抽屉原理1_1459542236

合集下载

抽屉原理 小学数学

抽屉原理  小学数学

六年级奥数知识讲解:抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算
由狼犬工作室提供。

抽屉原理精解

抽屉原理精解

第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。

原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。

第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。

通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。

抽屉原理的讲解和应用

抽屉原理的讲解和应用

抽屉原理的讲解和应用1. 什么是抽屉原理?抽屉原理,又称为鸽巢原理、鸽笼原理,是一种数学上的原理。

简单来说,抽屉原理指的是将n+1个物体放入n个抽屉中,那么至少有一个抽屉中会放置两个物体。

2. 抽屉原理的简单解释抽屉原理可以通过一个简单的例子来解释。

假设有10对袜子,每对袜子的颜色不同,共有10种颜色。

现在你要从这些袜子中选择11只袜子,无论怎么选择,必然会有两只袜子的颜色相同。

这是因为我们抽取的数量多于可供选择的不同颜色数目。

3. 抽屉原理的数学证明抽屉原理有一个简单的数学证明。

假设有n个抽屉和k个物体,如果每个抽屉中物体的平均数目为m,则总物体数恰好为n * m。

考虑特殊情况,假设所有抽屉中物体的数目都小于m,则总物体数小于n * m,与实际情况相矛盾。

因此,至少存在一个抽屉中物体的数目大于等于m。

4. 抽屉原理的应用抽屉原理在日常生活和科学研究中有着广泛的应用。

以下是一些常见的抽屉原理的应用场景:4.1. 数据库概念在数据库中,抽屉原理被应用于关系型模型的设计和查询优化。

关系型数据库的设计需要将数据存储在不同的表中,通过关系连接来实现数据的关联。

抽屉原理可以帮助我们确定存储数据的表结构,以及进行查询性能的优化。

4.2. 数学概念在数学中,抽屉原理经常被用于证明或推导数学定理。

例如,鸽巢原理可以用来证明素数的存在性,即任意大于1的整数集中,一定存在无穷多个素数。

4.3. 计算机科学在计算机科学中,抽屉原理常常被用于解决算法和数据结构中的问题。

例如,Hash函数中的哈希冲突问题是一个经典的抽屉原理应用。

当一组键被映射到有限的哈希表时,很可能会出现不同的键被映射到同一个槽位的情况。

4.4. 加密算法在加密算法中,抽屉原理被用于解决碰撞问题。

碰撞问题指的是存在不同的输入数据,但在加密过程中却生成相同的输出。

通过抽屉原理,我们可以证明在某种情况下,无论算法多么复杂,总会存在碰撞问题。

5. 总结抽屉原理是一种简单而强大的数学原理,通过它我们可以解决各种实际问题。

抽屉原理的定义是什么

抽屉原理的定义是什么

抽屉原理的定义是什么1. 引言抽屉原理(也被称为鸽笼原理)是一种基本的数学原理,它在各个领域都有广泛的应用。

在数学、计算机科学和其他一些领域,抽屉原理用于解决众多问题,特别是计数和概率问题。

本文将讨论抽屉原理的定义、原理以及其应用。

2. 抽屉原理的定义抽屉原理是指,当将n+1个物体放入n个抽屉中时,至少有一个抽屉里面会放有两个或两个以上的物体。

换句话说,如果有更多的物体要放入比抽屉数更少的抽屉中,那么至少会有一个抽屉中会有多个物体。

具体来说,假设有n个抽屉和m个物体,如果m > n,那么至少会有一个抽屉中有两个或两个以上的物体。

3. 抽屉原理的证明为了证明抽屉原理,我们可以采用反证法。

假设没有任何一个抽屉中放有两个或两个以上的物体,那么每个抽屉最多只能放一个物体。

如果有n个抽屉,那么最多只能放n个物体。

但是,假设我们有m > n个物体,这与前提矛盾。

因此,我们可以得出结论,至少会有一个抽屉中放有两个或两个以上的物体。

4. 抽屉原理的例子4.1 学生选择课程考虑一个学生选择课程的例子。

假设有10门课程和8名学生。

每个学生选择了至少一门课程。

根据抽屉原理,至少有一个学生选择了两门或两门以上的课程。

这是因为学生数(8)大于课程数(10)。

4.2 双生子生日问题另一个例子是双生子生日问题。

假设有365天,365个抽屉代表每一天,而抽屉里放置的是人的出生日期。

根据抽屉原理,当我们有至少366个人时,至少会有两个人在同一天出生。

这个问题揭示了在很小的数量下,会有出现概率较高的事件。

5. 抽屉原理的应用抽屉原理在计算机科学和数学中有广泛的应用。

以下是一些常见的应用:•密码学:在密码学中,抽屉原理用于解释概率分布和碰撞的概念。

它帮助我们理解两个不同的消息可能具有相同哈希值的概率。

•图论:在图论中,抽屉原理有助于解决图的着色问题。

根据抽屉原理,当要给少于或等于n个节点的图着色时,至少需要n种颜色。

•计算机算法:抽屉原理还用于处理算法设计中的情况,例如哈希冲突。

六年级数学下册抽屉原理1-ppt课件

六年级数学下册抽屉原理1-ppt课件

2020/2/11
例4 在一只口袋中有红色与黄色球各4只, 现有4个小朋友,每人可从口袋中随意取出2个 小球,请你证明必有两个小朋友,他们取出的 两个小球的颜色完全一样。 每个小朋友取出两种颜色的球的颜色组合只有3种可能:
2020/2/11
例6 从电影院中任意找来13个观众,至少 有两个人属相相同。
2020/2/11
思考 “六一”儿童节,很多小朋友到公园游园, 在 公园里他们各自遇到了许多熟人。 证明:在游园的小朋友中,至少有两个小朋友遇到的 熟人数目相等。
假设这次游园活动共有N个小朋友参加,我们 把他们看作是N个“苹果” ,再把每个小朋友看 到熟人的数目看作是“抽屉”那么每个小朋友遇 到的朋友数目共有以下N种可能:
2020/2/1/2/11
2020/2/11
2020/2/11
2020/2/11
抽屉原理
有m个物体,放进n个抽屉里去, 如果物体比抽屉多(m大于n),那么, 必有一个抽屉要放进两件或两件以
上的物体。
2020/2/11
鸽笼原理
2020/2/11
例1 三个小朋友同行,其中必有 两个小朋友性别相同。
0,1,2,3,…,N-1. 共有N个抽屉。
2020/2/11
分两种情况讨论: 1.如果在这N个小朋友中,有一些小朋友没有 遇到任何熟人,这时其它小朋友最多只能遇到N-2 个熟人,这们熟人的数目只有N-1种可能:
0,1,2,3, …,N-2.
这时,苹果数(N个小朋友)超过抽屉数(N-1个 熟人数),由抽屉原理可知,至少有两个小朋友,他 们遇到熟人的数目相等(即在同一个抽屉中).
2020/2/11
必须把题目中的一些条件 想成“抽屉”,并知道它的数 目,如上面例子中的小朋友 性别(2种)、一年的周数 (52周)、鸽笼(10个)等。

什么叫抽屉原理

什么叫抽屉原理

什么叫抽屉原理抽屉原理,又称鸽巢原理,是离散数学中的一个重要概念。

它在计算机科学、信息论、密码学等领域有着广泛的应用。

抽屉原理的核心思想是,如果有n个物品要放到m个抽屉里,且n大于m,那么至少有一个抽屉里会放多于一个物品。

抽屉原理最早的数学表述可以追溯到德国数学家Dirichlet提出的“鸽巢原理”,他认为如果有n只鸽子要放到m个巢里,且n大于m,那么至少有一个巢里会放多于一个鸽子。

这个概念后来被推广到了更一般的情况,即n个物品放到m个抽屉中。

抽屉原理的应用非常广泛。

在计算机科学中,抽屉原理被用来证明哈希算法的冲突不可避免,也被用来解决一些图论中的问题。

在信息论中,抽屉原理被用来证明数据压缩算法的存在性。

在密码学中,抽屉原理被用来分析密码学算法的安全性。

可以说,抽屉原理是离散数学中最基本的原理之一,它的重要性不言而喻。

抽屉原理的证明方法有很多种,其中比较直接的一种方法是采用反证法。

假设所有的抽屉里都放了不多于一个物品,然后根据n个物品和m个抽屉的关系,通过推理可以得出矛盾,从而证明了抽屉原理的成立。

除了直接的证明方法,抽屉原理还可以通过一些具体的例子来加深理解。

比如,假设有11个苹果要放到10个抽屉里,根据抽屉原理,至少有一个抽屉里会放多于一个苹果。

这个例子直观地展示了抽屉原理的成立。

在实际应用中,抽屉原理可以帮助我们解决一些实际问题。

比如,在生活中,如果有12个月要安排在10个月份里,那么至少会有一个月份有安排了多于一个的活动。

在排课的情况下,如果有11个学生要安排在10节课里,那么至少会有一节课有多于一个的学生安排在其中。

这些都是抽屉原理在实际生活中的应用。

总的来说,抽屉原理是离散数学中一个非常重要的概念,它在计算机科学、信息论、密码学等领域有着广泛的应用。

通过理论证明和具体例子的分析,我们可以更好地理解抽屉原理的内涵和应用,为我们在实际问题中的解决提供了有力的工具。

一、抽屉原理简介

一、抽屉原理简介

一、抽屉原理简介抽屉原理又称鸽巢原理,“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”原理1:把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。

原理2:把多于个kn物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。

原理3:无穷多个元素分成n个集合,则至少有一个集合中含有无穷多个元素。

在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。

现行的小学课本中只编排了抽屉原理1、2的教学。

二、运用抽屉原理解题的步骤第一步:分析题意。

分清什么是“东西”,什么是“抽屉”,也就是什么作“要分的物体”,什么可作“抽屉”。

第二步:制造抽屉。

这个是关键的一步,这一步就是如何设计抽屉。

根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用原理。

观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

三、理解抽屉原理要注意几点(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

四、教学建议1.应让学生初步经历“数学证明”的过程。

抽屉原理

抽屉原理

抽屉原理大家知道,两个抽屉要放置三只苹果,那么一定有两只苹果放在同一个抽屉里,更一般地说,只要被放置的苹果数比抽屉数目大,就一定会有两只或更多只的苹果放进同一个抽屉,可不要小看这个简单事实,它包含着一个重要而又十分基本的原则——抽屉原则.1.抽屉原则有几种最常见的形式原则1如果把n+k(k≥1)个物体放进n只抽屉里,则至少有一只抽屉要放进两个或更多个物体。

原则本身十分浅显,为了加深对它的理解,我们还是使用反证法给予证明;如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原则虽简单.巧妙地使用原则却可十分便利地解决一些看上去相当复杂、甚至感到无从下手的总是,比如说,我们能够断言在我国至少有两个人出生的时间相差不超过4秒钟,这是个惊人的结论,该是经过很多人的艰苦劳动,统计所得的吧!不,只须我们稍动手算一下:不妨假设人的寿命不超过4万天(约110岁,超过这个年龄数的人为数甚少),则,10亿人口安排在8亿6千4百万个“抽屉”里,根据原则1,即知结论成立.下面我们再举一个例子:例1幼儿园买来了很多白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.【解析】从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。

把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原则1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.原则2如果把mn+k(k≥1)个物体放进n个抽屉,则至少有一个抽屉至多放进m+1个物体.证明同原则相仿.若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.原则1可看作原则2的物例(m=1)例2正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 【解析】证明把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原则二,至少有三个面涂上相同的颜色.例3把1到10的自然数摆成一个圆圈,证明一定存有在个相邻的数,它们的和数大于17.【解析】如图所示,设分别代表不超过10的十个自然数,它们围成一个圈,三个相邻的数的组成是,,,共十组.现把它们看作十个抽屉,每a10a9a8a7a6a5a4a3a2a1个抽屉的物体数是,,,,,因为根据原则2,至少有一个括号内的三数和很多于17,即至少有三个相邻的数的和不小于17.原则1、原则2可归结到期更一般形式:原则3把个物体放入n个抽屉里,那么或在第一个抽屉里至少放入个物体,或在第二个抽屉里至少放入个物体,……,或在第n个抽屉里至少放入1个物体.【解析】假定第一个抽屉放入物体的数不超过个,第二个抽屉放入物体的数不超过个,……,第n个抽屉放入物体的个数不超过,那么放入所有抽屉的物体总数不超过个,与题设矛盾.例4 有红袜2双,白袜3双,黑袜4双,黄袜5双,蓝袜6双(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双.【解析】除可能取出红袜、白袜3双外.还至少从其它三种颜色的袜子里取出4双,根据原理3,必在黑袜或黄袜、蓝袜里取2双.上面数例论证的似乎都是“存有”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.需要说明的是,使用抽屉原则仅仅肯定了“存有”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存有多少.2.制造抽屉是使用原则的一大关键首先要指出的是,对于同一问题,常可依据情况,从不同角度设计抽屉,从而导致不同的制造抽屉的方式.例5在边长为1的正方形内,任意给定13个点,试证:其中必有4个点,以此4点为顶点的四边开面积不超过(假定四点在一直线上构成面积为零的四边形).【解析】如图(1)所示,把正方形分成四个相同的小正方形.因13=3×4+1,根据原则2,总有4点落在同一个小正方形内(或边界上),以此4点为顶点的四边形的面积不超过小正方形的面积,也就不超过整个正方形面积的.事实上,因为解决问题的核心在于将正方形分割成四个面积相等的部分,所以还能够把正方形按图(2)所示的形式分割.合理地制造抽屉必须建立在充分考虑问题自身特点的基础上.例6 在一条笔直的马路旁种树,从起点起,每隔一米种一棵树,如果把三块“爱护树木”的小牌分别挂在三棵树上,那么不管怎样挂,至少有两棵挂牌的树之间的距离是偶数(以米为单位),这是为什么?【解析】如图所示(设挂牌的三棵树依次为A 、B 、C.AB=a ,BC=b ,若a 、b 中有一为偶数,命题得证.否则a 、b 均为奇数,则AC=a+b 为偶数,命题得证.下面我们换一个角度考虑:给每棵树上编上号,于是两棵树之间的距离就是号码差,因为树的号码只能为奇数和偶数两类,那么挂牌的三棵树号码至少有两个同为奇数或偶数,它们的差必为偶数,问题得证.后一证明十分巧妙,通过编号码,将两树间距离转化为号码差.这种转化的思想方法是一种非常重要的数学方法 例7 从自然数1,2,3,…99,100这100个数中随意取出51个数来,求证:其中一定有两个数,,它们中的一个是另一个的倍数.图(2)图(1)b a C【解析】分析设法制造抽屉:(1)不超过50个;(2)每个抽屉的里的数(除仅有的一个外),其中一个数是另一个数的倍数,一个自然数的想法是从数的质因数表示形式入手.解设第一个抽屉里放进数:;第二个抽屉时放进数:;第三个抽屉里放进数:;………………第二十五个抽屉里放进数:;第二十六个抽屉里放进数:.………………第五十个抽屉里放进数:.那么随意取出51个数中,必有两个数同属一个抽屉,其中一个数是另一个数的倍数.制造抽屉并非总是一帆风顺的,有时要边制造边调整、改进.例8 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.【解析】分析注意到这些数队以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,仅仅仅有7个自然数,似不便使用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.3.较复杂的问题须反复地使用抽屉原则,将复杂问题转化为简单问题.例9以(x,y,z)表示三元有序整数组,其中x、y、z为整数,试证:在任意七个三元整数组中,至少有两个三元数组,它们的x、y、z元中有两对都是奇数或都是偶数.【解析】设七个三元素组为、、…、.现在逐步探索,从x元开始,由抽屉原则,,,…,这七个数中,必定有四个数具有相同的奇偶性,不妨设这四个数是,且为偶数,接着集中考虑这四组数的y元,若比如,中有两个是偶数,则问题已证,否则至多有一个是偶数,比如是偶数,这时我们再来集中考虑3的z元.在中,由抽屉原则必有两个数具有相同的奇偶性,如,这时无论它们是奇数,还是偶数,问题都已得到证明.下面介绍一个著名问题.例10任选6人,试证其中必有3人,他们互相理解或都不理解.【解析】用A、B、C、D、E、F表示这6个人,首先以A为中心考虑,他与另外五个人B、C、D、E、F只有两种可能的关系:理解或不理解,那么由抽屉原则,他必定与其中某三人理解或不理解,现不妨设A理解B、C、D三人,当B、C、D三人都互不理解时,问题得证;当B、C、D三人中有两人理解,如B、C理解时,则A、B、C互相理解,问题也得证.本例和上例都采用了舍去保留、化繁为简、逐步缩小考虑范围的方法.例11为四个任意给定的整数,求证:以下六个差数的乘积一定能够被12整除.【解析】把这6个差数的乘积记为p,我们必须且只须证明:3与4都能够整除p,以下分两步实行.第一步,把a,b,c,d按以3为除数的余数来分类,这样的类只有三个,故知a,b,c,d中至少有2个除以3的余数相同,例如,不妨设为a,b,这时3可整除b-a,从而3可整除p.第二步,再把a,b,c,d按以4为除数的余数来分类,这种类至多只有四个,如果a,b,c,d中有二数除以4的余数相同,那么与第一步类似,我们立即可作出4可整除p的结论.设a,b,c,d四数除以4的余数不同,由此推知,a,b,c,d之中必有二个奇数(不妨设为a,b),也必有二个偶数(设为c,d),这时b-a为偶数,d-c也是偶数,故4可整除(b-a)(d-c),自然也可得出4可整除p.如果能进一步灵活使用原则,不但制造抽屉,还根据问题的特征,制造出放进抽屉的物体,则更可收到意想不到的效果.例12求证:从任意n个自然数a1,a2,…,a n中能够找到若干个数,使它们的和是n的倍数.【解析】分析以0,1,…,n-1即被n除的余数分类制造抽屉的合理的,但把什么样的数作为抽屉里的物体呢?扣住“和”,构造下列和数:,其中任意两个和数之差仍为和数,若他们之中有一是n的倍数,问题得证,否则至少有两个数被n除余数相同,则它们的差即它们中若干数(包括1个)的和是n的倍数,问题同样得证.例子13910瓶红、蓝墨水,排成130行,每行7瓶,证明:不论怎样排列,红蓝墨水瓶的颜色次序必定出现下述两种情况之一种:(1)至少有三行完全相同;(2)至少有两组(四行)每组的两行完全相同.【解析】910瓶红、蓝墨水排成130行,每行7瓶,对一行来说,每个位置上有红蓝两种可能,所以,一行的红、蓝墨水排法有27=128种,对每一种不同排法设为一种“行式”,共有128种行式.现有130行,在其中任取129行,依抽屉原则知,必有两行A、B行式相同.除A、B外余下128行,若有一行P与A行式相同,知满足(1)至少有三行A、B、P完全相同,若在这128行中设直一行5A行或相同,那么这128行至多有127种行式,依抽屉原则,必有两行C、D具有相同行式,这样便找到了(A、B),(C、D)两组(四行),且两组两行完全相同.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档