抗风等级计算.doc
高楼大厦风荷载分析与计算

高楼大厦风荷载分析与计算一、引言高楼大厦作为建筑行业中的代表,其稳定性和可靠性对于人们的生命财产至关重要。
在自然灾害或者其他意外情况发生时,高楼大厦需要具备足够的抗风能力,才能保障建筑物和使用者的安全。
因此,对于高楼大厦的风荷载进行分析和计算是非常必要的。
二、高楼大厦风荷载的特点高楼大厦的风荷载在自然界中属于动态荷载,其特点如下:1、不稳定性:风荷载是随机作用的,具有不稳定性,不易预测;2、非线性:风荷载与建筑物的形状、大小、高度等因素密切相关,具有非线性特点;3、多方向:风荷载在不同方向上分布不均,因此需要对不同方向的风功率谱密度进行分析;4、多变性:环境变化、季节变化等都会对风荷载产生影响,因此需要针对不同的情况进行分析和计算。
三、高楼大厦风荷载的计算方法1、ASCE 7-10标准ASCE 7-10标准是美国土木工程师协会所编制的高楼大厦结构设计规范,该规范对于高楼大厦的风荷载计算提供了规范的方法,通过对建筑物的几何特性、地理位置、气象条件、风速等因素进行综合考虑,得出有效的风荷载。
2、CFD方法CFD方法是计算流体力学方法的缩写,它利用数学模型对建筑物受到的风荷载进行仿真计算,能够较准确地模拟真实的风场情况。
该方法的优点在于可以考虑到建筑物的复杂几何形状和建筑群效应等复杂因素。
四、高楼大厦风荷载分析的影响因素高楼大厦的风荷载计算需要考虑多种因素,下面列举几种主要因素:1、建筑物的形状和大小;2、建筑物的高度和层数;3、建筑物所处的地理位置和气象条件;4、建筑物周边的环境条件,如周边建筑、地形等;5、建筑物的结构类型和材料强度。
五、高楼大厦风荷载计算的实例分析以位于上海陆家嘴的环球金融中心表层为例,进行风荷载计算的实例分析。
建筑物的数据:高度:492米层数:101层结构类型:框架结构抗风等级:超过12级风场参数:基本风压力:0.70kN/m2静荷载附加系数:1.1动荷载附加系数:1.2风向因素:纵向和横向计算结果:结构抗风作用高:225m风荷载设计值:6800kN/m2结构面负责建筑面积:16100m2风荷载作用面积:11000m2风荷载设计值:7500kN/m2可以看出,通过计算得到的风荷载值远高于建筑物本身的重量,这也表明高楼大厦的风荷载计算非常重要。
抗风等级计算

我举个例子:
楼顶有一个有Φ50mm钢管制作的高度5米避雷针;靠4个M10的螺钉固定;在10级风下的风压和抗风强度计算如下:
首先:风压就是垂直于气流方向的平面所受到的风的压力。
根据伯努利方程,风的动压为:wp=0.5·ro·v2
其中wp为风压[kN/m2];ro为空气密度[kg/m3];v为风速[m/s]。
由于空气密度(ro)和重度(r)的关系为:r=ro·g;因此ro=r/g;得:wp=0.5·r·v2/g;
在标准状态下, 空气密度r=0.01225 [kN/m3];重力加速度g=9.8[m/s2],得:wp=v2/1600
将风速代入, 10 级大风相当于 24.5-28.4m/s, 取风速上限 28.4m/s, 得风压wp=0.51[kN/m2]
就是每平方米面积承受约51千克力。
对于此避雷针,其迎风面积等于0.25m2;它所承受的10级风下的压力为:12.75kN;力臂长度2.5m;
依据力学中的杠杆公式,此时固定螺钉所承受的力矩为:31.875kN.m;
假设螺钉长度为10厘米;则4个螺钉所承受的总拉力为318.75kN;
查机械设计手册[也可参照GB/T 3098.13-1996],M10的螺钉的破坏扭矩为102kN,则其合力为408kN;
因为:408kN大于318.75kN;所以10 级风下这个避雷针不会吹倒。
呵呵。
明白了吗?。
抗风柱计算书

#、#抗风柱计算书-------------------------------| 抗风柱设计|| || 构件:KFZ1 || 日期:2012/11/09 || 时间:09:09:59 |------------------------------------设计信息-----钢材等级:Q235柱距(m):8.800柱高(m):7.440柱截面:焊接组合H形截面:H*B1*B2*Tw*T1*T2=300*250*250*6*10*10铰接信息:两端铰接柱平面内计算长度系数:1.000柱平面外计算长度:7.440强度计算净截面系数:1.000设计规范:《门式刚架轻型房屋钢结构技术规程》容许挠度限值[υ]: l/400 = 18.600 (mm)风载信息:基本风压W0(kN/m2):0.400风压力体形系数μs1:1.000风吸力体形系数μs2:-1.000风压高度变化系数μz:1.000柱顶恒载(kN):0.000柱顶活载(kN):0.000考虑墙板荷载风载、墙板荷载作用起始高度y0(m):0.000-----设计依据-----1、《建筑结构荷载规范》(GB 50009-2012)2、《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002) -----抗风柱设计-----1、截面特性计算A =6.6800e-003; Xc =1.2500e-001; Yc =1.5000e-001;Ix =1.1614e-004; Iy =2.6047e-005;ix =1.3186e-001; iy =6.2444e-002;W1x=7.7428e-004; W2x=7.7428e-004;W1y=2.0837e-004; W2y=2.0837e-004;2、风载计算抗风柱上风压力作用均布风载标准值(kN/m): 3.520抗风柱上风吸力作用均布风载标准值(kN/m): -3.5203、墙板荷载计算墙板自重(kN/m2) : 0.200墙板中心偏柱形心距(m): 0.260墙梁数: 6墙梁位置(m) : 1.000 1.500 3.000 4.500 6.000 7.000竖向荷载(kN) : 2.200 1.760 2.640 2.640 2.200 1.267附加弯矩(kN.m): -0.572 -0.458 -0.686 -0.686 -0.572 -0.3294、柱上各断面内力计算结果△组合号1:1.35恒+0.7*1.4活断面号: 1 2 3 4 5 6 7弯矩(kN.m):0.000 -0.372 0.029 0.275 -0.097 0.458 0.086轴力(kN) :22.388 21.952 18.546 15.734 15.298 11.297 10.861断面号:8 9 10 11 12 13 弯矩(kN.m):-0.285 0.270 -0.102 0.299 -0.073 0.000轴力(kN) :10.425 6.425 5.989 2.583 2.147 0.000△组合号2:1.2恒+1.4风压+0.7*1.4活断面号: 1 2 3 4 5 6 7弯矩(kN.m):0.000 -10.749 -18.918 -25.329 -30.395 -32.743-34.021轴力(kN) :19.900 19.513 16.485 13.986 13.598 10.042 9.655断面号:8 9 10 11 12 13 弯矩(kN.m):-33.404 -30.069 -25.664 -18.678 -10.484 0.000轴力(kN) :9.267 5.711 5.324 2.296 1.908 0.000△组合号3:1.2恒+0.6*1.4风压+1.4活断面号: 1 2 3 4 5 6 7弯矩(kN.m):0.000 -6.582 -11.340 -15.100 -18.272 -19.483 -20.382轴力(kN) :19.900 19.513 16.485 13.986 13.598 10.042 9.655断面号:8 9 10 11 12 13 弯矩(kN.m):-20.144 -17.946 -15.435 -11.101 -6.316 0.000轴力(kN) :9.267 5.711 5.324 2.296 1.908 0.000△组合号4:1.2恒+1.4风吸+0.7*1.4活断面号: 1 2 3 4 5 6 7弯矩(kN.m):0.000 10.088 18.969 25.818 30.223 33.558 34.175轴力(kN) :19.900 19.513 16.485 13.986 13.598 10.042 9.655断面号:8 9 10 11 12 13 弯矩(kN.m):32.897 30.549 25.483 19.209 10.354 0.000 轴力(kN) :9.267 5.711 5.324 2.296 1.908 0.000△组合号5:1.2恒+0.6*1.4风吸+1.4活断面号: 1 2 3 4 5 6 7弯矩(kN.m):0.000 5.921 11.392 15.588 18.099 20.298 20.536轴力(kN) :19.900 19.513 16.485 13.986 13.598 10.042 9.655断面号:8 9 10 11 12 13 弯矩(kN.m):19.637 18.425 15.253 11.631 6.186 0.000 轴力(kN) :9.267 5.711 5.324 2.296 1.908 0.000柱底剪力设计值:风压力作用(kN): 18.332风吸力作用(kN): -18.3325、抗风柱强度验算结果控制组合:4设计内力:弯矩(kN.m):34.175; 轴力(kN):19.900抗风柱强度计算最大应力比: 0.208 < 1.0抗风柱强度验算满足。
钢格构柱吊装时的抗风力计算方法

钢格构柱吊装时的抗风力计算方法全文共四篇示例,供读者参考第一篇示例:钢格构柱是建筑结构中常用的一种构件,在进行吊装时需要考虑到风力对其造成的影响。
本文将介绍钢格构柱吊装时的抗风力计算方法,以确保吊装过程的安全可靠。
我们需要了解风力对钢格构柱的影响。
风力是一种非常常见的外力,会对建筑结构和吊装过程产生影响。
在吊装钢格构柱的过程中,风力可能会对吊装索具和构件产生不稳定的影响,甚至可能导致吊装事故发生。
我们需要计算钢格构柱的抗风能力,以确保吊装的安全进行。
钢格构柱的抗风能力主要取决于其几何形状、材料强度和连接方式等因素。
在进行抗风力计算时,我们需要考虑以下几个方面:一、几何形状:钢格构柱的几何形状会对其受风力的影响产生影响。
一般来说,细长的构柱在受到风力时更容易产生振动和塑性变形,因此需要特别注意其抗风能力。
而与之相对应的,短粗的构柱会比较稳定,其抗风能力相对较强。
二、材料强度:钢格构柱的材料强度是其抗风能力的关键。
在进行抗风力计算时,我们需要考虑构柱的强度参数,如抗弯抗压强度等。
通过在设计阶段合理选取材料,可以提高构柱的抗风能力。
三、连接方式:构柱的连接方式也会对其抗风能力起到重要作用。
在进行抗风力计算时,我们需要考虑构柱与其他构件的连接方式是否稳固可靠,是否容易受到风力的影响。
合理设计连接方式可以提高构柱的抗风能力。
在进行钢格构柱吊装时的抗风力计算时,我们可以采用以下步骤:1、确定风载荷:首先需要对吊装现场的风载荷进行评估和计算。
通常可以通过测量气象数据和考虑建筑结构的风压系数来确定风载荷。
2、进行结构分析:根据钢格构柱的几何形状、材料强度和连接方式等参数,进行结构分析,计算其受风力的响应。
可以利用有限元方法或者其他结构分析软件进行计算。
3、确定抗风能力:根据结构分析的结果,确定钢格构柱的抗风能力。
可以通过对比计算结果和设计要求,评估构柱是否具有足够的抗风能力。
4、加强措施:如果计算结果显示钢格构柱的抗风能力不足,可以考虑采取加强措施,如增加构件的截面尺寸、增加连接强度等。
铝扣板抗风压设计标准

铝扣板抗风压设计标准
铝扣板抗风压设计标准主要包括以下要点:
1. 抗风压等级:根据具体工程需要和风场情况,确定铝扣板的抗风压等级,常见的等级有1.5kPa、
2.0kPa、2.5kPa等。
抗风压等级越高,承受的风压就越大,需要相应加强铝扣板及其支撑结构的设计。
2. 抗风压系数:根据铝扣板的安装方式和结构特点,计算其抗风压系数。
一般情况下,常见的铝扣板的抗风压系数为0.6,即正常情况下,铝扣板能够承受平均风压的60%。
3. 铝扣板厚度:铝扣板的厚度直接影响其抗风性能。
一般情况下,铝扣板的厚度选择为3mm或4mm。
对于抗风要求较高的工程,可以选择更厚的铝扣板以提高其抗风性能。
4. 支撑结构的设计:铝扣板的支撑结构也需要进行抗风设计。
支撑结构的材料选择和连接方式需要满足铝扣板的抗风要求,防止出现变形、脱落等现象。
5. 固定方式:铝扣板的固定方式也对其抗风性能有直接影响。
一般情况下,采用钢铝螺栓和铝合金角码进行固定,以保证铝扣板与支撑结构的牢固连接。
6. 抗风性能测试:为了验证设计的合理性,可以进行铝扣板的抗风性能测试,通过实际测量铝扣板在风压下的形变和位移情况,判断其是否符合设计标准和要求。
综上所述,铝扣板抗风压设计标准是根据具体工程需求和风场情况确定的,通过考虑抗风压等级、抗风压系数、铝扣板厚度、支撑结构设计、固定方式和抗风性能测试等因素,来保证铝扣板的抗风性能和使用安全。
设计抗风压值与台风级别对应表

台风等级与风压窗户有内外之分,假如是外窗,要计算抗风压性能4 级能抗多大风力,还需要其他参数,只能给公式你自己计算:计算方法:1. 计算围护结构风荷载标准值:Wk = βgz μsl μzw o (建筑结构荷载规范7.1.1-2 )式中:Wk 为风荷载标准值(KN/㎡)Βgz为高度z 处的阵风系数(建筑结构荷载规范表7.5.1 )μsl 为局部风压体型系数(建筑结构荷载规范41 页取1.8 最大值)μz 为风压高度变化系数(建筑结构荷载规范表7.2.1 )wo 基本风压值(建筑结构荷载规范附表D4 中50 年一遇)2. 作用在建筑玻璃上的风荷载设计值:W = yw Wk (建筑玻璃应用技术规程5.1.1 )式中:W 为风荷载设计值(Kpa)(根据其计算结果查抗风压性能分级表,确定抗风压等级)yw 为风荷载分项系数取1.4Wk 为风荷载标准值(根据1 式计算的值)2、台风等级与风压关系?台风等级与风压差的大小有关。
3、台风等级与风压值如何对应?台风,中心风速32.7-41.4 米/秒,12-13 级风力强台风,中心风速41.5-50.9 米/秒,14-15 级风力超强台风,中心风速=〉51 米/秒,16 级以上14 级台风属于强台风,风速为41.5 ~ 46.1 米/秒强台风的破坏力主要由强风、暴雨和风暴潮三个因素引起。
强风台风是一个巨大的能量库,其风速都在17 米/秒以上,甚至在60 米/秒以上。
据测,当风力达到14 级时,垂直于风向平面上每平方米风压可达1700-2000 公斤(也就是说,如果你在车里,车的受风面积在一平方米以上、重量在1.7 吨以下的话,车子会被强风吹跑)。
暴雨台风是非常强的降雨系统。
一次台风登陆,降雨中心一天之中可降下100-300 毫米的大暴雨,甚至可达500-800 毫米。
台风暴雨造成的洪涝灾害,是最具危险性的灾害。
台风暴雨强度大,洪水出现频率高,波及范围广,来势凶猛,破坏性极大。
三脚架抗风计算

三脚架抗风计算【原创版】目录1.引言2.三脚架的结构与原理3.抗风能力的重要性4.三脚架的抗风计算方法5.实际应用中的考虑因素6.结论正文【引言】在摄影和摄像领域,三脚架是常用的辅助工具,它能够稳定相机,提高画面质量。
然而,在户外拍摄时,风力对三脚架的稳定性产生很大影响,因此研究三脚架的抗风能力显得尤为重要。
本文将从三脚架的结构与原理入手,探讨如何计算三脚架的抗风能力,并在实际应用中加以考虑。
【三脚架的结构与原理】三脚架主要由三个支撑腿和连接相机的云台组成。
三个支撑腿通过伸缩和锁定机构来调整高度和稳定性。
在风力作用下,三脚架的抗风能力主要取决于其结构设计、材料强度以及支撑腿的锁定力度。
【抗风能力的重要性】三脚架的抗风能力直接影响到拍摄画面的稳定性。
在强风环境下,如果三脚架的抗风能力不足,会导致画面抖动,降低拍摄质量。
因此,在选购三脚架时,抗风能力是一个重要的参考指标。
【三脚架的抗风计算方法】计算三脚架的抗风能力需要考虑以下几个方面:1.支撑腿的材料和截面面积:支撑腿的材料和截面面积决定了其抗弯强度,直接影响到三脚架的抗风能力。
2.支撑腿的锁定机构:支撑腿的锁定机构设计影响着三脚架在风力作用下的稳定性。
合理的锁定机构设计能够提高三脚架的抗风能力。
3.云台的稳定性:云台作为连接相机的部分,其稳定性直接影响到拍摄画面的稳定性。
选择具有良好抗风能力的云台能够提高整体抗风效果。
【实际应用中的考虑因素】在实际应用中,除了上述计算方法外,还需要考虑以下因素:1.使用环境:根据拍摄现场的风力等级,选择适当抗风能力的三脚架。
2.承载重量:三脚架的抗风能力与承载重量成正比,因此在选购时要根据相机和镜头的重量选择合适承载能力的三脚架。
3.预算:在预算允许的情况下,选择抗风能力较强的三脚架。
【结论】综上所述,三脚架的抗风能力是衡量其稳定性的重要指标,计算抗风能力需要综合考虑支撑腿的材料、截面面积、锁定机构设计以及云台的稳定性。
水泥罐抗风验算详细计算书

京新高速公路临河至白疙瘩段三标一分部(K532+150~K565+000段)水泥罐抗风验算计算书中国交通建设股份有限公司京新高速公路LBAMSG-3项目总承包管理部第一项目部二〇一五年四月水泥罐抗风验算计算书一、验算内容及验算依据为保证我项目水泥罐安全性对我分部拌合站筒仓的抗风性能进行了验算。
主要从拌合站筒仓支撑构件的强度、稳定性及基础的倾覆性进行了验算,并提出相应的抗风加固措施。
验算依据为:《公路桥涵设计通用规范》(JTG D60-2004)及《公路桥梁钢结构设计规范》。
二、风荷载大小的确定根据现场调研及相关工区提供的资料,检算时取罐体长度为12m ,支腿长度为9.0m 。
罐体直径为5.0m, 自重为10 t ,满载时料重300 t 。
根据《公路桥涵设计基本规范》中的4.4.1条确定风荷载的大小。
根据资料显示,我项目部施工范围内混凝土搅拌站在沿线大风区分区范围、风向、最大风速分别为主导风向NW ,最大风速53m/s 。
相关抗风的设计计算以此为依据。
表1 风级风速换算表《公路桥涵设计基本规范》中的4.4.1条规定,作用于结构物上的风荷载强度可按下式计算:0321W K K K W = (1)式中 W —风荷载强度(Pa );0W —基本风压值(Pa ),206.11ν=W ,系按平坦空旷地面,离地面20m 高,频率1/100的10min 平均最大风速ν(m/s )计算确定;一般情况0W 可按《铁路桥涵设计基本规范》中附录D “全国基本风压分布图”,并通过实地调查核实后采用;K—风载体形系数,对桥墩可参照《铁路桥涵设计基本规范》中表4.4.1-1,1其它构件为1.3;K—风压高度变化系数,可参照《铁路桥涵设计基本规范》中表4.4.1-2,2风压随离地面或常水位的高度而异,除特殊高墩个别计算外,为简化计算,桥梁工程中全桥均取轨顶高度处的风压值;K—地形、地理条件系数,可参照《铁路桥涵设计基本规范》中表4.4.1-3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我举个例子:
楼顶有一个有Φ50mm钢管制作的高度5米避雷针;靠4个M10的螺钉固定;在10级风下的风压和抗风强度计算如下:
首先:风压就是垂直于气流方向的平面所受到的风的压力。
根据伯努利方程,风的动压为:wp=0.5·ro·v2
其中wp为风压[kN/m2];ro为空气密度[kg/m3];v为风速[m/s]。
由于空气密度(ro)和重度(r)的关系为:r=ro·g;因此ro=r/g;得:wp=0.5·r·v2/g;
在标准状态下, 空气密度r=0.01225 [kN/m3];重力加速度g=9.8[m/s2],得:wp=v2/1600
将风速代入, 10 级大风相当于 24.5-28.4m/s, 取风速上限 28.4m/s, 得风压wp=0.51[kN/m2]
就是每平方米面积承受约51千克力。
对于此避雷针,其迎风面积等于0.25m2;它所承受的10级风下的压力为:12.75kN;力臂长度2.5m;
依据力学中的杠杆公式,此时固定螺钉所承受的力矩为:31.875kN.m;
假设螺钉长度为10厘米;则4个螺钉所承受的总拉力为318.75kN;
查机械设计手册[也可参照GB/T 3098.13-1996],M10的螺钉的破坏扭矩为102kN,则其合力为408kN;
因为:408kN大于318.75kN;所以10 级风下这个避雷针不会吹倒。
呵呵。
明白了吗?。