2019年云南省数学中学考试精彩试题
云南省2019年中考数学试卷及答案解析(word版)

云南省中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=.3.因式分解:x2﹣1=.4.若一个多边形的边数为6,则这个多边形的内角和为720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体10.下列计算,正确的是()A.(﹣2)﹣2=4 B.C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为()A.15 B.10 C.D.5三.解答题(共9个小题,共70分)15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.2016年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=3.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=60°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.4.若一个多边形的边数为6,则这个多边形的内角和为720度.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°(6﹣2)=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解本题的关键是熟记多边形的内角和公式.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2.【考点】根的判别式.【分析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【分析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录(2016版)的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体【考点】由三视图判断几何体.【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选C.【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.下列计算,正确的是()A.(﹣2)﹣2=4 B.C.46÷(﹣2)6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、(﹣2)﹣2=,所以A错误,B、=2,所以B错误,C、46÷(﹣2)6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,故选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【分析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为:=49;平均数==48.6,方差=[(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;∴选项A正确,B、C、D错误;故选:A.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.13.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为()A.15 B.10 C.D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题(共9个小题,共70分)15.解不等式组.【考点】解一元一次不等式组.【分析】分别解得不等式2(x+3)>10和2x+1>x,然后取得这两个不等式解的公共部分即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【分析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A 种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数,即可求出tan∠DBC的值;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解本题的关键.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)∵喜欢篮球的人数有25人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;(3)由已知得,1200×20%=240(人).答;该校约有240人喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE 是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S 扇形OBC =×π×OC 2=,∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=8﹣,∴阴影部分的面积为8﹣.【点评】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC ⊥DE ,解(2)的关键是求出扇形OBC 的面积,此题难度一般.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P . 【考点】列表法与树状图法.【分析】(1)首先根据题意画出表格,然后由表格求得所有等可能的结果; (2)根据概率公式进行解答即可. 【解答】解:(1)列表得:1 2 3 4 1 2 3 4 5 2 3 4 5 6 345674 5 6 7 8(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.(12分)(2016•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【分析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:(1)由题意知第5个数a==﹣;(2)∵第n个数为,第(n+1)个数为,∴+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】本题主要考查分式的混合运算及数字的变化规律,根据已知规律=﹣得到﹣=<<=﹣是解题的关键.。
2019年云南省中考数学试卷-答案

云南省2019年初中学业水平考试数学答案解析一、填空题 1.【答案】6-【解析】零上记为正数,则零下记为负数,故答案为6-. 【考点】正负数表示两个相反意义的量. 2.【答案】2(1)x -【解析】222211(1)x x x -+=-,故答案为2(1)x -. 【考点】分解因式. 3.【答案】140【解析】∵AB CD ∥,∴同位角相等,∴1∠与2∠互补,∴218040140∠=-=,故答案为140. 【考点】平行线的性质,平角的意义. 4.【答案】15【解析】∵点(3,5)在反比例函数k y x =上,∴53k=,∴3515k =⨯=. 【考点】反比例函数的性质. 5.【答案】甲班【解析】由频数分布直方图知D 等级的人数为13人,由扇形统计图知D 等级的人数为4030%12⨯=,∴D 等级较多的人数是甲班,故答案为甲班. 【考点】统计图的应用.6.【答案】【解析】过点D 作DE AB ⊥于E ,∵30A ∠=,∴sin3023DEAD ==cos306AE AD ==,在Rt DBE △中,2BE =,∴8AB AE BE =+=,或4AB AE BE =-=,∴平行四边形ABCD 的面积为8⨯=4⨯=故答案为 【考点】平行四边形的性质,特殊角的三角函数,勾股定理. 二、选择题 7.【答案】B【解析】根据轴对称和中心对称定义可知,A 选项是轴对称,B 选项既是轴对称又是中心对称,C 选项是轴对称,D 选项是轴对称图形,故选B .【考点】轴对称图形和中心对称图形的概念.8.【答案】C【解析】科学记数法较大数10N a ⨯,其中110a ≤<,N 为小数点移动的位数.∴ 6.88,5a N ==,故选C . 【考点】科学记数法. 9.【答案】D【解析】多边形内角和公式为(2)180n -⨯,其中n 为多边形的边的条数.∴十二边形内角和为(122)1801800-⨯=,故选D . 【考点】多边形的内角和公式. 10.【答案】B,则被开方数1x +要为非负数,即10x +≥,∴1x -≥,故选B . 【考点】二次根式有意义的条件. 11.【答案】A【解析】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴2π8πr =,∴4r =,圆锥的全面积等于2ππ16π32π48πS S rl r +=+=+=侧底,故选A . 【考点】圆锥的侧面展开图,圆锥的全面积. 12.【答案】C【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n +,故选C . 【考点】探索规律. 13.【答案】A【解析】∵5AB =,13BC =,12CA =,∴222AB AC BC +=,∴ABC △为直角三角形,且90A ∠=,∵O为ABC △内切圆,∴90AFO AEO ∠=∠=,且AE AF =,∴四边形AEOF 为正方形,设O 的半径为r ,∴OE OF r ==,∴2AEOF S r =四边形,连接AO ,BO ,CO ,∴ABC AOB AOC BOC S S S S =++△△△△,∴1()2AB AC BC ++12AB AC =,∴2r =,∴24AEOF S r ==四边形,故选A . 【考点】勾股定理逆定理,正方形的判定与性质,切线长定理,解方程组. 14.【答案】D【解析】解不等式组得2x >,x a >,根据同大取大的求解集的原则,∴2a >,当2a =时,也满足不等式的解集为2x >,∴2a ≥,故选D . 【考点】解不等式组. 三、解答题15.【答案】解:9121=+--原式7=【解析】解:9121=+--原式7=【考点】实数的运算.16.【答案】证明:在ABC △和ADC △中,∵,,,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴()SSS ABC ADC △≌△. ∴B D ∠=∠.【解析】证明:在ABC △和ADC △中,∵,,,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴()SSS ABC ADC △≌△. ∴B D ∠=∠.【考点】全等三角形的判定及性质.17.【答案】(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90; (2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.【解析】(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90; (2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 【考点】统计的综合应用.18.【答案】解:设甲校师生所乘大巴车的平均速度为x km /h ,则乙校师生所乘大巴车的平均速度为1.5x km /h .根据题意得24027011.5x x-=. 解得60x =,经检验,60x =是原分式方程的解. ∴60x =,1.590x =.答:甲、乙两校师生所乘大巴车的平均速度分别为60 km /h 和90 km /h .【解析】解:设甲校师生所乘大巴车的平均速度为x km /h ,则乙校师生所乘大巴车的平均速度为1.5x km /h .根据题意得24027011.5x x-=. 解得60x =,经检验,60x =是原分式方程的解. ∴60x =,1.590x =.答:甲、乙两校师生所乘大巴车的平均速度分别为60 km /h 和90 km /h . 【考点】列分式方程解应用题.19.【答案】解:(1)方法一:列表法如下:(),x y 所有可能出现的结果共有16种.方法二:树形图(树状图)法如下:(),x y 所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等. ∵x y +为奇数的有8种情况,∴81()162P ==甲获胜. ∵x y +为偶数的有8种情况,∴81()162P ==乙获胜. ∴()()P P =甲获胜乙获胜.∴这个游戏对双方公平.【解析】解:(1)方法一:列表法如下:(),x y 所有可能出现的结果共有16种.方法二:树形图(树状图)法如下:(),x y 所有可能出现的结果共有16种.(2)这个游戏对双方公平.理由如下:由列表法或树状图法可知,在16种可能出现的结果中,它们出现的可能性相等. ∵x y +为奇数的有8种情况,∴81()162P ==甲获胜. ∵x y +为偶数的有8种情况,∴81()162P ==乙获胜. ∴()()P P =甲获胜乙获胜. ∴这个游戏对双方公平. 【考点】求随机事件的概率.20.【答案】解:(1)证明:∵AO OC =,BO OD =, ∴四边形ABCD 是平行四边形.又∵2AOB OAD ∠=∠,AOB ∠是AOD △的外角, ∴AOB OAD ADO ∠=∠+∠. ∴OAD ADO ∠=∠. ∴AO OD =.又∵2AC AO OC AO =+=,2BD BO OD OD =+=, ∴AC BD =.∴四边形ABCD 是矩形.(2)解:设4AOB x ∠=,3ODC x ∠=,则3ODC OCD x ∠=∠=. 在ODC △中,180DOC OCD CDO ∠+∠+∠=. ∴433180x x x ++=,解得18x =. ∴31854ODC ∠=⨯=.∴90905436ADO ODC ∠=-∠=-=. 【解析】解:(1)证明:∵AO OC =,BO OD =, ∴四边形ABCD 是平行四边形.又∵2AOB OAD ∠=∠,AOB ∠是AOD △的外角, ∴AOB OAD ADO ∠=∠+∠. ∴OAD ADO ∠=∠. ∴AO OD =.又∵2AC AO OC AO =+=,2BD BO OD OD =+=, ∴AC BD =.∴四边形ABCD 是矩形.(2)解:设4AOB x ∠=,3ODC x ∠=,则3ODC OCD x ∠=∠=. 在ODC △中,180DOC OCD CDO ∠+∠+∠=. ∴433180x x x ++=,解得18x =. ∴31854ODC ∠=⨯=.∴90905436ADO ODC ∠=-∠=-=.【考点】矩形的判定与性质,三角形外角的性质,等腰三角形的判定,三角形的内角和定理. 21.【答案】解:(1)∵抛物线223)6(y x k k x k =++-+的对称轴是y 轴,∴2602k k x +-=-=,即260k k +-=.解得3k =-或2k =.当2k =时,二次函数解析式为26y x =+,它的图象与x 轴无交点,不满足题意,舍去. 当3k =-时,二次函数解析式为29y x =-,它的图象与x 轴有两个交点,满足题意. ∴3k =-.(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为2-或2. 当2x =时,5y =-; 当2x =-时,5y =-.∴点P 的坐标为(2,)5-或(2,5)--.【解析】解:(1)∵抛物线223)6(y x k k x k =++-+的对称轴是y 轴,∴2602k k x +-=-=,即260k k +-=.解得3k =-或2k =.当2k =时,二次函数解析式为26y x =+,它的图象与x 轴无交点,不满足题意,舍去. 当3k =-时,二次函数解析式为29y x =-,它的图象与x 轴有两个交点,满足题意. ∴3k =-.(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为2-或2. 当2x =时,5y =-; 当2x =-时,5y =-.∴点P 的坐标为(2,)5-或(2,5)--. 【考点】二次函数的图象与性质.22.【答案】解:(1)当610x ≤≤时,由题意设()0y kx b k =+≠,它的图象经过点(6,1000)与点(10,200).∴10006,20010,k b k b =+⎧⎨=+⎩解得200,2200,k b =-⎧⎨=⎩当1012x <≤时,200y =.答:y 与x 的函数解析式为2002200,610,200,1012.x x y x -+⎧=⎨⎩≤≤<≤(2)当610x ≤≤时,2002200y x =-+, 266200220017()()()200()12502W x y x x x =-=--+=-+- ∵2000-<,610x ≤≤, 当172x =时,W 最大,且W 的最大值为1 250. 当1012x <≤时,200y =,6200(6200120()0)W x y x x =-=-=-. ∵2000>,∴2001200W x =-随x 增大而增大.又∵1012x <≤, ∴当12x =时,W 最大,且W 的最大值为1 200. ∵12501200>, ∴W 的最大值为1 250.答:这一天销售西瓜获得利润的最大值为1 250元.【解析】解:(1)当610x ≤≤时,由题意设()0y kx b k =+≠,它的图象经过点(6,1000)与点(10,200).∴10006,20010,k b k b =+⎧⎨=+⎩解得200,2200,k b =-⎧⎨=⎩当1012x <≤时,200y =.答:y 与x 的函数解析式为2002200,610,200,1012.x x y x -+⎧=⎨⎩≤≤<≤(2)当610x ≤≤时,2002200y x =-+,266200220017()()()200()12502W x y x x x =-=--+=-+- ∵2000-<,610x ≤≤, 当172x =时,W 最大,且W 的最大值为1 250. 当1012x <≤时,200y =,6200(6200120()0)W x y x x =-=-=-. ∵2000>,∴2001200W x =-随x 增大而增大. 又∵1012x <≤,∴当12x =时,W 最大,且W 的最大值为1 200. ∵12501200>, ∴W 的最大值为1 250.答:这一天销售西瓜获得利润的最大值为1 250元. 【考点】函数的综合应用.23.【答案】解:(1)证明:2DE DB DA =, ∴DE DBDA DE=. 又∵BDE EDA ∠=∠, ∴DEB DAE △∽△.(2)∵AB 是C 的直径,E 是C 上的点, ∴90AEB ∠=,即BE AF ⊥. 又∵AE EF =,10BF =, ∴10AB BF ==.∴DEB DAE △△,os 5c BED ∠=, ∴EAD BED ∠=∠,cos cos 45EAD BED ∠=∠=. 在Rt ABE △中,由于10AB =,4os 5c EAD ∠=,得cos 8AE AB EAD =∠=,∴6BE =. ∴DEB DAE △∽△, ∴6384DE DB EB DA DE AE ====. ∵10DB DA AB DA =-=-,∴341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩,经检验,16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩是341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩的解.∴16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩.(3)解:连接FM .∵BE AF ⊥,即90BEF ∠=,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上, ∴点M 在以BF 为直径的圆上. ∴FM AB ⊥.在Rt AMF △中,由cos FAM AF∠=得, cos 2co 46455s 28AM AF FAM AE EAB =∠=∠==⨯⨯. ∴160643527535MD DA AM -==-=. ∴35235MD =. 【解析】解:(1)证明:2DE DB DA =, ∴DE DBDA DE=. 又∵BDE EDA ∠=∠, ∴DEB DAE △∽△.(2)∵AB 是C 的直径,E 是C 上的点, ∴90AEB ∠=,即BE AF ⊥. 又∵AE EF =,10BF =, ∴10AB BF ==.∴DEB DAE △△,4os 5c BED ∠=, ∴EAD BED ∠=∠,cos cos 45EAD BED ∠=∠=. 在Rt ABE △中,由于10AB =,4os 5c EAD ∠=,得cos 8AE AB EAD =∠=,∴6BE =. ∴DEB DAE △∽△, ∴6384DE DB EB DA DE AE ====. ∵10DB DA AB DA =-=-,∴341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩,11 / 11经检验,16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩是341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩的解. ∴16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩. (3)解:连接FM .∵BE AF ⊥,即90BEF ∠=,∴BF 是B 、E 、F 三点确定的圆的直径.∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上,∴点M 在以BF 为直径的圆上.∴FM AB ⊥.在Rt AMF △中,由cos FAM AM AF∠=得, cos 2co 46455s 28AM AF FAM AE EAB =∠=∠==⨯⨯. ∴160643527535MD DA AM -==-=. ∴35235MD =. 【考点】相似三角形的判定与性质,圆的性质,等腰三角形的判定,锐角三角函数,勾股定理.。
2019年云南省中考数学试卷

2019年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1. 若零上8∘C记作+8∘C,则零下6∘C记作________∘C.【答案】−6【考点】正数和负数的识别【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】根据正数和负数表示相反的意义,可知如果零上8∘C记作+8∘C,那么零下6∘C记作−6∘C.2. 分解因式:x2−2x+1=________.【答案】(x−1)2【考点】因式分解-运用公式法【解析】直接利用完全平方公式分解因式即可.【解答】x2−2x+1=(x−1)2.3. 如图,若AB // CD,∠1=40度,则∠2=________度.【答案】140【考点】平行线的性质【解析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答】∵AB // CD,∠1=40∘,∴∠3=∠1=40∘,∴∠2=180∘−∠3=180∘−40∘=140∘.(k≠0)的图象上,则k=________.4. 若点(3, 5)在反比例函数y=kx【答案】15反比例函数图象上点的坐标特征【解析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(k≠0)即可.(3, 5)代入反比例函数y=kx【解答】,解:把点(3, 5)的横纵坐标代入反比例函数y=kx得:k=3×5=15.故答案为:15.5. 某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是________.【答案】甲班【考点】扇形统计图频数(率)分布直方图【解析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答】由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;6. 在▱ABCD中,∠A=30∘,AD=4√3,BD=4,则▱ABCD的面积等于________.【答案】16√3或8√3【考点】平行四边形的性质【解析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.解:过D 作DE ⊥AB 于E , 在Rt △ADE 中,∵ ∠A =30∘,AD =4√3,∴ DE =12AD =2√3,AE =√32AD =6,在Rt △BDE 中, ∵ BD =4,∴ BE =√BD 2−DE 2=√42−(2√3)2=2, 如图1,∴ AB =8,∴ 平行四边形ABCD 的面积=AB ⋅DE =8×2√3=16√3, 如图2,AB =4,∴ 平行四边形ABCD 的面积=AB ⋅DE =4×2√3=8√3. 故答案为:16√3或8√3.二、选择题(本大题共8小题,每小题4分,共32分)下列图形既是轴对称图形,又是中心对称图形的是( ) A.B.C.D.【答案】 B【考点】 中心对称图形 轴对称图形 【解析】根据轴对称图形与中心对称图形的概念求解. 【解答】A 、∵ 此图形旋转180∘后不能与原图形重合,∴ 此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180∘后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180∘后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180∘后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【答案】C【考点】科学记数法–表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】将688000用科学记数法表示为6.88×105.一个十二边形的内角和等于()A.2160∘B.2080∘C.1980∘D.1800∘【答案】D【考点】多边形内角与外角【解析】n边形的内角和是(n−2)⋅180∘,把多边形的边数代入公式,就得到多边形的内角和.【解答】十二边形的内角和等于:(12−2)⋅180∘=1800∘;有意义,则x的取值范围为()要使√x+12A.x≤0B.x≥−1C.x≥0D.x≤−1【答案】B【考点】二次根式有意义的条件【解析】要根式有意义,只要令x+1≥0即可【解答】要使根式有意义则令x+1≥0,得x≥−1一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【答案】A【考点】圆锥的计算【解析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】侧面积是:12πr2=12×π×82=32π,底面圆半径为:2π×82÷2π=4,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.按一定规律排列的单项式:x3,−x5,x7,−x9,x11,……,第n个单项式是()A.(−1)n−1x2n−1 B.(−1)n x2n−1C.(−1)n−1x2n+1D.(−1)n x2n+1【答案】C【考点】规律型:图形的变化类规律型:点的坐标单项式的概念的应用规律型:数字的变化类【解析】观察指数规律与符号规律,进行解答便可.【解答】∵x3=(−1)1−1x2×1+1,−x5=(−1)2−1x2×2+1,x7=(−1)3−1x2×3+1,−x9=(−1)4−1x2×4+1,x11=(−1)5−1x2×5+1,……由上可知,第n个单项式是:(−1)n−1x2n+1,如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.9【答案】A【考点】切线的性质三角形的内切圆与内心 勾股定理的逆定理 扇形面积的计算 【解析】利用勾股定理的逆定理得到△ABC 为直角三角形,∠A =90∘,再利用切线的性质得到OF ⊥AB ,OE ⊥AC ,所以四边形OFAE 为正方形,设OE =AE =AF =r ,利用切线长定理得到BD =BF =5−r ,CD =CE =12−r ,所以5−r +12−r =13,然后求出r 后可计算出阴影部分(即四边形AEOF )的面积. 【解答】∵ AB =5,BC =13,CA =12, ∴ AB 2+CA 2=BC 2,∴ △ABC 为直角三角形,∠A =90∘, ∵ AB 、AC 与⊙O 分别相切于点E 、F ∴ OF ⊥AB ,OE ⊥AC , ∴ 四边形OFAE 为正方形, 设OE =r ,则AE =AF =r ,∵ △ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F , ∴ BD =BF =5−r ,CD =CE =12−r , ∴ 5−r +12−r =13, ∴ r =5+12−132=2,∴ 阴影部分(即四边形AEOF )的面积是2×2=4.若关于x 的不等式组{2(x −1)>2,a −x <0的解集是x >a ,则a 的取值范围是( )A.a <2B.a ≤2C.a >2D.a ≥2 【答案】 D【考点】解一元一次不等式组 【解析】根据不等式组的解集的概念即可求出a 的范围. 【解答】解关于x 的不等式组{2(x −1)>2,a −x <0 得{x >2x >a ∴ a ≥2三、解答题(本大共9小题,共70分)计算:32+(π−5)0−√4+(−1)−1. 【答案】原式=9+1−2−1=10−3=7. 【考点】零指数幂、负整数指数幂 零指数幂 实数的运算 【解析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有 数的加减运算便可.【解答】原式=9+1−2−1=10−3=7.如图,AB=AD,CB=CD.求证:∠B=∠D.【答案】证明:在△ABC和△ADC中,{AB=ADCB=CDAC=AC,∴△ABC≅△ADC(SSS),∴∠B=∠D.【考点】全等三角形的性质与判定【解析】由SSS证明△ABC≅△ADC,得出对应角相等即可.【解答】证明:在△ABC和△ADC中,{AB=ADCB=CDAC=AC,∴△ABC≅△ADC(SSS),∴∠B=∠D.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【答案】=278(件),这15名营业员该月销售量数据的平均数=1770+480+220×3+180×3+120×3+90×415中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,月销售量大于和等于180的人数超过一半,所以中位数最适合作为月销售目标,有一半以上的营业员能达到销售目标.【考点】众数加权平均数中位数【解析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】=278(件),这15名营业员该月销售量数据的平均数=1770+480+220×3+180×3+120×3+90×415中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,月销售量大于和等于180的人数超过一半,所以中位数最适合作为月销售目标,有一半以上的营业员能达到销售目标.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【答案】甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时【考点】分式方程的应用【解析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:240x −2701.5x=1,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x, y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【答案】共有16种等可能的结果数;x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率=816=12,乙获胜的概率=816=12,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【考点】列表法与树状图法游戏公平性【解析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】共有16种等可能的结果数;x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率=816=12,乙获胜的概率=816=12,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【答案】证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;∵四边形ABCD是矩形,∴AB // CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54∘,∵∠BAD=90∘,∴∠ADO=90∘−54∘=36∘.【考点】全等三角形的性质与判定矩形的判定与性质【解析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB // CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54∘,于是得到结论.【解答】证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;∵四边形ABCD是矩形,∴AB // CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54∘,∵∠BAD=90∘,∴∠ADO=90∘−54∘=36∘.已知k是常数,抛物线y=x2+(k2+k−6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k−6)x+3k上,且P到y轴的距离是2,求点P的坐标.【答案】∵抛物线y=x2+(k2+k−6)x+3k的对称轴是y轴,∴k2+k−6=0,解得k1=−3,k2=2;又∵抛物线y=x2+(k2+k−6)x+3k与x轴有两个交点.∴3k<0∴k=−3.此时抛物线的关系式为y=x2−9,因此k的值为−3.∵点P在抛物线y=x2−9上,且P到y轴的距离是2,∴点P的横坐标为2或−2,当x=2时,y=−5当x=−2时,y=−5.∴P(2, −5)或P(−2, −5)因此点P的坐标为:P(2, −5)或P(−2, −5).【考点】二次函数图象上点的坐标特征二次函数的性质抛物线与x轴的交点【解析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或−2,求相应的y的值,确定点P的坐标.【解答】∵抛物线y=x2+(k2+k−6)x+3k的对称轴是y轴,∴k2+k−6=0,解得k1=−3,k2=2;又∵抛物线y=x2+(k2+k−6)x+3k与x轴有两个交点.∴3k<0∴k=−3.此时抛物线的关系式为y=x2−9,因此k的值为−3.∵点P在抛物线y=x2−9上,且P到y轴的距离是2,∴点P的横坐标为2或−2,当x=2时,y=−5当x=−2时,y=−5.∴P(2, −5)或P(−2, −5)因此点P的坐标为:P(2, −5)或P(−2, −5).某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.【答案】当6≤x ≤10时,设y 与x 的关系式为y =kx +b(k ≠0)根据题意得{1000=6k +b 200=10k +b ,解得{k =−200b =2200∴ y =−200x +2200当10<x ≤12时,y =200故y 与x 的函数解析式为:y ={−200x +2200,(6≤x ≤10)200,(10<x ≤12)由已知得:W =(x −6)y当6≤x ≤10时,W =(x −6)(−200x +2200)=−200(x −172)2+1250 ∵ −200<0,抛物线的开口向下∴ x =172时,取最大值,∴ W =1250当10<x ≤12时,W =(x −6)⋅200=200x −1200∵ y 随x 的增大而增大∴ x =12时取得最大值,W =200×12−1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【考点】二次函数的应用【解析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y 与x 的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.【解答】当6≤x ≤10时,设y 与x 的关系式为y =kx +b(k ≠0)根据题意得{1000=6k +b 200=10k +b ,解得{k =−200b =2200∴ y =−200x +2200当10<x ≤12时,y =200故y 与x 的函数解析式为:y ={−200x +2200,(6≤x ≤10)200,(10<x ≤12)由已知得:W =(x −6)y当6≤x ≤10时,W =(x −6)(−200x +2200)=−200(x −172)2+1250∵ −200<0,抛物线的开口向下∴ x =172时,取最大值,∴ W =1250当10<x ≤12时,W =(x −6)⋅200=200x −1200∵ y 随x 的增大而增大∴ x =12时取得最大值,W =200×12−1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.如图,AB 是⊙O 的直径,M 、D 两点在AB 的延长线上,E 是⊙C 上的点,且DE 2=DB ⋅DA ,延长AE 至F ,使得AE =EF ,设BF =10,cos∠BED =45.(1)求证:△DEB ∽△DAE ;(2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.【答案】∵ ∠D =∠D ,DE 2=DB ⋅DA ,∴ △DEB ∽△DAE ;∵ △DEB ∽△DAE ,∴ ∠DEB =∠DAE =α,∵ AB 是直径,∴ ∠AEB =90∘,又AE =EF , ∴ AB =BF =10,∴ ∠BFE =∠BAE =α,则BF ⊥ED 交于点H ,∵ cos∠BED =45,则BE =6,AE =8∴ ED DA =EB AE =DB ED ,即:ED 10+BD =68=BD DE ,解得:BD =907,DE =1207, 则AD =AB +BD =1607, ED =1207;点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF ,∵ BF ⊥ED ,∠BMF =90∘,∴ ∠MFB =∠D =β,在△BED 中,过点B 作HB ⊥ED 于点H ,设HD =x ,则EH =1207−x , 则36−(1207−x)2=(907)2−x 2,解得:x =43235, 则cosβ=x907=2425,则sinβ=725, MB =BFsinβ=10×725=145, DM =BD −MB =35235.【考点】圆与相似的综合圆与圆的综合与创新圆与函数的综合【解析】(1)∠D =∠D ,DE 2=DB ⋅DA ,即可求解;(2)由ED DA =EB AE =DB ED ,即:ED 10+BD =68=BD DE ,即可求解; (3)在△BED 中,过点B 作HB ⊥ED 于点H ,36−(1207−x)2=(907)2−x 2,解得:x =43235,则cosβ=x 907=2425,即可求解. 【解答】∵ ∠D =∠D ,DE 2=DB ⋅DA ,∴ △DEB ∽△DAE ;∵ △DEB ∽△DAE ,∴ ∠DEB =∠DAE =α,∵ AB 是直径,∴ ∠AEB =90∘,又AE =EF , ∴ AB =BF =10,∴ ∠BFE =∠BAE =α,则BF ⊥ED 交于点H , ∵ cos∠BED =45,则BE =6,AE =8∴ ED DA =EB AE =DB ED ,即:ED 10+BD =68=BD DE ,解得:BD =907,DE =1207, 则AD =AB +BD =1607,ED=1207;点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90∘,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=1207−x,则36−(1207−x)2=(907)2−x2,解得:x=43235,则cosβ=x907=2425,则sinβ=725,MB=BFsinβ=10×725=145,DM=BD−MB=35235.。
2019年云南省中考数学试卷附分析答案

19.(7 分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为 1,2,3, 4 的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口 袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标 号分别用 x、y 表示.若 x+y 为奇数,则甲获胜;若 x+y 为偶数,则乙获胜. (1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出 现的结果总数; (2)你认为这个游戏对双方公平吗?请说明理由.
BC=13,CA=12,则阴影部分(即四边形 AEOF)的面积是( )
A.4
B.6.25
C.7.5
D.9
14.(4 分)若关于 x 的不等式组
.
5
r>
, 的解集是 x>a,则 a 的取值范围是(
)
5<
A.a<2
B.a≤2
C.a>2
三、解答题(本大共 9 小题,共 70 分) 15.(6 分)计算:32+(x﹣5)05 Ā(﹣1)﹣1.
∴DE AD=2 ,AE AD=6, 在 Rt△BDE 中,∵BD=4,
∴BE
5
5 . r 2,
如图 1,∴AB=8,
∴平行四边形 ABCD 的面积=AB•DE=8×2 如图 2,AB=4,
云南省初中学业水平考试数学精彩试题卷(含问题详解解析汇报)

合用标准文档2019 年云南省初中学业水平考试数学试卷一、填空题(本大题共 6 小题,每题 3 分,共 18 分)1.若零上 8℃记作 +8℃,则零下 6℃记作℃.A1B 2﹣2x+1=2.分解因式: x.23.如图,若 AB∥ CD,∠ 1= 40 度,C D 则∠ 2=度.4.若点( 3, 5)在反比率函数y kk=.( k≠ 0)的图象上,则x5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40 人,每个班的考试成绩分为 A、 B、C、D 、 E 五个等级,绘制的统计图如图:甲班数学成绩频数分布直方图乙班数学成绩扇形统计图人数1312C B35%10%8 A 5%5D E30%20%2O A BCDE等级依照以上统计图供应的信息,则 D 等级这一组人数很多的班是.6.在平行四边形 ABCD 中,∠ A= 30°,AD=4 3 ,BD=4,则平行四边形ABCD 的面积等于.二、选择题(本大题共8 小题,每题 4 分,共 32 分)7.以下列图形既是轴对称图形,又是中心对称图形的是()A .B.C.D.8.2019 年“五一”期间,某景点款待国内外游客共688000 人次, 688000 这个数用科学记数法表示为()A .4B.6C.5D.6×10× 10× 10× 109.一个十二边形的内角和等于()A . 2160°B. 2080°C. 1980°D. 1800°10.要使x 1有意 , x 的取 范 ()2A . x ≤ 0B . x ≥ 1C . x ≥0D . x ≤ 111.一个 的 面张开 是半径8 的半 , 的全面 是()A . 48πB . 45πC . 36πD . 32π12.按必然 律排列的 式:35 7 911)x , x, x , x , x ,⋯⋯,第 n 个 式是(A .( 1) n ﹣ 1 2n ﹣ 1n 2n ﹣1xB .( 1) xC .( 1)n ﹣1 2n+1n 2n+1xD .( 1) x13.如 ,△ ABC 的内切 ⊙ O 与 BC 、CA 、AB 分 相切于点D 、E 、F ,且 AB = 5, BC = 13, CA =12, 阴影部分(即四 形 AEOF )的面 是()AEA . 4FB .OC .D . 9BDC2( x 1) 214.若关于 x 的不等式x 0,的解集是 x > a , a 的取 范 是()aA . a < 2B . a ≤ 2C . a > 2D . a ≥2三、解答 (本大共9 小 ,共 70 分)15.( 6 分) 算: 324 +( 1) ﹣1.+( π 5)16.( 6 分)如 , AB = AD , CB = CD .求 :∠ B =∠ D .ABDC17.( 8 分)某公司销售部有营业员15 人,该公司为了调动营业员的积极性,决定推行目标管理,依照目标完成的情况对营业员进行适合的奖励,为了确定一个适合的月销售目标,公司相关部门统计了这 15 人某月的销售量,以下表所示:月销售量 /件数177048022018012090人数113334( 1)直接写出这15 名营业员该月销售量数据的平均数、中位数、众数;( 2)若是想让一半左右的营业员都能达到月销售目标,你以为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明原由.温馨提示:确定一个适合的月销售目标是一个要点问题,若是目标定得太高,多数营业员完不行任务,会使营业员失去信心;若是目标定得太低,不能够发挥营业员的潜力.18.( 6 分)为进一步创建扫黑除恶专项斗争的浓厚宣传氛围,推进安全校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240 千米和 270 千米的两地同时出发,前往“研学教育”基地张开扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的 1.5 倍,甲校师生比乙校师生晚 1 小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.( 7 分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4 的四个小球(除标号外无其他差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y 表示.若 x+y 为奇数,则甲获胜;若x+y 为偶数,则乙获胜.( 1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x, y)所有可能出现的结果总数;( 2)你以为这个游戏对双方公正吗?请说明原由.20.( 8 分)如图,四边形ABCD 中,对角线AC、 BD 订交于点O,AO= OC, BO=OD ,且∠AOB= 2∠ OAD .(1)求证:四边形 ABCD 是矩形;(2)若∠ AOB:∠ ODC = 4: 3,求∠ ADO 的度数.A DOB C2221.( 8 分)已知k 是常数,抛物线 y= x +( k +k﹣ 6)x+3k 的对称轴是 y 轴,并且与 x 轴有两个交点.( 1)求 k 的值;2 2(2)若点 P 在物线 y= x +( k +k﹣6) x+3k 上,且 P 到 y 轴的距离是 2,求点 P 的坐标.22.( 9 分)某驻村扶贫小组推专产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元 /千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场检查发现,某天西瓜的销售量y (千克)与销售单价 x (元 /千克)的函数关系以下列图:( 1)求 y 与 x 的函数分析式(也称关系式) ; y( 2)求这日销售西瓜获取的利润W 的最大值.1000200O6 8 10 12x23.( 12 分)如图, AB 是⊙ O 的直径, M 、 D 两点 AB 的延长线上, E 是⊙ C 上的点,且DE 2= DB?DA ,延长 AE 至 F ,使得 AE = EF ,设 BF = 10, cos ∠ BED = 4 .5( 1)求证:△ DEB ∽△ DAE ;( 2)求 DA , DE 的长;( 3)若点 F 在 B 、E 、 M 三点确定的圆上,求MD 的长.AC B M DEF云南省初中学业水平考试数学出色试题卷(含问题详解分析报告)合用标准文档2019 年云南省初中学业水平考试数学试卷参照答案与试题分析一、填空题(本大题共6 小题,每题 3 分,共 18 分)1.( 3 分)( 2019?云南)若零上8℃记作 +8℃,则零下 6℃记作﹣ 6 ℃.【考点】 11:正数和负数.【专题】 511:实数.【分析】 在一对拥有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】 解:依照正数和负数表示相反的意义,可知若是零上 8℃记作 +8℃,那么零下 6℃记作﹣ 6℃.故答案为:﹣ 6.【谈论】 此题观察了正数和负数的知识,解题要点是理解“正”和“负”的相对性,确定一对拥有相反意义的量.2 ( x ﹣ 1) 2 .2.( 3 分)( 2019?云南)分解因式: x ﹣ 2x+1=【考点】 54:因式分解﹣运用公式法.【分析】 直接利用完满平方公式分解因式即可.【解答】 解: x 2﹣ 2x+1=( x ﹣ 1) 2.【谈论】 此题观察了公式法分解因式,运用完满平方公式进行因式分解,熟记公式是解题的要点.3.( 3 分)( 2019?云南)如图,若 AB ∥ CD ,∠ 1= 40 度,则∠ 2=140 度.A1B【考点】 JA :平行线的性质.C2D【专题】 551:线段、角、订交线与平行线.【分析】 依照两直线平行,同位角相等求出∠3,再依照邻补角的定义列式计算即可得解.【解答】 解:∵ AB ∥ CD ,∠ 1= 40°,∴∠ 3=∠ 1=40°,∴∠ 2= 180°﹣∠ 3= 180°﹣ 40°= 140°.故答案为: 140.【谈论】 此题观察了平行线的性质,邻补角的定义,熟记性质是解题的要点.4.( 3 分)( 2019?云南)若点( 3, 5)在反比率函数 yk k = 15 .( k ≠ 0)的图象上,则x【考点】 G6:反比率函数图象上点的坐标特点.【专题】 534:反比率函数及其应用.【分析】点在函数的图象上,其纵横坐标必然满足函数的关系式,反之也成立,因此只要将点( 3,5)代入反比率函数y k(k≠ 0)即可.x【解答】解:把点( 3,5)的纵横坐标代入反比率函数y k得: k= 3×5= 15 x故答案为: 15【谈论】观察反比率函数图象上点的坐标特点,用待定系数法可直接求出k 的值;比较简单.5.( 3 分)( 2019?云南)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40 人,每个班的考试成绩分为A、 B、 C、 D 、E 五个等级,绘制的统计图如图:甲班数学成绩频数分布直方图乙班数学成绩扇形统计图人数1312C B35%10%8A5%5D E30%20%2OABCD E 等级依照以上统计图供应的信息,则 D 等级这一组人数很多的班是甲班.【考点】 V8 :频数(率)分布直方图;VB :扇形统计图.【专题】 542:统计的应用.【分析】由频数分布直方图得出甲班 D 等级的人数为13 人,求出乙班 D 等级的人数为40× 30%=12 人,即可得出答案.【解答】解:由题意得:甲班 D 等级的有 13 人,乙班 D 等级的人数为40× 30%=12(人),13>12,因此 D 等级这一组人数很多的班是甲班;故答案为:甲班.【谈论】此题观察了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班 D 等级的人数是解此题的要点.6.( 3 分)( 2019?云南)在平行四边形ABCD 中,∠ A= 30°,AD=4 3 ,BD=4,则平行四边形ABCD 的面积等于163或83.【考点】 L5:平行四边形的性质.【专题】 555:多边形与平行四边形.【分析】过 D 作 DE⊥ AB 于 E,解直角三角形获取AB= 8,依照平行四边形的面积公式即可获取结论.【解答】解:过 D 作 DE⊥ AB 于 E,在 Rt△ADE 中,∵∠ A= 30°, AD = 4,∴DE=AD= 2,AE=AD=6,在 Rt△BDE 中,∵ BD= 4,∴ BE=== 2,如图 1,∴ AB= 8,∴平行四边形 ABCD 的面积= AB ?DE =8× 2= 16,如图 2, AB= 4,∴平行四边形 ABCD 的面积= AB ?DE =4× 2= 8,故答案为: 16或 8.【谈论】此题观察了平行四边形的以及平行四边形的面积公式的运用和30 度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.二、选择题(本大题共8 小题,每题 4 分,共 32 分)7.( 4 分)( 2019?云南)以下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】 P3:轴对称图形;R5:中心对称图形.【专题】 558:平移、旋转与对称.【分析】依照轴对称图形与中心对称图形的看法求解.【解答】解: A、∵此图形旋转180°后不能够与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B 、∵此图形旋转 180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C 、此图形旋转 180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形, 故此选项错误;D 、∵此图形旋转 180°后不能够与原图形重合, ∴此图形不是中心对称图形,是轴对称图形, 故此选项错误.应选: B .【谈论】此题主要观察了中心对称图形与轴对称的定义,依照定义得出图形形状是解决问题的要点.8.( 4 分)( 2019?云南) 2019 年“五一”期间,某景点款待国内外游客共688000 人次, 688000 这个数用科学记数法表示为()465 6A .×10B .× 10C .× 10D .× 10【考点】 1I :科学记数法—表示较大的数.【专题】 511:实数.【分析】 科学记数法的表示形式为a × 10n的形式,其中 1≤|a|< 10, n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点搬动了多少位,n 的绝对值与小数点搬动的位数同样.当原数绝对值>1时, n 是正数;当原数的绝对值<1 时, n 是负数.【解答】 解:将 688000 用科学记数法表示为×105.应选: C .【谈论】 此题观察科学记数法的表示方法.科学记数法的表示形式为a × 10n的形式,其中 1≤ |a|<10,n 为整数,表示时要点要正确确定a 的值以及 n 的值.9.( 4 分)( 2019?云南)一个十二边形的内角和等于()A . 2160°B . 2080°C . 1980°D . 1800°【考点】 L3:多边形内角与外角.【专题】 555:多边形与平行四边形.【分析】 n 边形的内角和是(n ﹣2)?180°,把多边形的边数代入公式,就获取多边形的内角和.【解答】 解:十二边形的内角和等于: ( 12﹣ 2)?180°= 1800°;应选: D .【谈论】 此题主要观察多边形内角与外角的知识点,解决此题的要点是正确运用多边形的内角和公10.( 4 分)( 2019?云南)要使x 1有意,x 的取范()2A . x≤ 0B. x≥ 1C. x≥0D. x≤ 1【考点】 72:二次根式有意的条件.【】 514:二次根式.【分析】要根式有意,只要令x+1≥ 0 即可【解答】解:要使根式有意令 x+1≥ 0,得 x≥ 1故: B.【点】考了二次根式的意和性.看法:式子 a (a≥0)叫二次根式.性:二次根式中的被开方数必是非数,否二次根式没心.同考了非数的性,几个非数的和0,几个非数都0.11.( 4 分)(2019?云南)一个的面张开是半径8 的半,的全面是()A . 48πB. 45πC. 36πD. 32π【考点】 MP:的算.【】 55C:与相关的算.【分析】第一利用的面公式即可求得面,利用弧公式求得的底面半径,获取底面面,据此即可求得的全面.【解答】解:面是:πr 2=× π× 82=32π,底面半径:,底面=π× 42= 16π,故的全面是:32π+16 π= 48π.故: A.【点】本考了的算,正确理解的面张开与原来的扇形之的关系是解决本的关,理解的母是扇形的半径,的底面周是扇形的弧.12.( 4 分)( 2019?云南)按必然律排列的式:x 3, x5,x7, x9, x11,⋯⋯,第 n 个式是()A .( 1)n﹣ 1 2n﹣ 1n 2n﹣1 x B.( 1) xC.( 1)n ﹣1 2n+1n 2n+1 x D.( 1) x【考点】 37: 律型:数字的 化 ;42: 式.【 】 2A : 律型.【分析】 察指数 律与符号 律, 行解答即可.31﹣1 2×1+1 ,【解答】 解:∵ x =( 1)x52﹣1 2× 2+1x=( 1)x, 73﹣1 2×3+1 ,x =( 1) x 94﹣1 2× 4+1x=( 1)x, 115﹣1 2×5+1 x =( 1) x,⋯⋯由上可知,第n 个 式是:( 1) n ﹣ 1 2n+1 ,x故 : C .【点 】 此 主要考 了数字的 化 ,关 是分 找出符号与指数的 化 律.13.( 4 分)( 2019?云南)如 ,△ ABC 的内切 ⊙ O 与 BC 、 CA 、 AB 分 相切于点 D 、E 、 F ,且 AB= 5,BC = 13, CA = 12, 阴影部分(即四 形AEOF )的面 是( )A .4B .C .D . 9【考点】 KS :勾股定理的逆定理; MC :切 的性 ;MI :三角形的内切 与内心;MO :扇形面的 算.【 】 55C :与 相关的 算.【分析】 利用勾股定理的逆定理获取△ABC 直角三角形, ∠ A = 90°,再利用切 的性 获取OF⊥ AB , OE ⊥AC ,因此四 形OFAE 正方形,OE =AE = AF =r ,利用切 定理获取BD = BF= 5 r ,CD = CE = 12 r ,因此 5 r +12 r = 13,尔后求出 r 后可 算出阴影部分 (即四 形 AEOF )的面 .【解答】 解:∵ AB = 5, BC = 13,CA = 12,22 2,∴ AB +CA = BC∴△ ABC 直角三角形,∠A = 90°,∵ AB 、 AC 与⊙ O 分 相切于点E 、F∴ OF ⊥AB ,OE ⊥ AC ,∴四边形 OFAE 为正方形,设 OE =r ,则 AE = AF = r ,∵△ ABC 的内切圆 ⊙ O 与 BC 、 CA 、 AB 分别相切于点 D 、E 、 F ,∴ BD =BF =5﹣ r , CD =CE =12﹣ r ,∴ 5﹣r+12 ﹣ r = 13,∴ r == 2,∴阴影部分(即四边形AEOF )的面积是 2× 2= 4.应选: A .【谈论】 此题观察了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形极点的连线均分这个内角.也观察了勾股定理的逆定理和切线的性质.14.(4 分)(2019?云南)若关于 x 的不等式组2( x1) 2,ax的解集是 x > a ,则 a 的取值范围是()A . a < 2B . a ≤ 2C . a > 2D . a ≥2【考点】 CB :解一元一次不等式组.【专题】 524:一元一次不等式 (组 )及应用.【分析】 依照不等式组的解集的看法即可求出a 的范围.2(x 1) 2 x 2【解答】 解:解关于 x 的不等式组0,得x aa x∴ a ≥2应选: D .【谈论】 此题观察不等式的解集,解题的要点是正确理解不等式的解集,此题属于基础题型.三、解答题(本大共 9 小题,共 70 分)15.( 6 分)( 2019?云南)计算: 2﹣ 4 +(﹣ 1) ﹣1.3 +( π﹣ 5)【考点】 2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】 511:实数.【分析】先依照平方性质,0 指数幂法规,算术平方根的性质,负指数幂的运算,再进行有理数的加减运算即可.【解答】解:原式= 9+1﹣ 2﹣ 1=10﹣ 3= 7.【谈论】此题主要观察了实数运算,主要观察了0 指数幂法规,负整数幂法规,乘方的意义,有理数的加减运算,正确化简各数是解题要点.计算负整数指数幂时,必然要依照负整数指数幂的意义计算,防备出现(﹣3)﹣2=(﹣ 3)×(﹣ 2)的错误.16.( 6 分)( 2019?云南)如图,AB= AD ,CB =CD.求证:∠ B=∠ D .【考点】 KD :全等三角形的判断与性质.【专题】 553:图形的全等.【分析】由 SSS证明△ ABC≌△ ADC,得出对应角相等即可.AB AD【解答】证明:在△ABC和△ ADC中,CB CD,AC AC∴△ ABC ≌△ ADC( SSS),∴∠ B=∠ D.【谈论】此题观察了全等三角形的判断与性质;熟练掌握全等三角形的判断方法,证明三角形全等是解题的要点.17.( 8 分)( 2019?云南)某公司销售部有营业员15 人,该公司为了调动营业员的积极性,决定推行目标管理,依照目标完成的情况对营业员进行适合的奖励,为了确定一个适合的月销售目标,公司有关部门统计了这15 人某月的销售量,以下表所示:月销售量 /件数177048022018012090人数113334( 1)直接写出这15 名营业员该月销售量数据的平均数、中位数、众数;( 2)若是想让一半左右的营业员都能达到月销售目标,你以为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明原由.温馨提示:确定一个适合的月销售目标是一个要点问题,若是目标定得太高,多数营业员完不行任务,会使营业员失去【考点】 W2:加权平均数;W4 :中位数; W5:众数.【专题】 542:统计的应用.【分析】( 1)依照平均数、众数和中位数的意义进行解答即可;( 2)依照平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该月销售量数据的平均数== 278(件),中位数为180 件,∵90 出现了 4 次,出现的次数最多,∴众数是 90 件;( 2)若是想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;原由以下:由于中位数为 180 件,即月销售量大于 180 与小于 180 的人数同样多,因此中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【谈论】此题观察的是平均数、众数和中位数的定义及运用.要学会依照统计量的意义分析解决问题.18.( 6 分)(2019?云南)为进一步创建扫黑除恶专项斗争的浓厚宣传氛围,推进安全校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240 千米和 270 千米的两地同时出发,前往“研学教育”基地张开扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的 1.5 倍,甲校师生比乙校师生晚 1 小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【考点】 B7:分式方程的应用.【专题】 522:分式方程及应用.【分析】设甲学校师生所乘大巴车的平均速度为x 千米 / 小时,则乙学校师生所乘大巴车的平均速度为 1.5x 千米 /小时,由时间关系“甲校师生比乙校师生晚 1 小时到达目的地” 列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x 千米 /小时,则乙学校师生所乘大巴车的平均速度为 1.5x 千米 / 小时,由题意得:240270 1 ,x解得: x= 60,经检验, x= 60 是所列方程的解,则= 90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60 千米 /小时、 90 千米 /小时.【谈论】此题主要观察分式方程的应用,解题的要点是理解题意,找到题目中包括的相等关系,并依照相等关系列出方程.19.( 7 分)( 2019?云南)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1, 2,3, 4 的四个小球(除标号外无其他差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y 表示.若x+y 为奇数,则甲获胜;若x+y 为偶数,则乙获胜.( 1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;( 2)你以为这个游戏对双方公正吗?请说明原由.【考点】 X6 :列表法与树状图法;X7 :游戏公正性.【专题】 543:概率及其应用.【分析】画树状图显现所有16 种等可能的结果数,尔后依照概率公式求解.【解答】解:画树状图以下列图,也许列表法以下:xy12341(1, 1)(1, 2)(1, 3)(1, 4)2(2, 1)(2, 2)(2, 3)(2, 4)3(3, 1)(3, 2)(3, 3)(3, 4)4(4, 1)(4, 2)(4, 3)(4, 4)( 1)共有 16 种等可能的结果数;( 2)x+y 为奇数的结果数为 8, x+y 为偶数的结果数为 8,∴甲获胜的概率=8 1 8 116,乙获胜的概率=16,22∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公正.【谈论】 此题观察了列表法与树状图法:利用列表法或树状图法显现所有等可能的结果 n ,再从中选出吻合事件 A 或 B 的结果数量 m ,尔后利用概率公式计算事件A 或事件B 的概率.20.( 8 分)(2019?云南)如图,四边形 ABCD 中,对角线 AC 、 BD 订交于点 O ,AO = OC , BO = OD ,且∠ AOB = 2∠OAD .( 1)求证:四边形 ABCD 是矩形;( 2)若∠ AOB :∠ ODC = 4: 3,求∠ ADO 的度数.【考点】 KD :全等三角形的判断与性质;LD :矩形的判断与性质.【专题】 556:矩形 菱形 正方形.【分析】( 1)依照平行四边形的判判定理获取四边形ABCD 是平行四边形,依照三角形的外角的性质获取∠ AOB =∠ DAO +∠ ADO = 2∠ OAD ,求得∠ DAO =∠ ADO ,推出 AC = BD ,于是获取四边形ABCD 是矩形;( 2)依照矩形的性质获取 AB ∥ CD ,依照平行线的性质获取∠ ABO =∠ CDO ,依照三角形的内角获取∠ ABO = 54°,于是获取结论.【解答】( 1)证明:∵ AO = OC , BO = OD ,∴四边形 ABCD 是平行四边形,∵∠ AOB =∠ DAO +∠ADO = 2∠OAD ,∴∠ DAO =∠ ADO ,∴ AO =DO ,∴ AC =BD ,ADOBC文案大全( 2)解:∵四边形 ABCD 是矩形, ∴ AB ∥ CD ,∴∠ ABO =∠ CDO ,∵∠ AOB :∠ ODC = 4: 3,∴∠ AOB :∠ ABO = 4: 3,∴∠ BAO :∠ AOB :∠ ABO = 3: 4: 3,∴∠ ABO = 54°, ∵∠ BAD = 90°,∴∠ ADO = 90°﹣ 54°= 36°.【谈论】 此题观察了矩形的判断和性质,三角形的内角和,正确的理解题意是解题的要点.21.( 8 分)( 2019?云南)已知 k 是常数,抛物线2 2y 轴,并且与 xy = x +(k +k ﹣ 6) x+3k 的对称轴是轴有两个交点.( 1)求 k 的值;22( 2)若点 P 在物线 y = x +( k +k ﹣6) x+3k 上,且 P 到 y 轴的距离是 2,求点 P 的坐标.【考点】 H3:二次函数的性质;H5 :二次函数图象上点的坐标特点; HA :抛物线与 x 轴的交点.【专题】 33:函数思想; 535:二次函数图象及其性质.【分析】( 1)依照抛物线的对称轴为y 轴,则 b = 0,可求出 k 的值,再依照抛物线与x 轴有两个交点,进而确定 k 的值和抛物线的关系式;( 2)由于对称轴为y 轴,点 P 到 y 轴的距离为 2,能够转变成点 P 的横坐标为 2 或﹣ 2,求相应的y 的值,确定点 P 的坐标.22 【解答】 解:( 1)∵抛物线 y = x +( k +k ﹣ 6) x+3k 的对称轴是 y 轴,2∴ k +k ﹣ 6= 0,解得 k 1=﹣ 3, k 2= 2;22又∵抛物线 y =x +( k +k ﹣ 6) x+3k 与 x 轴有两个交点.∴ 3k <0∴ k =﹣ 3.此时抛物线的关系式为 y = x 2﹣ 9,因此 k 的值为﹣ 3.( 2)∵点 P 在物线 y = x 2﹣ 9 上,且 P 到 y 轴的距离是 2,∴点 P 的横坐标为 2 或﹣ 2,当 x=2 时, y=﹣ 5当 x=﹣ 2 时, y=﹣ 5.∴ P( 2,﹣ 5)或 P(﹣ 2,﹣ 5)因此点 P 的坐标为: P( 2,﹣ 5)或 P(﹣ 2,﹣ 5).【谈论】主要观察二次函数的图象和性质,以及二次函数图象上点的坐标特点,善于将线段的长转变成坐标,或将坐标转变成线段的长.22.( 9 分)(2019?云南)某驻村扶贫小组推专产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为 6 元 /千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场检查发现,某天西瓜的销售量y(千克)与销售单价x(元 /千克)的函数关系以下列图:( 1)求 y 与 x 的函数分析式(也称关系式);y( 2)求这日销售西瓜获取的利润W 的最大值.1000200【考点】 HE:二次函数的应用.O6 81012x【专题】 536:二次函数的应用;68:模型思想.【分析】( 1),依照函数图象获取直线上的两点,再结合待定系数法即可求得y 与 x 的函数分析式;( 2),依照总利润=每千克利润×销售量,列出函数关系式,配方后依照x 的取值范围可得W 的最大值.【解答】解:( 1)当 6≤ x≤10 时,设 y 与 x 的关系式为 y=kx+b( k≠ 0)依照题意得6k b1000 ,解得k20010k b200b2200∴ y=﹣ 200x+2200当 10< x≤ 12时, y= 200故 y 与 x 的函数分析式为:y200x 2200 (6x10) 200(10x12)( 2)由已知得: W=( x﹣ 6) y 当 6≤x≤ 10 时,W=( x﹣ 6)(﹣ 200x+2200)=﹣ 200( x﹣172) +1250 2∵﹣ 200< 0,抛物线的张口向下∴ x=17时,取最大值,2∴ W=1250当 10< x≤ 12 时, W=( x﹣6)?200=200x﹣ 1200∵ y 随 x 的增大而增大∴x=12 时获取最大值, W= 200× 12﹣ 1200= 1200综上所述,当销售价格为8.5 元时,获取最大利润,最大利润为1250 元.【谈论】此题主要观察的是待定系数法求函数分析式及二次函数的应用,依照相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的要点;23.( 12 分)( 2019?云南)如图, AB 是⊙ O 的直径, M、D 两点 AB 的延长线上, E 是⊙ C 上的点,且DE 2= DB ?DA ,延长 AE 至 F,使得 AE=EF ,设 BF= 10, cos∠ BED=4.5(1)求证:△ DEB ∽△ DAE ;(2)求 DA , DE 的长;( 3)若点 F 在 B、E、 M 三点确定的圆上,求MD 的长.【考点】 MR :圆的综合题.【专题】 16:压轴题; 31:数形结合;55D:图形的相似;63:空间看法.【分析】( 1)∠ D=∠ D, DE 2= DB ?DA ,即可求解;( 2)由,即:,即可求解;( 3)在△ BED 中,过点 B 作 HB⊥ ED 于点 H ,36﹣(﹣x)2=()2﹣x2,解得:x=,则 cosβ==,即可求解.2【解答】解:( 1)∵∠ D=∠ D ,DE = DB?DA,(2)∵△ DEB∽△ DAE ,∴∠ DEB =∠ DAE =α,∵ AB 是直径,∴∠ AEB= 90°,又 AE= EF ,∴AB= BF= 10,∴∠ BFE=∠ BAE=α,则 BF ⊥ED 交于点 H,∵ cos∠BED =,则 BE= 6,AB =8∴,即:,C MA B D 解得: BD=,DE =,则 AD=AB +BD =,EED=;F( 3)点 F 在 B、 E、 M 三点确定的圆上,则BF 是该圆的直径,连接MF,∵BF ⊥ ED,∠ BMF =90°,∴∠ MFB =∠ D=β,在△ BED 中,过点 B 作 HB⊥ED 于点 H,设 HD= x,则 EH =﹣x,则 36﹣(﹣x)2=()2﹣x2,解得: x=,则 cosβ==,则sinβ=,MB =BFsinβ= 10×=,DM=BD﹣MB=.【谈论】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判断与性质、三角函数值的知识,综合性较强,解答此题需要我们熟练各部分的内容,对学生的综合能力要求较高,必然要注意将所学知识贯穿起来.考点卡片1.正数和负数1、在以前学过的0 以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号.2、 0 既不是正数也不是负数.0 是正负数的分界点,正数是大于0 的数,负数是小于0 的数.一是它们的意义相反,二是它们都是数量.2.科学记数法—表示较大的数( 1)科学记数法:把一个大于 10 的数记成 a × 10n的形式,其中 a 是整数数位只有一位的数, n 是正整数,这类记数法叫做科学记数法. 【科学记数法形式: a × 10n,其中 1≤ a < 10, n 为正整数.】( 2)规律方法总结:① 科学记数法中a 的要求和 10 的指数 n 的表示规律为要点,由于 10 的指数比原来的整数位数少 1;按此规律,先数一下原数的整数位数,即可求出 10 的指数 n .② 记数法要求是大于10 的数可用科学记数法表示,实质上绝对值大于10 的负数同样可用此法表示,可是前面多一个负号.3.实数的运算( 1)实数的运算和在有理数范围内同样,值得一提的是,实数既能够进行加、减、乘、除、乘方运算,又能够进行开方运算,其中正实数能够开平方.( 2)在进行实数运算时,和有理数运算同样,要从高级到初级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要依照从左到有的序次进行.别的,有理数的运算律在实数范围内依旧合用.【规律方法】实数运算的“三个要点”1.运算法规:乘方和开方运算、幂的运算、指数(特别是负整数指数,0 指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算序次:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律能够简化运算,提高运算速度和正确度. 4.规律型:数字的变化类研究题是近几年中考命题的亮点,特别是与数列相关的命题更是层见迭出,形式多样,它要求在已有知识的基础上去研究,观察思虑发现规律.( 1)探望数列规律:仔细观察、仔细思虑,善用联想是解决这类问题的方法.( 2)利用方程解决问题.当问题中有多个未知数时,可先设出其中一个为x ,再利用它们之间的关系,设出其他未知数,尔后列方程.5.单项式( 1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.。
2019年云南省中考数学试卷以及解析版

2019年云南省中考数学试卷以及逐题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8C ︒记作8C ︒+,则零下6C ︒记作C ︒.2.(3分)分解因式:221x x -+= .3.(3分)如图,若//AB CD ,140∠=度,则2∠= 度.4.(3分)若点(3,5)在反比例函数(0)k y k x=≠的图象上,则k = . 5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 .6.(3分)在平行四边形ABCD 中,30A ∠=︒,AD =4BD =,则平行四边形ABCD 的面积等于 .二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .914.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( ) A .2a < B .2a … C .2a > D .2a …三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x y +为奇数,则甲获胜;若x y +为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y 所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO OC =,BO OD =,且2AOB OAD ∠=∠.(1)求证:四边形ABCD 是矩形;(2)若:4:3AOB ODC ∠∠=,求ADO ∠的度数.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=.(1)求证:DEB DAE∽;∆∆(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷答案与解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分).【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8C ︒记作8C ︒+,那么零下6C ︒记作6C ︒-.故答案为:6-.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分).【分析】直接利用完全平方公式分解因式即可.【解答】解:2221(1)x x x -+=-.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)【分析】根据两直线平行,同位角相等求出3∠,再根据邻补角的定义列式计算即可得解.【解答】解://AB CD ,140∠=︒,3140∴∠=∠=︒,2180318040140∴∠=︒-∠=︒-︒=︒.故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分) .【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数(0)k y k x=≠即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数k y x=得:3515k =⨯= 故答案为:15 【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k 的值;比较简单.5.(3分).【分析】由频数分布直方图得出甲班D 等级的人数为13人,求出乙班D 等级的人数为4030%12⨯=人,即可得出答案.【解答】解:由题意得:甲班D 等级的有13人,乙班D 等级的人数为4030%12⨯=(人),1312>,所以D 等级这一组人数较多的班是甲班;故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D 等级的人数是解本题的关键.6.(3分)【分析】过D 作DE AB ⊥于E ,解直角三角形得到8AB =,根据平行四边形的面积公式即可得到结论.【解答】解:过D 作DE AB ⊥于E ,在Rt ADE ∆中,30A ∠=︒,AD =12DE AD ∴==6AE AD ==, 在Rt BDE ∆中,4BD =,2BE ∴=,8AB ∴=,∴平行四边形ABCD 的面积8AB DE ==⨯,故答案为:.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30︒角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B 、此图形旋转180︒后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C 、此图形旋转180︒后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B .【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将688000用科学记数法表示为56.8810⨯.故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒【分析】n 边形的内角和是(2)180n -︒,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(122)1801800-︒=︒;故选:D .【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…【分析】要根式有意义,只要令10x +…即可【解答】解:要使根式有意义则令10x +…,得1x -…故选:B .【点评】0)a …叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:221183222r πππ=⨯⨯=, 底面圆半径为:28242ππ⨯÷=, 底面积2416ππ=⨯=,故圆锥的全面积是:321648πππ+=.故选:A .【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-【分析】观察指数规律与符号规律,进行解答便可.【解答】解:311211(1)x x -⨯+=-,521221(1)x x -⨯+-=-,731231(1)x x -⨯+=-,941241(1)x x -⨯+-=-,1151251(1)x x -⨯+=-,⋯⋯由上可知,第n 个单项式是:121(1)n n x -+-,故选:A .【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .9【分析】利用勾股定理的逆定理得到ABC ∆为直角三角形,90A ∠=︒,再利用切线的性质得到OF AB ⊥,OE AC ⊥,所以四边形OFAE 为正方形,设OE AE AF x ===,利用切线长定理得到5BD BF r ==-,12CD CE r ==-,所以51213r r -+-=,然后求出r 后可计算出阴影部分(即四边形)AEOF 的面积.【解答】解:5AB =,13BC =,12CA =,222AB CA BC ∴+=,ABC ∴∆为直角三角形,90A ∠=︒, AB 、AC 与O 分别相切于点E 、FOF AB ∴⊥,OE AC ⊥,∴四边形OFAE 为正方形,设OE r =,则AE AF x ==,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F , 5BD BF r ∴==-,12CD CE r ==-, 51213r r ∴-+-=, 5121322r +-∴==, ∴阴影部分(即四边形)AEOF 的面积是224⨯=.故选:A .【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质. 14.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( )A .2a <B .2a …C .2a >D .2a …【分析】根据不等式组的解集的概念即可求出a 的范围. 【解答】解:解关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩得2x x a >⎧⎨>⎩2a ∴…故选:D .【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型. 三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有 数的加减运算便可.【解答】解:原式91211037=+--=-=.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现2(3)(3)(2)--=-⨯-的错误. 16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.【分析】由SSS 证明ABC ADC ∆≅∆,得出对应角相等即可. 【解答】证明:在ABC ∆和ADC ∆中,AB ADCB CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆,B D ∴∠=∠.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可; (2)根据平均数、中位数和众数得出的数据进行分析即可得出答案. 【解答】解:(1)这15名营业员该月销售量数据的平均数177048022031803120390427815++⨯+⨯+⨯+⨯==(件),中位数为180件,90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多, 所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x 千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:24027011.5x x-=,解得:60x=,经检验,60x=是所列方程的解,则1.590x=,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x y+为奇数,则甲获胜;若x y+为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x y+为奇数的结果数为8,x y+为偶数的结果数为8,∴甲获胜的概率81162==,乙获胜的概率81162==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO OC=,BO OD=,且2∠=∠.AOB OAD(1)求证:四边形ABCD是矩形;(2)若:4:3∠的度数.AOB ODC∠∠=,求ADO【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到2∠=∠,推出AC BD=,∠=∠+∠=∠,求得DAO ADOAOB DAO ADO OAD于是得到四边形ABCD是矩形;(2)根据矩形的性质得到//AB CD,根据平行线的性质得到ABO CDO∠=∠,根据三角形的内角得到54∠=︒,于是得到结论.ABO【解答】(1)证明:AO OC=,=,BO OD∴四边形ABCD是平行四边形,∠=∠+∠=∠,AOB DAO ADO OAD2∴∠=∠,DAO ADO∴=,AO DO∴=,AC BD∴四边形ABCD是矩形;(2)解:四边形ABCD是矩形,∴,//AB CD∴∠=∠,ABO CDO∠∠=,:4:3AOB ODC∴∠∠=,:4:3AOB ABO∴∠∠∠=,BAO AOB ABO::3:4:3ABO∴∠=︒,54BAD∠=︒,90∴∠=︒-︒=︒.ADO905436【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标. 【分析】(1)根据抛物线的对称轴为y 轴,则0b =,可求出k 的值,再根据抛物线与x 轴有两个交点,进而确定k 的值和抛物线的关系式;(2)由于对称轴为y 轴,点P 到y 轴的距离为2,可以转化为点P 的横坐标为2或2-,求相应的y 的值,确定点P 的坐标.【解答】解:(1)抛物线22(6)3y x k k x k =++-+的对称轴是y 轴, 260k k ∴+-=,解得13k =-,22k =;又抛物线22(6)3y x k k x k =++-+与x 轴有两个交点. 30k ∴<3k ∴=-.此时抛物线的关系式为29y x =-,因此k 的值为3-.(2)点P 在物线29y x =-上,且P 到y 轴的距离是2,∴点P 的横坐标为2或2-,当2x =时,5y =- 当2x =-时,5y =-. (2,5)P ∴-或(2,5)P --因此点P 的坐标为:(2,5)P -或(2,5)P --.【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示: (1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y 与x 的函数解析式;(2),根据总利润=每千克利润⨯销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.【解答】解:(1)当610x 剟时,设y 与x 的关系式为(0)y kx b k =+≠ 根据题意得1000620010k b k b =+⎧⎨=+⎩,解得2002200k b =-⎧⎨=⎩2001200y x ∴=-+当1012x <…时,200y =故y 与x 的函数解析式为:2002200,(610)200,(1012)x x y x -+⎧=⎨<⎩剟…(2)由已知得:(6)W x y =- 当610x 剟时,217(6)(2001200)200()12502W x x x =--+=--+ 2000-<,抛物线的开口向下 172x ∴=时,取最大值, 1250W ∴=当1012x <…时,(6)2002001200W x x =-=-y 随x 的增大而增大12x ∴=时取得最大值,2001212001200W =⨯-=综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=. (1)求证:DEB DAE ∆∆∽; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.【分析】(1)D D ∠=∠,2DE DB DA =,即可求解; (2)由ED EB DB DA AE ED ==,即:6108ED BDBD DE==+,即可求解; (3)在BED ∆中,过点B 作HB ED ⊥于点H ,2221209036()()77x x --=-,解得:43235x =,则24cos 90257x β==,即可求解. 【解答】解:(1)D D ∠=∠,2DE DB DA =,DEB DAE ∴∆∆∽;(2)DEB DAE ∆∆∽, DEB DAE α∴∠=∠=,AB 是直径,90AEB ∴∠=︒,又AE EF =,10AB BF ∴==,BFE BAE α∴∠=∠=,则BF ED ⊥交于点H , 4cos 5BED ∠=,则6BE =,8AB = ∴ED EB DB DA AE ED ==,即:6108ED BDBD DE==+, 解得:907BD =,1207DE =, 则1607AD AB BD =+=,1207ED =; (3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF ,BF ED ⊥,90BMF ∠=︒,MFB D β∴∠=∠=,在BED ∆中,过点B 作HB ED ⊥于点H , 设HD x =,则1207EH x =-, 则2221209036()()77x x --=-,解得:43235x =, 则24cos 90257x β==,则7sin 25β=, 714sin 10255MB BF β==⨯=, 35235DM BD MB =-=. 【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来。
云南省2019年中考数学真题试题

云南省2019年中考数学试卷(全卷三个大题,共23题,共8页;满分120分,考试用时120分钟)注意事项:1. 本卷为试题卷,考生必须在答题卡上解题作答. 答案应写在答题卡的相应位置上,在 试题卷、草稿纸上作答无效.2. 考试结束后,请将试卷和答题卡一并交回. 一、填空题目 (本大题共6小题,每小题3分,共18分) 1. 若零上8°C 记作 +8°C ,则零下6°C 记作 -6 °C.2. 分解因式:= (x – 1)2 .3. 如图,若AB ∥CD ,∠1= 40°,则∠2 = 140 度.4. 若点(3,5)在反比例函数()的图象上,则k = 15 .5. 某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 甲班 .6. 在平行四边形ABCD 中,∠A= 30°,AD =,BD = 4,则平行四边形ABCD 的面积等于 或8 .122+-x x x ky =0≠k 乙班数学成绩扇形统计图甲班数学成绩频数分布直方图20%30%35%10%5%A B C D E 34316321DA B C二、选择题目 (本大题共8小题,每小题4分,共32分,每小题正确的选项只有一个) 7. 下列图形既是轴对称图形,又是中心对称图形的是 ( B )A. B. C. D.8. 2019年“五一“期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为 ( C )A. B. C. D. 9. 一个十二边形的内角和等于 ( D )A. 2160°B. 2080°C. 1980°D. 1800°10.要使有意义,则x 的取值范围为 ( B )A. B. C. D.11. 一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是 ( A )A. 48πB. 45πC. 36πD. 32π12. 按一定规律排列的单项式:,,,,,……,第n 个单项式是( C )A. B.C. D.13. 如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB = 5,BC = 13,CA = 12,则阴影部分(即四边形AEOF)的面积是 ( A )A. 4B. 6.25C. 7.5D.9A BCD E ABCDE4108.68⨯610688.0⨯51088.6⨯61088.6⨯21+x 0≤x 1-≥x 0≥x 1-≤x 3x 5x -7x 9x -11x 121)1(---n n x 12)1(--n n x 121)1(+--n n x 12)1(+-n n x14. 若关于x 的不等式组的解集为,则的取值范围是 ( D )A. B. C. D.三、解答题 (本大题共9小题,共70分) 15. (本小题满分6分)计算:.解:原式 = 9 + 1 – 2 – 1 …4分= 7 …6分16. (本小题满分6分)如图,AB = AD ,CB = CD. 求证:∠B =∠D.证明:在△ABC 和△ADC 中,, …3分∴△ABC ≌△ADC(SSS). …4分 ∴∠B =∠D. …6分⎩⎨⎧<->-0,2)1(2x a x a x >a 2<a 2≤a 2>a 2≥a 102)1(4)5(3--+--+π⎪⎩⎪⎨⎧===AC AC CD CB AD AB DABC某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示: (1) 直接写出这15名营业员该月销售量数据的平均数、中位数、众数; (2) 如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解:(1) 这15名营业员该月销售量数据的平均数、中位数、众数分别是 278,180,90. …6分(2) 中位数最适合作为月销售目标,理由如下:这15个人中,月销售量不低于278件的只有2人,远低于营业员的一半,月销售量不低于180件的有8人,占营业员的一半左右,月销售量不低于90件的有15人,即所有营业员,所以中位数最适合作为月销售目标. …8分或说:因为从统计的数据来看,若目标定为平均数为278,能完成目标的只有2名员工,根本达不到一半左右的营业员都能达到月销售目标;若目标定为众数94,所有营业员都能达到月销售目标;若目标定为平均数180,大概有8人能达到月销售目标,占营业员的一半左右,所以中位数最适合作为月销售目标.温馨提示:确定一个适当的月销售目标是一个关键问题,如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力. 月销售量/件数 1770 480 220 180 120 90 人数 1 1 3 3 3 4为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育“基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校所乘大巴车的平均速度. 解:设甲学校所乘大巴车的平均速度为x 千米/小时, 则乙学校所乘大巴车的平均速度为1.5x 千米/小时,依题意,得. …3分解得 .经检验是所列方程的解. ∴,1.5x = 90.答:甲、乙两所学校所乘大巴车的平均速度分别为60千米/小时和90千米/小时.甲、乙两同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异). 从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示,若为奇数,则甲获胜;若为偶数,则乙获胜. (1) 用列表法或树状图法(树状图也称树形图)中的一种方法,求(x ,y )所有可能出现的结果总数;(2) 你认为这个游戏对双方公平吗?请说明理由. 解:(1) 所有可能的结果如下表:∴(x ,y )所有可能出现的结果总数为16种. …4分 (2) 这个游戏对双方是公平的,理由如下:共有16种等可能的结果,分别是2,3,4,5;3,4,5,6;4,5,6,7;5,15.1270240=-x x 60=x 60=x 60=x y x +y x +y x +6,7,8,为奇数的结果有8种;为偶数的结果有8种,∴P (甲获胜) =,P (乙获胜) =,∴P (甲获胜)= P (乙获胜). ∴这个游戏对双方是公平的. …7分20. (本小题满分8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO = OC ,BO = OD ,且∠AOB = 2∠OAD.(1) 求证:四边形ABCD 是矩形;(2) 若∠AOB :∠ODC = 4:3,求∠ADO 的度数. (1) 证明:∵AO = OC ,BO = OD ,∴四边形ABCD 是平行四边形. …1分∵∠AOB = 2∠OAD ,∠AOB = ∠OAD+∠ODA ,∴∠OAD =∠ODA. …2分∴AO = DO. …3分 ∴AO = OC = BO = OD , ∴AC = BD.∴四边形ABCD 是矩形. …4分(2) 设∠AOB = 4x °,∠ODC = 3x°,则∠COD = 4x °,∠OCD = 3x°. …5分 在△COD 中,∠COD +∠OCD +∠ODC = 180°, …6分 ∴4x + 3x + 3x = 180,解得x = 18,∴∠ODC = 3x° = 54°, …7分 ∴∠ADO = 90° - ∠ODC = 90° – 54° = 36°. …8分y x +y x +21168=21168=D OA B C21. (本小题满分8分)已知k 是常数,抛物线的对称轴是y 轴,并且与x 轴有两个交点.(1) 求k 的值;(2) 若点P 在抛物线上,且P 到y 轴的距离是2,求点P 的坐标.解:(1) ∵抛物线的对称轴是y 轴。
2019年云南省中考数学试卷(含解析)完美打印版

2019年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作℃.2.(3分)分解因式:x2﹣2x+1=.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=度.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=.5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣111.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+113.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.914.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(12分)如图,AB是⊙O的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8℃记作+8℃,则零下6℃记作﹣6℃.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.2.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.3.(3分)如图,若AB∥CD,∠1=40度,则∠2=140度.【分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=15.【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数y=得:k=3×5=15故答案为:155.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是甲班.【分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于16或8.【分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,如图2,AB=4,∴平行四边形ABCD的面积=AB•DE=4×2=8,故答案为:16或8.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.9.(4分)一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.10.(4分)要使有意义,则x的取值范围为()A.x≤0B.x≥﹣1C.x≥0D.x≤﹣1【分析】要根式有意义,只要令x+1≥0即可【解答】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.9【分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OF AE为正方形,设OE=AE=AF=r,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OF AE为正方形,设OE=r,则AE=AF=r,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2B.a≤2C.a>2D.a≥2【分析】根据不等式组的解集的概念即可求出a的范围.【解答】解:解关于x的不等式组得∴a≥2故选:D.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.【解答】解:原式=9+1﹣2﹣1=10﹣3=7.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.【分析】由SSS证明△ABC≌△ADC,得出对应角相等即可.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答】解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD 是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在抛物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+2200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+2200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.23.(12分)如图,AB是⊙O的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB•DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【分析】(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.【解答】解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AE=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BF sinβ=10×=,DM=BD﹣MB=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年省初中学业水平考试
数学试题
一、填空题(本大题共6小题,每小题3分,共18分) 1.若零上8℃记作+8℃,则零下6℃记作 ℃. 2.分解因式:x 2-2x +1= . 3.如图,若AB ∥CD ,∠1=40度, 则∠2= 度. 4.若点(3,5)在反比例函数)0(≠=
k x
k
y 的图象上,则k = . 5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考 试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:
根据以上统计图提供的信息,则D 等级这一组人数较多的班是 . 6.在平行四边形ABCD 中,∠A =30°,AD =43,BD =4,则平行四边形ABCD 的面积等于 .
二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)
7.下列图形既是轴对称图形,又是中心对称图形的是
8.2019年“五一”期间,某景点接待海外游客共688000人次,688000这个数用科学记 数法表示为
A.68.8×104
B.0.688×106
C.6.88×105
D.6.88×106 9.一个十二边形的角和等于
A.2160°
B.2080°
C.1980°
D.1800°
y 10.要使
2
1
+x 有意义,则x 的取值围为 A.x ≤0 B.x ≥-1 C.x ≥0 D.x ≤-1
11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是 A.48π B.45π C.36π D.32π
12.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是 A.(-1)n -
1x 2n -
1 B.(-1)n x 2n -
1 C.(-1)n -
1x 2n
+1 D.(-1)n x 2n +
1
13.如图,△ABC 的切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是 A.4 B.6.25 C.7.5 D.9
14.若关于x 的不等式组⎩
⎨⎧--02
)1(2<>x a x 的解集为x >a ,则a 的取值围是
A.a <2
B. a ≤2
C.a >2
D.a ≥2 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)
计算: 1
021453--+---
)()(π
16.(本小题满分6分) 如图,AB =AD ,CB =CD. 求证:∠B =∠D.
17.(本小题满分8分)
某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部 门统计了这15人某月的销售量,如下表所示: 月销售量/件数 1770 480 220 180 120 90 人数
1
1
3
3
3
4
(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;
(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.
18.(本小题满分6分)
为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.
19.(本小题满分7分)
甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;
(2)你认为这个游戏对双方公平吗?请说明理由.
20.(本小题满分8分)
如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且
∠AOB=2∠OAD.
(1)求证:四边形ABCD是矩形;
(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.
21.(本小题满分8分)
已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.
(1)求k的值:
(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.
22.(本小题满分9分)
某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:
(1)求y与x的函数解析式(也称关系式);
(2)求这一天销售西瓜获得的利润的最大值.
23.(本小题满分12分)
如图,B 是⊙C 的直径,M 、D 两点在AB 的延长线上,E 是OC 上的点,且DE 2=DB · DA.延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED 5
4
(1)求证:△DEB ∽△DAE ; (2)求DA ,DE 的长;
(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.。