球1个白球,3个红球三种情况,故B⊆C,E⊆C,而事件F包括的可能结果有1个白球2个红球,2个白球1个红球,3个白球,所以C∩F={1个红球2个白球,2个红球1个白球}=D.题型三用集合运算表示随机事件典例3设A,B,C表示三个随机事件,试将下列事件用A,B,C表示出来.(1)三个事件都发生;(2)三个事件至少有一个发生;(3)A发生,B,C不发生;(4)A,B都发生,C不发生;(5)A,B至少有一个发生,C不发生;(6)A,B,C中恰好有两个发生.[解析](1)ABC(2)A∪B∪C(3)A B-C-(4)AB C-(5)(A∪B)C-(6)AB C-∪A B-C∪A-BC[归纳提升]利用随机事件的运算与集合运算的对应关系,可以有效地解决此类问题.【对点练习】❸从某大学数学系图书室中任选一本书.设A表示事件“任选一本书,这本书为数学书”;B表示事件“任选一本书,这本书为中文版的书”;C表示事件“任选一本书,这本书为2000年后出版的书”.问:(1)AB C-表示什么事件?(2)在什么条件下有ABC=A?(3)C-⊆B表示什么意思?[解析](1)AB C-表示事件“任选一本书,这本书为2000年或2000年前出版的中文版的数学书”.(2)在“图书室中所有数学书都是2000年后出版的且为中文版”的条件下才有ABC=A.(3)C-⊆B表示2000年或2000年前出版的书全是中文版的.易错警示不能正确区分对立事件和互斥事件致错典例4进行抛掷一枚骰子的试验,有下列各组事件:(1)“出现1点”与“出现2点”;(2)“出现奇数点”与“出现偶数点”;(3)“出现大于3的点”与“出现大于4的点”.其中是对立事件的组数是(B)A.0B.1C.2D.3[错解]C[错因分析]错解混淆了互斥事件与对立事件,误将互斥事件当作了对立事件.只有(2)“出现奇数点”与“出现偶数点”是对立事件,而(1)中“出现1点”与“出现2点”是互斥事件,但不是对立事件,(3)中“出现大于3的点”与“出现大于4的点”不是互斥事件,所以也不是对立事件.[正解]B[误区警示]对立事件一定是互斥事件,而互斥事件却不一定是对立事件.忽略互斥事件与对立事件之间的区别与联系,对“恰”“至少”“都”等词语理解不透彻.判断两个事件是否互斥,就要看它们是否能同时发生;判断两个互斥事件是否对立,就要看它们是否有一个必然发生.【对点练习】❹(2020·广东省茂名市期末)若干人站成一排,其中为互斥事件的是(A)A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙站排尾”C.“甲站排头”与“乙不站排头”D.“甲不站排头”与“乙不站排头”[解析]根据互斥事件不能同时发生,判断A是互斥事件;B,C,D中两事件能同时发生,故不是互斥事件.10.1.3 古典概型素养目标·定方向素养目标学法指导1.古典概型的计算方法.(数学抽象)2.运用古典概型计算概率.(数学运算) 3.在实际问题中建立古典概型模型.(数学建模)1.明确古典概型的基本特征,根据实际问题构建概率模型,解决简单的实际问题.2.注意区分有放回抽取(每次抽取之后被抽取的物体总数不变)与无放回抽取(每次抽取之后被抽取的物体总数减少).必备知识·探新知知识点1随机事件的概率对随机事件发生__可能性大小__的度量(数值)称为事件的概率,事件A的概率用__P(A)__表示.知识点2古典概型一般地,若试验E具有以下特征:(1)有限性:样本空间的样本点只有__有限个__;(2)等可能性:每个样本点发生的可能性__相等__.称试验E为古典概型试验,其数学模型称为__古典概率__模型,简称__古典概型__.知识点3古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=__kn__=__n(A)n(Ω)__.[知识解读](1)随机试验E中的样本点①任何两个样本点都是互斥的;②任何事件(除不可能事件)都可以表示成某些样本点的和.(2)求解古典概型问题的一般思路①明确试验的条件及要观察的结果,用适当的符号(字母、数字、数组等)表示试验的样本点(借助图表可以帮助我们不重不漏地列出所有样本点);②根据实际问题情景判断样本点的等可能性;③计算样本点总个数及事件A包含的样本点个数,求出事件A的概率.关键能力·攻重难题型探究题型一古典概型的判断典例1下列试验是古典概型的是__①②④__.①从6名同学中选出4人参加数学竞赛,每人被选中可能性大小相等;②同时掷两颗骰子,点数和为6的概率;③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率.[分析]紧扣古典概型的两大特征——有限性与等可能性进行判断.[解析]①②④是古典概型,因为符合古典概型的特征.③不是古典概型,因为不符合等可能性,降雨受多方面因素影响.[归纳提升]判断试验是不是古典概型,关键看是否符合两大特征——有限性和等可能性.【对点练习】❶下列是古典概型的是(C)A.任意掷两枚骰子,所得点数之和作为基本事件时B.求任意的一个正整数平方的个位数字是1的概率,将去除的正整数作为基本事件时C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.抛掷一枚均匀硬币首次出现正面为止[解析]A项中由于点数的和出现的可能性不相等,故A不是;B项中的基本事件是无限的,故B不是;C项满足古典概型的有限性和等可能性,故C是;D项中基本事件可能会无限个,故D不是.题型二古典概型的概率计算典例2甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一所学校的概率.[分析](1)要求2名教师性别相同的概率,应先写出所有可能的结果,可以采用列举法求解.(2)要求选出的2名教师来自同一所学校的概率,应先求出2名教师来自同一所学校的基本事件.[解析] (1)甲校2名男教师分别用A ,B 表示,1名女教师用C 表示;乙校1名男教师用D 表示,2名女教师分别用E ,F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种.从中选出2名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种,所以选出的2名教师性别相同的概率为P =49. (2)从甲校和乙校报名的6名教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.从中选出2名教师来自同一所学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F ),共6种,所以选出的2名教师来自同一所学校的概率为P =615=25. [归纳提升] 1.对于古典概型,任何事件A 的概率为:P (A )=A 包含的基本事件的个数m 基本事件的总数n. 2.求古典概型概率的步骤为:(1)判断是否为古典概型;(2)算出基本事件的总数n ;(3)算出事件A 中包含的基本事件个数m ;(4)算出事件A 的概率,即P (A )=m n. 在运用公式计算时,关键在于求出m 、n .在求n 时,应注意这n 种结果必须是等可能的,在这一点上比较容易出错.3.对于事件总数较多的情况,在解题时,没有必要一一列举出来,只将我们解题需要的列举出来分析即可.【对点练习】❷ 某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.[解析] (1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的样本点有: {(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)},共15个.所选两个国家都是亚洲国家的事件所包含的样本点有:{(A 1,A 2),(A 1,A 3),(A 2,A 3)},共3个,则所求事件的概率为p =315=15.(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的样本点有:{(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3)},共9个.包括A 1但不包括B 1的事件所包含的样本点有:{(A 1,B 2),(A 1,B 3)},共2个,则所求事件的概率为p =29. 题型三 较复杂的古典概型的概率计算典例3 某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个;②若xy ≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.[解析] 用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16,所以基本事件总数n =16.(1)记“xy ≤3”为事件A ,则事件A 包含的基本事件共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P (A )=516,即小亮获得玩具的概率为516. (2)记“xy ≥8”为事件B ,“3<xy <8”为事件C .则事件B 包含的基本事件共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),所以P (B )=616=38. 事件C 包含的基本事件共5个,即(1,4),(2,2),(2,3),(3,2),(4,1),所以P (C )=516, 因为38>516, 所以小亮获得水杯的概率大于获得饮料的概率.[归纳提升] 解古典概型问题时,要牢牢抓住它的两个特点和其计算公式.但是这类问题的解法多样,技巧性强,在解决此类题时需要注意以下两个问题:(1)试验必须具有古典概型的两大特征——有限性和等可能性.(2)计算基本事件的数目时,须做到不重不漏,常借助坐标系、表格及树状图等列出所有基本事件.【对点练习】❸ 甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j )分别表示甲、乙抽到的牌的数字,写出试验的样本空间;(2)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.[解析] (1)方片4用4′表示,试验的样本空间为Ω={(2,3),(2,4),(2,4′),(3,2),(3,4), (3,4′), (4,2), (4,3), (4,4′),(4′,2),(4′,3),(4′,4)},则样本点的总数为12.(2)不公平.甲抽到牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3)5种,甲胜的概率为P 1=512,乙胜的概率为P 2=712,因为512<712,所以此游戏不公平.易错警示对“有序”与“无序”判断不准而致错典例4 甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中3道选择题,2道填空题,甲、乙两人依次抽取1道题.求甲抽到选择题、乙抽到填空题的概率.[错解] 因为通过列举法可得甲抽到选择题、乙抽到填空题的可能结果有6个,且甲、乙两人依次抽取1道题的可能结果有10个,所以甲抽到选择题、乙抽到填空题的概率为610=35. [错因分析] 错解中忽略了甲、乙两人依次抽取1道题与顺序有关,甲从5道题中任抽1道题有5种方法,乙从剩下的4道题中任抽1道题有4种方法,所以基本事件总数应为20.[正解] 因为通过列举法可得甲抽到选择题、乙抽到填空题的可能结果有6个,而甲、乙两人依次抽取1道题的可能结果有20个,所以甲抽到选择题、乙抽到填空题的概率为620=310.。

新教材高中数学第十章概率

新教材高中数学第十章概率

古典概型据《西墅记》所载,唐明皇与杨贵妃掷骰子戏娱,唐明皇的战况不佳,只有让六颗骰子中的两颗骰子同时出现“四”才能转败为胜.于是唐明皇一面举骰投掷,一面连呼“重四”.骰子停定,正好重四.唐明皇大悦,命令高力士将骰子的四点涂为红色.红色通常是不能乱用的,因此直到今天,骰子的一、四两面为红色,其余四面都是黑色.【问题1】若同时掷两颗骰子,朝上的点数有多少种不同的结果?【问题2】上述试验中所有不同的样本点有何特点?【问题3】你能算出唐明皇转败为胜的概率是多少吗?1.概率对随机事件发生可能性大小的度量(数值)称为事件的概率,事件A的概率用P(A)表示.2.古典概型古典概型的特征及概率公式古典概型具有以下特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型.特征①样本空间的样本点只有有限个;②每个样本点发生的可能性相等.概率公式若试验E是古典概型,样本空间Ω包含n个样本点,事件A 包含其中的k个样本点,则事件A的概率:P(A)=k n A=n n()().其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.古典概型的理解与求法1.本质:古典概型概率公式实质上就是事件包含的样本点在样本空间中包含的样本点中所占的比例大小.2.混淆:一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点:有限性和等可能性.并不是所有的试验都是古典概型.下列三类试验都不是古典概型:(1)样本点个数有限,但非等可能.(2)样本点个数无限,但等可能.(3)样本点个数无限,也不等可能.3.求解古典概型问题的一般思路(1)明确试验的条件及要观察的结果,用适当的符号(字母、数字、数组等)表示试验的样本点(借助图表可以帮助我们不重不漏地列出所有样本点);(2)根据实际问题情景判断样本点的等可能性;(3)计算样本点总个数及事件A包含的样本点个数,求出事件A的概率.(1)若一次试验的结果所包含的样本点的个数是有限个,则该试验是古典概型吗?提示:不一定是,还要看每个样本点发生的可能性是否相同,若相同才是,否则不是.(2)“在区间[2,8]上任取一个数,这个数恰好大于3的概率是多少?”这个概率模型属于古典概型吗?提示:不是,因为在区间[2,8]上任取一个数,其试验结果有无限个,故其样本点有无限个,所以不是古典概型.1.古典概型的有限性是指样本空间Ω为有限样本空间吗?2.古典概型中任何两个样本点都是互斥的吗?3.任何事件发生的可能性都相同吗?4.样本点的总数为n ,随机事件A 包含m 个样本点,则P(A)=n m 吗? 提示:1.是;2.是;3.不是;4.不是.教材P234思考(2),若事件C =“有两次正面朝上”,则事件C 发生的概率是多少? 提示:用1表示硬币“正面朝上”,用0表示硬币“反面朝上”,则试验的样本空间Ω={(1,1,1),(1,1,0),(1,0,1),(0,1,1),(1,0,0),(0,1,0),(0,0,1),(0,0,0)},共8个样本点,C 事件包含{(1,1,0),(1,0,1),(0,1,1)}3个样本点,故P(C)=38.1.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,下列不是样本点的是( )A .正好2个红球B .正好2个黑球C .正好2个白球D .至少一个红球【解析】选D.至少一个红球包含:一红一白或一红一黑或2个红球,所以至少一个红球不是样本点.2.老师从甲、乙、丙三名学生中任选两人做发言,甲被选中的概率为________.【解析】从甲、乙、丙三人中任选两人有:(甲、乙),(甲、丙),(乙、丙)共3种情况,其中,甲被选中的情况有2种,故甲被选中的概率为P =23. 答案:23基础类型一 古典概型的判断(数学抽象)1.下列概率模型属于古典概型的是( )A .某射手射击一次,可能命中0环,1环,2环, (10)B .某小组有男生5人,女生3人,从中任选1人做演讲C .一只使用中的灯泡的寿命长短D .中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”【解析】选B.A不属于,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;B属于,显然满足有限性和等可能性;C不属于,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;D不属于,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.2.下列试验不是古典概型的是( )A.从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小B.同时掷两颗骰子,点数和为6的概率C.近三天中有一天降雨的概率D.10人站成一排,其中甲、乙相邻的概率【解析】选C.A,B,D是古典概型,因为符合古典概型的定义和特点.C不是古典概型,因为不符合等可能性,降雨受多方面因素影响.3.袋中有大小相同的3个白球,2个红球,2个黄球,每个球有一个区别于其他球的编号,从中随机摸出一个球.(1)把每个球的编号看作一个样本点建立的概率模型是不是古典概型?(2)把球的颜色作为划分样本点的依据,有多少个样本点?以这些样本点建立的概率模型是不是古典概型?【解析】(1)因为样本点个数有限,而且每个样本点发生的可能性相同,所以是古典概型.(2)把球的颜色作为划分样本点的依据,可得到“取得一个白色球”“取得一个红色球”“取得一个黄色球”,共3个样本点.这些样本点个数有限,但“取得一个白色球”的概率与“取得一个红色球”或“取得一个黄色球”的概率不相等,即不满足等可能性,故不是古典概型.判断一个试验是不是古典概型要抓住两点:一是有限性;二是等可能性.基础类型二样本点的计数问题(数学抽象)【典例】(1)先后抛掷3枚均匀的壹角、伍角、壹元硬币,则试验的样本点的总数为________.(2)袋中有2个标号分别为1,2的白球和2个标号分别为3,4的黑球.这4个球除颜色、标号外完全相同,4个人按顺序依次从中摸出1个球,则前2个人摸到颜色不同的球的样本点的个数为________.【解析】(1)因为抛掷壹角、伍角、壹元硬币时,各自都会出现正面和反面2种情况,所以一共可能出现的结果有8种.可列表为:硬币种类试验结果(共8种)壹角正正正正反反反反伍角正反正反正反正反壹元正反反正正反反正所以试验样本点总数为8.答案:8(2)4个人按顺序依次从袋中摸出1个球的所有可能结果用树状图表示如图所示:共24个样本点.前2个人摸到颜色不同的球共包含16个样本点.答案:16样本点的三种列举方法(1)列举法:适用于较简单的试验问题;(2)列表法:适用于较简单的试验问题;(3)树状图法:适用于较复杂的试验问题.某小说有三册,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的样本点有______个.( )A.1 B.2 C.3 D.4【解析】选B.所有样本点为(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1).其中从左到右或从右到左恰好为第1,2,3册包含2个样本点,即(1,2,3),(3,2,1).【加固训练】一个口袋内装有大小相同的5个球,其中2个白球,3个黑球,写出按下列要求的随机事件的样本点的数量.(1)一次摸两个,摸出的全是黑球;(2)先摸一个不放回,再摸一个,摸出的全是黑球.【解析】2个白球分别记为A,B,3个黑球分别记为a,b,c.(1)列举法:样本空间:(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a ,c),(b ,c),共10个样本点;摸出的全是黑球的样本点:(a ,b),(a ,c),(b ,c)共3个.(2)树状图法:样本空间:(A ,B),(A ,a),(A ,b),(A ,c),(B ,A),(B ,a),(B ,b),(B ,c),(a ,A),(a ,B),(a ,b),(a ,c),(b ,A),(b ,B),(b ,a),(b ,c),(c ,A),(c ,B),(c ,a),(c ,b),共20个样本点;摸出的全是黑球的样本点: (a ,b),(a ,c),(b ,a),(b ,c),(c ,a),(c ,b)共6个.综合类型 古典概型的概率计算(数学建模、数学运算)简单的古典概型问题【典例】(2020·全国卷Ⅰ)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A .15B .25C .12D .45【解析】选A.如图,从O ,A ,B ,C ,D 5个点中任取3个点有{O ,A ,B},{O ,A ,C},{O ,A ,D},{O ,B ,C},{O ,B ,D},{O ,C ,D},{A ,B ,C},{A ,B ,D},{A ,C ,D},{B ,C ,D}共10种不同取法,3点共线只有{O ,A ,C}与{O ,B ,D}共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为210 =15.本例若在O ,A ,B ,C ,D 中任取2点,则取到的2点连线不经过点O 的概率为________.【解析】从O ,A ,B ,C ,D 5个点中任取2个点有{O ,A},{O ,B},{O ,C},{O ,D},{A ,B},{A ,C},{A ,D},{B ,C},{B ,D},{C ,D}共10种不同取法,2点连线不经过O 点的有{A ,B},{A ,D},{B ,C},{C ,D}共4种情况, 由古典概型的概率计算公式知, 取到的2点连线不经过点O 的概率为410 =25 . 答案:25求解古典概型的概率“四步”法【加固训练】五位数abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a<b<c ,且c>d>e 时,称这个五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A .16B .110C .112D .120【解析】选D.由题意,由1,2,3,4,5组成的没有重复数字的五位数恰好为“凸数”的有:12543,13542,14532,23541,24531,34521,共6个样本点,所以恰好为“凸数”的概率为P =6120 =120. “放回”与“不放回”问题【典例】一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.【思路导引】要区分两种取球方法的不同点.【解析】(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个,因此所求事件的概率为P =26 =13. (2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个. 又满足条件n <m +2的有(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共13个.所以,满足条件n <m +2的事件的概率为P 1=1316 .解决放回与不放回问题应注意两点(1)关于不放回抽样,计算基本事件个数时,可以看作是没有顺序的,元素是不能重复的.(2)关于有放回抽样,计算基本事件个数时,可以看作是有顺序的,元素可以重复.【加固训练】袋子中装有除颜色外其他均相同的编号为a ,b 的2个黑球和编号为c ,d ,e 的3个红球.(1)若从中任意摸出2个球,求恰有一个黑球和一个红球的概率;(2)若从中任取一个球给小朋友甲,然后再从中任取一个球给小朋友乙,求甲、乙两位小朋友拿到的球中至少有一个黑球的概率.【解析】(1)从5个小球中任取2个,所有可能的结果为{a ,b},{a ,c},{a ,d},{a ,e},{b ,c},{b ,d},{b ,e},{c ,d},{c ,e},{d ,e},共10个,其中恰有一个黑球和一个红球的情形有{a ,c},{a ,d},{a ,e},{b ,c},{b ,d},{b ,e},共6个,所以恰有一个黑球和一个红球的概率为P =610 =35. (2)从5个小球中任取2个,一个给甲,一个给乙的所有可能的结果为(括号内第一个给甲,第二个给乙)(a ,b),(a ,c),(a ,d),(a ,e),(b ,a),(b ,c),(b ,d),(b ,e),(c ,a),(c ,b),(c ,d),(c ,e),(d ,a),(d ,b),(d ,c),(d ,e),(e ,a),(e ,b),(e ,c),(e ,d),共20个,其中至少有一个黑球的有(a ,b),(a ,c),(a ,d),(a ,e),(b ,a),(b ,c),(b ,d),(b ,e),(c ,a),(c ,b),(d ,a),(d ,b),(e ,a),(e ,b),共14个,所以至少有一个黑球的概率为P =1420 =710.创新思维 巧转化,妙解题(逻辑推理)【典例】甲、乙、丙、丁四名学生按任意次序站成一排,求甲站在乙左边的概率.【解析】(方法一:利用普通思路)利用树状图列举样本点,如图所示:由树状图可知,共有24个样本点.设事件A =“甲站在乙的左边”,则A 事件包含的样本点为:(甲乙丙丁),(甲乙丁丙),(甲丙乙丁),(甲丙丁乙),(甲丁乙丙),(甲丁丙乙),(丙甲乙丁),(丙甲丁乙),(丙丁甲乙),(丁甲乙丙),(丁甲丙乙),(丁丙甲乙),共12个,所以甲站在乙左边的概率P =1224 =12. (方法二:巧妙转化)因为要计算“甲站在乙左边的概率”,所以可以只考虑甲、乙两个人排队.所有样本点为(甲乙),(乙甲),共2个,事件“甲站在乙的左边”包含1个样本点,即(甲乙),所以甲站在乙左边的概率P =12.由于试验结果具有对称性,可巧妙转化,从而简化解答.【加固训练】鞋柜里有爸爸、妈妈和小明的三双鞋,小明随手拿出了四只,则拿出的鞋子恰好有爸爸的一双的概率是________.【解析】爸爸的鞋子记为A 1,A 2,妈妈的鞋子记为B 1,B 2,小明的鞋子记为C 1,C 2,考虑到取出4只鞋子列举起来麻烦,可以列举留在鞋柜里的两只鞋子,事件“拿出的4只鞋子恰好有爸爸的一双”等价于“剩下的2只鞋子没有爸爸的”,样本空间Ω={(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),(C 1,C 2)},共15个样本点,事件“剩下的2只鞋子没有爸爸的”包含(B 1,B 2),(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),(C 1,C 2)6个样本点,故P =615 =25. 答案:251.下列关于古典概型的说法中正确的是( )①样本空间的样本点只有有限个;②每个事件出现的可能性相等;③每个样本点发生的可能性相等;④样本点的总数为n ,随机事件A 若包含k 个样本点,则P(A)=k n. A .②④ B.①③④ C.①④ D.③④【解析】选B.根据古典概型的特征与公式进行判断,①③④正确,②不正确.2.甲、乙、丙三个人站成一排,甲站在中间的概率是( )A .16B .12C .13D .23【解析】选C.样本空间为{(甲,乙,丙),(甲,丙,乙),(乙,丙,甲),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲)},共6个样本点,甲站在中间的事件有2个,故P(甲)=26=13. 3.投掷一枚质地均匀的骰子两次,若第一次向上的点数小于第二次向上的点数,则我们称其为正试验;若第二次向上的点数小于第一次向上的点数,则我们称其为负试验;若两次,向上的点数相等,则我们称其为无效试验.则一个人投掷该骰子两次出现无效试验的概率是( )A .136B .112C .16D .12【解析】选C.连续抛一枚骰子两次,向上的点数记为(x ,y),则有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个基本事件,设“出现无效试验”为事件A ,则事件A 包含(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个基本事件,则P(A)=636 =16. 4.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为________.【解析】用列举法列举出“数字之和为奇数”的可能结果为:(1,2),(1,4),(2,3),(3,4),共4种可能.答案:45.从a ,b ,c ,d 四名学生中任选两名去参加不同的活动,则选到学生a 的概率为________.【解析】所有样本点有(a ,b),(b ,a),(a ,c),(c ,a),(a ,d),(d ,a), (b ,c),(c ,b),(b ,d),(d ,b), (c ,d), (d ,c),共12个,其中含有字母a 的样本点有(a ,b),(b ,11 a),(a ,c),(c ,a),(a ,d),(d ,a),共6个,所以所求事件的概率是P =12. 答案:12。

新教材2023年高中数学 第10章 概率 10

新教材2023年高中数学 第10章 概率 10

典例 2 甲、乙两校各有3名教师报名支教,其中甲校2男1女, 乙校1男2女.
(1) 若 从 甲 校 和 乙 校 报 名 的 教 师 中 各 任 选 1 名 , 写 出 所 有 可 能 的 结 果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出 的2名教师来自同一所学校的概率.
【对点练习】❹ 小李在做一份调查问卷,共有5道题,其中有两种 题(1)小李从中任选2道题解答,每一次选1题(不放回),求所选的题不 是同一种题型的概率;
(2)小李从中任选2道题解答,每一次选1题(有放回),求所选的题不 是同一种题型的概率.
[解析] 将3道选择题依次编号为1,2,3;2道填空题依次编号为4,5. (1)从5道题中任选2道题解答,每一次选1题(不放回),则样本空间Ω1 ={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2), (3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)},共 20个样本点,而且这些样本点发生的可能性是相等的.
①若xy≤3,则奖励玩具一个; ②若xy≥8,则奖励水杯一个; ③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (1)求小亮获得玩具的概率; (2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
[解析] 用数对(x,y)表示儿童参加活动先后记录的数,则基本事件 空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.
[正解] 因为通过列举法可得甲抽到选择题、乙抽到填空题的可能结 果有 6 个,而甲、乙两人依次抽取 1 道题的可能结果有 20 个,所以甲抽 到选择题、乙抽到填空题的概率为260=130.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层训练(六十一) 随机事件的概率
A 组 基础达标 (建议用时:30分钟)
一、选择题
1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是
( )
A .互斥但非对立事件
B .对立事件
C .相互独立事件
D .以上都不对
A [由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.]
2.(2017·湖南衡阳模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为( )
A .0.7
B .0.65
C .0.35
D .0.3
C [∵事件A ={抽到一等品},且P (A )=0.65,
∴事件“抽到的产品不是一等品”的概率为P =1-P (A )=1-0.65=0.35.] 3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是12
35,则从中任意取出2粒恰好是同一色的概率是( )
【导学号:31222394】
A.17
B.1235
C.1735
D .1
C [设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为
事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B 互斥,
故P(C)=P(A)+P(B)=1
7+12
35
=17
35.]
4.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是()
A.1
5 B.
1
6
C.5
6 D.
35
36
C[设a,b分别为甲、乙摸出球的编号.由题意,摸球试验共有n=6×6=36种不同结果,满足a=b的基本事件共有6种,
所以摸出编号不同的概率P=1-6
36=5 6.]
5.如图10-1-1所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是()
图10-1-1
A.2
5 B.
7
10
C.4
5 D.
9
10
C[设被污损的数字为x,则
x甲=1
5(88+89+90+91+92)=90,
x乙=1
5(83+83+87+99+90+x),
若x甲=x乙,则x=8.
若x 甲>x 乙,则x 可以为0,1,2,3,4,5,6,7, 故P =810=4
5.] 二、填空题
6.给出下列三个命题,其中正确命题有________个.
①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是3
7;③随机事件发生的频率就是这个随机事件发生的概率.
【导学号:31222395】
0 [①错,不一定是10件次品;②错,3
7是频率而非概率;③错,频率不等于概率,这是两个不同的概念.]
7.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.
经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为________.
【导学号:31222396】
1
4 [20组随机数中,恰有两次命中的有5组,因此该运动员三次投篮恰有两
次命中的概率为P =520=1
4.]
8.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过2”,则P (A +B )=________.
2
3[将事件A+B分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”.
则C,D互斥,
且P(C)=1
3,P(D)=1
3

∴P(A+B)=P(C+D)=P(C)+P(D)=2
3.]
三、解答题
9.(2015·北京高考节选)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(1)
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率.
[解](1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了
乙和丙,所以顾客同时购买乙和丙的频率为200
1 000
=0.2.5分
(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,
所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+200 1 000

0.3.12分
10.某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:
(1)
(2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.
[解]记事件“在竞赛中,有k人获奖”为A k(k∈N,k≤5),则事件A k彼此互斥.1分
(1)∵获奖人数不超过2人的概率为0.56,
∴P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56,
解得x=0.3.5分
(2)由获奖人数最多4人的概率为0.96,得
P(A5)=1-0.96=0.04,即z=0.04.8分
由获奖人数最少3人的概率为0.44,得P(A3)+P(A4)+P(A5)=0.44,
即y+0.2+0.04=0.44,
解得y=0.2.12分
B组能力提升
(建议用时:15分钟)
1.掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,若B表示B的对立事件,则一次试验中,事件A+B发生的概率为()
A.1
3 B.
1
2
C.2
3 D.
5
6
C[掷一个骰子的试验有6种可能结果.
依题意P(A)=2
6=1
3
,P(B)=4
6
=2
3

∴P(B)=1-P(B)=1-2
3=1 3.
∵B表示“出现5点或6点”的事件,因此事件A与B互斥,
从而P(A+B)=P(A)+P(B)=1
3+1
3
=2
3.]
2.某城市2017年的空气质量状况如表所示:
100<T≤150时,空气质量为轻微污染,则该城市2017年空气质量达到良或优的概率为________.
3 5[由题意可知2017年空气质量达到良或优的概率为P=1
10
+1
6
+1
3
=3
5.]
3.(2017·贵阳质检)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
(1)
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.
[解](1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为
4 000元”,以频率估计概率得P(A)=
150
1 000
=0.15,P(B)=120
1 000
=0.12.2分
由表格知,赔付金额大于投保金额即事件A+B发生,
且A,B互斥,
所以P(A+B)=P(A)+P(B)=0.15+0.12=0.27,
故赔付金额大于投保金额的概率为0.27.5分
(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),10分
所以样本车辆中新司机车主获赔金额为4 000元的频率为24
=0.24,
100因此,由频率估计概率得P(C)=0.24.12分。

相关文档
最新文档