九年级数学第三章测试题
2022学年北师大版九年级数学下册第3章《圆》综合测试题附答案解析

2022-2023学年九年级数学下册第3章《圆》综合测试题(满分120分)一、选择题(每题3分,共30分)1.下列命题为真命题的是()A .两点确定一个圆B .度数相等的弧相等C .垂直于弦的直径平分弦D .相等的圆周角所对的弧相等,所对的弦也相等2.已知⊙O 的半径为5,点P 到圆心O 的距离为6,那么点P 与⊙O 的位置关系是()A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .无法确定3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是()A .70°B .60°C .50°D .30°4.如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于()A .70°B .64°C .62°D .51°5.如图,AB ︵=BC ︵=CD ︵,OB ,OC 分别交AC ,BD 于点E ,F ,则下列结论不一定正确的是()A .AC =BD B .OE ⊥AC ,OF ⊥BD C .△OEF 为等腰三角形D .△OEF 为等边三角形6.如图,在直角坐标系中,一个圆经过坐标原点O ,交坐标轴于点E ,F ,OE =8,OF =6,则圆的直径长为()A .12B .10C .14D .157.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR ,则∠AOQ 等于()A .60°B .65°C .72°D .75°8.秋千拉绳长3m ,静止时踩板离地面0.5m ,某小朋友荡秋千时,秋千在最高处踩板离地面2m(左右对称),如图所示,则该秋千所荡过的圆弧AB ︵的长为()A .πmB .2πm C.43πm D.32πm9.如图,PA ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交PA ,PB 于点C 和点D .若△PCD 的周长为⊙O 半径的3倍,则t a n ∠APB 等于()A.125 B.3513 C.2313 D.51210.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是()A .4B .3+2C .32D .3+3二、填空题(每题3分,共24分)11.如图,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为________.12.如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,那么∠A =________.13.如图,DB 切⊙O 于点A ,∠AOM =66°,则∠DAM =________.14.如图,AB ,CD 是⊙O 的弦,AB ⊥CD ,BE 是⊙O 的直径,若AC =3,则DE =________.15.如图,水平放置的圆柱形油槽的截面直径是52c m ,装入油后,油深CD 为16c m ,那么油面宽度AB=________.16.如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC为半径作CD ︵交OB 于点D .若OA =2,则阴影部分的面积为________.17.如图,在△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB ,BC 均相切,则⊙O 的半径为________.18.如图,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB .其中正确的结论有_____(填序号).三、解答题(19题8分,20,21每题10分,22,23每题12分,24题14分,共66分)19.如图,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连接BC ,若∠P =30°,求∠B 的度数.20.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC ,过点D 作DE ⊥AC ,垂足为E .(1)求证:AB =AC .(2)若⊙O 的半径为4,∠BAC =60°,求DE 的长.21.如图,点P 在y 轴上,⊙P 交x 轴于A ,B 两点,连接BP 并延长交⊙P 于点C ,过点C 的直线y =2x+b 交x 轴于点D ,且⊙P 的半径为5,AB =4.(1)求点B ,P ,C 的坐标.(2)求证:CD 是⊙P 的切线.22.如图,CB和CD切⊙O于B,D两点,A为圆周上一点,且∠1:∠2:∠3=1:2:3,BC=3,求∠AOD所对扇形的面积S.23.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80m,桥拱到水面的最大高度为20m.(1)求桥拱所在圆的半径.(2)现有一艘宽60m,顶部截面为长方形且高出水面9m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.24.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线.(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长.(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.参考答案一、1.C 2.A3.B4.B5.D6.B 7.D 8.B 9.A 10.B二、11.3【点拨】如图,连接OC ,设AB ⊥CD 于E .∵AB 为⊙O 的直径,AB =10,∴OC =5.∵CD ⊥AB ,CD =8,∴CE =4,∴OE =OC 2-CE 2=52-42=3.12.99°【点拨】易知EB =EC .又∠E =46°,所以∠ECB =67°.从而∠BCD =180°-67°-32°=81°.在⊙O 中,∠BCD 与∠A 互补,所以∠A =180°-81°=99°.13.147°【点拨】因为DB 是⊙O 的切线,所以OA ⊥DB .由∠AOM =66°,得∠OAM =12×(180°-66°)=57°.所以∠DAM =90°+57°=147°.14.3【点拨】∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠BDC +∠CDE =90°.又∵AB ⊥CD ,∴∠ACD +∠CAB =90°.∵∠CAB =∠BDC ,∴∠ACD =∠CDE .∴AD ︵=CE ︵.∴AD ︵-AE ︵=CE ︵-AE ︵.∴DE ︵=AC ︵.∴DE =AC =3.15.48cm16.32+π12【点拨】连接OE .∵点C 是OA 的中点,∴OC =12OA =1.∵OE =OA =2,∴OC =12OE .∵CE ⊥OA ,∴∠OEC =30°.∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC ·CE =32.∵∠AOB =90°,∴∠BOE =∠AOB -∠COE =30°.∴S 扇形BOE =30π×22360=π3.又S 扇形COD =90π×12360=π4.因此S 阴影=S 扇形BOE +S △OCE -S 扇形COD =π3+32-π4=32+π12.17.6718.①②④【点拨】连接OM ,ON ,易证Rt △OMC ≌Rt △OND ,可得MC =ND ,故①正确.在Rt △MOC中,CO =12MO ,可得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以AM ︵=MN ︵=NB ︵,故②正确.易得CD =12AB =OA =OM ,∵MC <OM ,∴MC <CD .∴四边形MCDN 不是正方形,故③错误.易得MN =CD =12AB ,故④正确.三、19.解:∵PA 切⊙O 于A ,AB 是⊙O 的直径,∠P =30°,∴∠AOP =60°.∴∠B =12∠AOP =30°.20.(1)证明:如图,连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°.∵DC =BD ,∴AB =AC .(2)解:由(1)知AB =AC ,∵∠BAC =60°,∠ADB =90°,∴△ABC 是等边三角形,∠BAD =30°.在Rt △BAD 中,∠BAD =30°,AB =8,∴BD =4,即DC =4.又∵DE ⊥AC ,∴DE =DC ·sin C =4·sin 60°=4×32=2 3.21.(1)解:如图,连接CA .∵OP ⊥AB ,∴OB =OA =2.∵OP 2+OB 2=BP 2,∴OP 2=5-4=1,即OP =1.∵BC 是⊙P 的直径,∴∠CAB =90°.∵CP =BP ,OB =OA ,∴AC =2OP =2.∴B (2,0),P (0,1),C (-2,2).(2)证明:∵直线y =2x +b 过C 点,∴b =6.∴y =2x +6.∵当y =0时,x =-3,∴D (-3,0).∴AD =1.∵OB =AC =2,AD =OP =1,∠CAD =∠POB =90°,∴△DAC ≌△POB .∴∠DCA =∠ABC .∵∠ACB +∠ABC =90°,∴∠DCA +∠ACB =90°,即CD ⊥BC .∴CD 是⊙P 的切线.22.解:∵CD 为⊙O 的切线,∴∠ODC =90°,即OD ⊥CD .∵∠1:∠2:∠3=1:2:3,∴∠1=15°,∠2=30°,∠3=45°.连接OB .∵CB 为⊙O 的切线,∴OB ⊥BC ,BC =CD .∴∠CBD =∠3=45°,∴∠OBD =45°.又∠1+∠2=45°,∴∠BOD =90°,即OD ⊥OB .∴OD ∥BC ,CD ∥OB .∴四边形OBCD 为正方形.∵BC =3,∴OB =OD =3.∵∠1=15°,∴∠AOB =30°,∴∠AOD =120°.∴S =120360×π×32=3π.23.解:(1)如图,设点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点C ,连接AE ,则CF =20m .由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40m.设半径是r m ,由勾股定理,得AE 2=AF 2+EF 2=AF 2+(CE -CF )2,即r 2=402+(r -20)2.解得r =50.∴桥拱所在圆的半径为50m.(2)这艘轮船能顺利通过.理由:当宽60m 的轮船刚好可通过拱桥时,如图,MN 为轮船顶部的位置.连接EM ,设EC 与MN 的交点为D ,则DE ⊥MN ,∴DM =30m ,∴DE =EM 2-DM 2=502-302=40(m ).∵EF =EC -CF =50-20=30(m),∴DF =DE -EF =40-30=10(m).∵10m>9m ,∴这艘轮船能顺利通过.24.(1)证明:如图,连接CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∴∠CAD +∠ADC =90°.又∵∠PAC =∠PBA ,∠ADC =∠PBA ,∴∠PAC =∠ADC .∴∠CAD +∠PAC =90°.∴PA ⊥DA .而AD 是⊙O 的直径,∴PA 是⊙O 的切线.(2)解:由(1)知,PA ⊥AD ,又∵CF ⊥AD ,∴CF ∥PA .∴∠GCA =∠PAC .又∵∠PAC =∠PBA ,∴∠GCA =∠PBA .而∠CAG =∠BAC ,∴△CAG ∽△BAC .∴AGAC =ACAB ,即AC 2=AG ·AB .∵AG ·AB =12,∴AC 2=12.∴AC =2 3.(3)解:设AF =x ,∵AF ∶FD =1∶2,∴FD =2x .∴AD =AF +FD =3x .易知△ACF ∽△ADC ,∴ACAD =AFAC ,即AC 2=AF ·AD .∴3x 2=12,解得x =2或x =-2(舍去).∴AF =2,AD =6.∴⊙O 的半径为3.在Rt △AFG 中,AF =2,GF =1,根据勾股定理得AG =AF 2+GF 2=22+12=5,由(2)知AG ·AB =12,∴AB =12AG =1255.连接BD ,如图所示.∵AD 是⊙O 的直径,∴∠ABD =90°.在Rt △ABD 中,∵sin ∠ADB =ABAD ,AD =6,AB =1255,∴sin ∠ADB =255.∵∠ACE =∠ADB ,∴sin ∠ACE =255.。
九年级数学上学期第三章《图形的相似》综合测试题(含答案)

九年级数学上学期第三章《图形的相似》综合测试题(含答案)一、选择题(本大题共8小题,每小题4分,共32分) 1.已知5a=6b (a ≠0),则下列变形正确的是 ( )A .b 6=5aB .b 5=6a C .ab =56D .a -b b=152.如图1,已知AB ∥CD ∥EF ,BD ∶DF=1∶2,那么下列结论中正确的是 ( )图1A .AC ∶AE=1∶3B .CE ∶EA=1∶3C .CD ∶EF=1∶2 D .AB ∶EF=1∶2 3.C 是线段AB 的黄金分割点,且AB=6cm,则BC 的长为 ( ) A .(3√5-3)cm B .(9-3√5)cmC .(3√5-3)cm 或(9-3√5)cmD .(9-3√5)cm 或(6√5-6)cm4.如图2,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,AD=1,BC=4,则△AOD 与△BOC 的面积之比为( )A.12 B.14 C.18D.116图2 图35.如图3,已知△ABC 与△BDE 都是等边三角形,点D 在边AC 上(不与点A ,C 重合),DE 与AB 相交于点F ,那么与△BFD 相似的三角形是 ( )A .△BFEB .△BDCC .△BDAD .△AFD6.已知△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,且点A 的坐标为(2,1),△ABC 与△A 1B 1C 1的位似比为12,则点A 的对应点A 1的坐标是 ( )A .(4,2)B .(-4,-2)C .(4,2)或(-4,-2)D .(6,3)7.如图4,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE =AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF图4 图58.如图5,在△ABC中,中线BE,CD相交于点O,连接DE,有下列结论:①DEBC =12;②S△DOES△COB=12;③AD AB =OEOB;④S△DOES△ADE=13.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分)9.若△ABC∽△DEF,相似比为3∶2,则对应周长的比值是.10.在比例尺为1∶40000的地图上,某条道路的长为7cm,则该道路的实际长度是_______km.11.若a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d= cm.12.如图6,在△ABC中,MN∥BC分别交AB,AC于点M,N.若AM=1,MB=2,BC=3,则MN的长为.图613.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A,D,E为顶点的三角形与△ABC相似.14.如图7,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高m.(杆的宽度忽略不计)图7三、解答题(本大题共5小题,共44分)15.(6分)如图8所示,AD,BE分别是钝角三角形ABC的边BC,AC上的高.求证:ADBE =AC BC.图816.(6分)如图9,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=12CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.图917.(6分)如图10,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB'C'D',使它与四边形ABCD位似,且位似比为2.(1)在图中画出四边形AB'C'D';(2)试说明△AC'D'是等腰直角三角形.图1018.(12分)为测量操场上旗杆的高度,设计的测量方案如图11所示,标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛距地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,E,C,A三点共线,求旗杆AB的高度.图1119.(14分)如图12,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于点M,连接CM 交DB于点N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.图12参考答案1.D [解析] 选项A,b 6=5a ⇒ab=30,故此选项错误;选项B,b 5=6a ⇒ab=30,故此选项错误;选项C,ab =56⇒6a=5b ,故此选项错误;选项D,a -b b=15⇒5(a-b )=b ,即5a=6b ,故此选项正确.故选D .2.A [解析]∵AB ∥CD ∥EF ,BD ∶DF=1∶2,∴AC ∶AE=1∶3,故A 选项正确;CE ∶EA=2∶3,故B 选项错误;CD ∶EF 的值无法确定,故C 选项错误;AB ∶EF 的值无法确定,故D 选项错误.故选A .3.C [解析]∵C 是线段AB 的黄金分割点,且AB=6cm,∴BC=√5-12AB=(3√5-3)cm 或BC=3−√52AB=(9-3√5)cm .故选C .4.D [解析] 在四边形ABCD 中,AD ∥BC ,所以△AOD ∽△COB.又由AD=1,BC=4,根据相似三角形的面积比等于相似比的平方,即可求得△AOD 与△BOC 的面积之比.5.C [解析]∵△ABC 与△BDE 都是等边三角形,∴∠A=∠BDF=60°.又∵∠ABD=∠DBF ,∴△BFD ∽△BDA ,∴与△BFD 相似的三角形是△BDA.6.A [解析]∵△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,A (2,1),△ABC 与△A 1B 1C 1的位似比为12,∴点A 的对应点A 1的坐标是(2×2,1×2),即(4,2). 7.D8.C [解析] 由BE ,CD 均为△ABC 的中线可知,DE 为△ABC 的中位线,所以DE=12BC ,DE ∥BC ,所以DE BC =12,故①正确;由DE ∥BC 可得△DOE ∽△COB ,所以S △DOE S △COB=DE BC2=14,故②错误;由DE ∥BC 可得△ADE ∽△ABC ,△DOE ∽△COB ,所以AD AB =DE BC ,DE BC =OEOB ,所以AD AB =OEOB ,故③正确; 因为DE ∥BC ,所以△ADE ∽△ABC ,所以S △ADE S △ABC=DE BC2=14,设△DOE 的高为h ,DE=a ,则BC=2a ,△BOC 的高为2h ,所以△ABC 的高为6h ,所以△ADE 的高为3h ,所以S △DOES△ADE =12a ℎ12·a ·3ℎ=13,故④正确.故选C .9.3∶2 [解析] 根据相似三角形的周长比等于相似比求解.10.2.8 [解析] 设这条道路的实际长度为x cm,则140000=7x ,解得x=280000,280000cm =2.8km .11.15 [解析]∵a ,b ,c ,d 是成比例线段,∴a b=c d.∵a=2cm,b=6cm,c=5cm,∴26=5d,解得d=15(cm).12.1 [解析]∵MN ∥BC ,∴△AMN ∽△ABC ,∴AM AB =MNBC ,即11+2=MN 3,∴MN=1.13.125或53 [解析] 当AE AD =ABAC 时,∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=AB ·AD AC=6×25=125;当AD AE =ABAC 时,∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=AC ·AD AB =5×26=53.故答案为125或53. 14.815.证明:∵AD ,BE 是钝角三角形ABC 的高,∴∠ADC=∠BEC=90°.又∵∠DCA=∠BCE ,∴△DAC ∽△EBC , ∴AD BE =ACBC .16.解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB ∥CD ,∴∠ABF=∠CEB ,∴△ABF ∽△CEB.(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB=CD , ∴△DEF ∽△CEB ,△DEF ∽△ABF. ∵DE=12CD ,∴EC=3DE ,AB=2DE ,∴S △DEFS△CEB=DE EC2=19,S △DEF S △ABF=DE AB2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8, ∴S 四边形BCDF =S △CEB -S △DEF =16,∴S 平行四边形ABCD =S 四边形BCDF +S △ABF =16+8=24.17.解:(1)如图,四边形AB'C'D'即为所求作图形.(2)根据网格的特点,利用勾股定理可以求出AD'=C'D'=2√10,AC'=4√5.利用勾股定理的逆定理可以得出∠AD'C'=90°, 故△AC'D'是等腰直角三角形.18.解:如图,过点E 作EH ⊥AB 于点H ,交CD 于点G ,则EF=DG=BH=1.6m,GH=BD=15m,EG=DF=2m,∴CG=CD-DG=3-1.6=1.4(m). ∵CG ∥AH , ∴△ECG ∽△EAH , ∴CG AH =EGEH ,即1.4AH =22+15,解得AH=11.9(m),∴AB=AH+BH=11.9+1.6=13.5(m).答:旗杆AB 的高度为13.5m . 19.解:(1)证明:∵DB 平分∠ADC ,∴∠ADB=∠BDC.又∵∠ABD=∠BCD=90°, ∴△ABD∽△BCD,∴ADBD =BD CD,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC, ∴∠ADB=∠MBD,∴BM=MD.∵∠ABD=90°,∴∠MAB+∠ADB=90°,∠MBA+∠MBD=90°,∴∠MAB=∠MBA,∴BM=AM,∴AM=BM=MD=4.∵BD2=AD·CD,且CD=6,AD=8, ∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=BM2+BC2=28,∴MC=2√7.∵BM∥CD,∴△MNB∽△CND,∴BMCD =MNCN=23,∴MN=4√75.。
初三上数学试卷第三章答案

一、选择题(每题3分,共30分)1. 下列选项中,不是有理数的是()A. 2.5B. -3C. √2D. 0答案:C解析:有理数是可以表示为两个整数比的数,包括整数、分数和小数。
√2是无理数,不能表示为两个整数比,所以选项C不是有理数。
2. 下列数中,绝对值最小的是()A. -3B. 2C. 0D. -1答案:C解析:绝对值表示一个数到0的距离,所以绝对值最小的数就是距离0最近的数,即0。
3. 下列选项中,不是正数的是()A. -5B. 0C. 1D. 3答案:A解析:正数是大于0的数,所以选项A不是正数。
4. 下列方程中,解为整数的是()A. x + 2 = 5B. 2x - 3 = 7C. 3x + 1 = 0D. 4x - 2 = 8答案:B解析:将方程B中的x解出来,得到x = 5,是整数。
5. 下列不等式中,正确的是()A. 2x > 6B. 3x < 9C. 4x ≥ 12D. 5x ≤ 15答案:C解析:将不等式C中的x解出来,得到x ≥ 3,这是正确的。
6. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形答案:D解析:等边三角形的面积公式为S = (√3/4) a²,其中a是边长。
在边长相等的情况下,等边三角形的面积最大。
7. 下列选项中,不是等差数列的是()A. 1, 4, 7, 10, 13B. 2, 5, 8, 11, 14C. 3, 6, 9, 12, 15D. 4, 7, 10, 13, 16答案:B解析:等差数列是每一项与它前一项的差相等的数列。
选项B中,5 - 2 = 3,8 - 5 = 3,11 - 8 = 3,14 - 11 = 3,所以选项B是等差数列。
8. 下列函数中,y随x增大而减小的是()A. y = 2x + 1B. y = -x + 3C. y = x²D. y = -x²答案:B解析:一次函数y = mx + b中,当斜率m小于0时,y随x增大而减小。
湘教版九年级数学下册第三章测试题(附答案)

湘教版九年级数学下册第三章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.如图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是()A. 7B. 8C. 9D. 102.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A. B. C. D.3.如图是一个几何体的三视图,则这个几何体是()A. 正方体B. 长方体C. 三棱柱D. 三棱锥4.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A. 相交B. 平行C. 垂直D. 无法确定5.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A. B. C. D.6.校服裙子的展开图可近似看做是()A. B. C. D.7.某几何体的三视图如图所示,这个几何体是()A. 圆锥B. 圆柱C. 三棱柱D. 三棱锥8.若右图是某个几何体的三视图,则该几何体是( )A. 长方体B. 三棱柱C. 圆柱D. 圆台9.如图所示的工件的俯视图是()A. B. C. D.10.由7个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则其左视图是()A. B. C. D.11.如下图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和五边形,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图是()A. B. C. D.12.(2015•莱芜)下列几何体中,主视图和左视图都为矩形的是()A. B. C. D.二、填空题(共8题;共18分)13.如图所示的四幅平面图中,是三棱柱的表面展开图的有________.(只填序号)14.如图是一个长方体的展开图,每个面上都标注了字母,如果F面在前面,B面在左面,(字母朝外),那么在上面的字母是________.15.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x=________ ,y=________ .16.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为________.17.如图是一幢建筑物和一根旗杆在一天中四个不同时刻的影子.将四幅图按先后顺序排列应为________.18.如图是由五个大小相同的正方体搭成的几何体,从________ 面看所得到的性状图的面积最小.19.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.20.如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B距离C点5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________cm.三、解答题(共4题;共22分)21.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.22.用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示(1)请画出一种从左面看到的它的形状图;(2)根据你所画出的从左面看到的形状图,结合从正面和从上面看到的这个几何体的形状图直接写出这个几何体所需要的小立方体的个数.23.由几个小立方体叠成的几何体的主视图和左视图如图所示,求组成几何体的小立方体个数的最大值与最小值,并画出相应的俯视图.24.如图所示是长方体的表面展开图,折叠成一个长方体.(1)与字母F重合的点有哪几个?(2)若AD=4AB,AN=3AB,长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的容积.四、综合题(共4题;共36分)25.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为3 cm,长方形的长为5 cm,宽为3 cm,请直接写出修正后所折叠而成的长方体的体积是________cm3.26.按要求完成下列各小题(1)计算2sin260°+ sin30°•cos30°;(2)请你画出如图所示的几何体的三视图.27.用小立方块搭一个几何体,使它从正面和从上面看的形状图如图所示.从上面看的形状图中,小方形中的字母表示该位置小立方块的个数,试回答下列问题.(1)x,z各表示多少?(2)y可能是多少?这个几何体最少由几个小立方块搭成?最多呢?28.解答题(1)如图:是有一些相同小正方体搭建而成的几何体的俯视图,其中小正方形中的数字表示在这个位置小立方体的个数,请画出该几何体的主视图与左视图.(2)已知、b互为相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,求:p﹣cd+ 的值.答案一、单选题1. A2. C3. B4.B5.B6. D7. A8. A9.C 10. A 11.C 12. B二、填空题13.①②③ 14.C 15.1或2;3 16.39 17.④①③② 18.左19.54 20. 25三、解答题21.解:这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“﹣2”相对,“x”与面“10”相对.则z+3=5,y+(﹣2)=5,x+10=5,解得z=2,y=7,x=﹣5.故x+y+z=4.22.解:(1)如图所示:还能搭出满足条件的其他几何体,此题有很多种不同几何体.(2)根据俯视图可得底面有5个小正方体,结合左视图和主视图可得第二层可能有2个或3个或4个,共有7个、8个或9个.23.解:最大值为12个,最小值为7个,俯视图分别如图所示(每个方格内的数字表示该位置上叠的小立方体的个数).24.解:(1)与F重合的点是B.(2)设长方体的长、宽、高分别为x、y、z.根据题意得:解得:.∴原长方体的容积=4×8×12=384.四、综合题25.(1)解:如图所示:(2)4526. (1)解:2sin260°+ sin30°•cos30°=2×()2+ × × = + = ;(2)解:如图所示:.27.(1)解:x=1,z=3(2)解:y可能是1或2,3+2+1+1+2+1+1=113+2+1++2+1+1=12这个几何体最少由11个立方体搭成,最多由12个立方体搭成28.(1)解答:根据俯视图上小正方形的个数,主视图、左视图,(2)答案:0或-2解答:a、b互=相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,得a+b=0,cd=1,m=±2,p=±1,p=1时,p﹣cd+=1﹣1+0=0,当p=﹣1时,p﹣cd+=﹣1﹣1+0=﹣2,综上所述:p﹣cd+=0,或p﹣cd+=﹣2.。
初三九年级数学第三章测试题

初三数学第三章测试题班级 姓名 号次一、填空题:(38%,1——6题每一个空格1分,第7题3分。
) 1、二次函数5322+-=x x y 中,二次项系数是 ,一次项系数是 , 常数项是 。
2、二次函数1)3(42-+-=x y 中,图象是 ,开口 ,对称轴是直线 ,顶点坐标是( ),当X 时,函数Y 随着X 的增大而增大,当X 时,函数Y 随着X 的增大而减小。
当X= 时,函数Y 有最 值是 。
3、抛物线232++=x x y 中,对称轴是 ,图象与Y 轴的交点是( ),这点关于对称轴的对称点的坐标是( ),图象与X 轴的交点的坐标是( ),( )。
当X 时,Y=0,当 X 时,Y 〈0,当X 时,Y 〉0。
4、抛物线4)2(212+-=x y ,是由抛物线 ,先向 平移 单位,再向 平移 单位得到的。
5、已知函数,2)1(2m x x m y ++-=当=m 时,图象是直线;当 m 时,图象是抛物线;当=m 时,抛物线过坐标原点。
6、已知抛物线c bx ax y ++=2(如图),与x 轴交于点A ),0,(),0,(21x B x 则a 的符号是 ,b 的符号是 , c 的符号是 ,ac b 42-的是 ,c b a ++的符号是 , c b a +-的符号是 ,b a +2的符号是 。
7、用配方法把二次函数5822-+-=x x y 化成k m x a y ++=2)(的形式,即=y 。
二、选择题:(30%)1、在同一坐标系中,三条抛物线22221,2,2x y x y x y =-==的共同点是( ) A 、关于x 轴对称,开口向上; B 、关于x 轴对称,y 随x 的增大而增大;C 、关于y 轴对轴,顶点在原点;D 、关于y 轴对称,y 随x 的增大而减少。
12、在函数12),2(,35,522-+-=--=-=-=x x y x x y x xy x y ,以x 为自变量的二次函数有( )A 、1个;B 、2个;C 、3个;D 、4个。
浙教版数学九年级上册第3章 圆的基本性质 综合测试题

1 第3章 圆的基本性质 综合测试题
一、选择题
1.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )
A .
B .
C .
D .
2.在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图1所示,若油面宽AB=160cm ,则油的最大深度为( )
A . 40cm
B . 60cm
C . 80cm
D .
100cm
3.如图,⊙O 是△ABC 的外接圆,连接OA 、OB ,∠OBA=50°,则∠C 的度数为( )
A . 30°
B . 40°
C . 50°
D . 80°
4.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB ⊥CD ,垂足为M ,则AC 的长为( ) A.52cm B.54cm C. 52cm 或54cm D.32cm 或34cm
5.已知⊙O 的半径r =3,设圆心O 到一条直线的距离为d ,圆上 到这条直线的距离为2的点的个数为m ,给出下列命题:
①若d >5,则m =0;②若d =5,则m =1;③若1<d <5,则m =3
④若d =1,则m =2;⑤若d <1,则m = 4. 其中正确命题的个数是
A .1
B .2
C . 3
D .5
6.如图,点A ,B ,C ,D 都在⊙O 上,AC ,BD 相交于点E ,则∠ABD=( )。
九年级数学上册第三章检测题(含答案)

第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( D ) A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率2.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( B )A .14B .12C .34D .1 3.在一个不透明的袋子中装有1个白球,1个黄球,2个红球,这4个球大小形状质地等完全相同,从袋中摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( C )A .12B .13C .16D .184.(恩施州中考)小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( D ) A .16 B .13 C .12 D .235.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为( C )A .12B .23C .13D .346.忽如一夜春风来,千树万树梨花开,在清明假期期间,小梅和小北姐弟二人准备一起去采摘园赏梨花,但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁去赏梨花,游戏规则:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同,游戏时先由小梅从中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小北从口袋中摸出1个乒乓球,记下颜色,如果姐弟二人摸到的乒乓球颜色相同,则小梅赢,否则小北赢.则小北赢的概率是( D )A .12B .13C .59D .497.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( D )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D .游戏者配成紫色的概率为16,第5题图) ,第7题图),第10题图)8.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( D )A .16个B .15个C .13个D .12个9.一项“过关游戏”规定:在过第n 关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于54n 2,则算过关;否则不算过关,则能过第二关的概率是( A )A .1318B .518C .14D .1910.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( D )A .34B .13C .23D .12二、填空题(每小题3分,共18分)11.(深圳中考)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是__23__.12.如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是__12__.13.(青海中考)有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为__415__.14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有__6__个.15.已知a 、b 可以取-2、-1、1、2中任意一个值(a ≠b),则直线y =ax +b 的图象不经过第四象限的概率是__16__.16.(成都期末)现有三张分别标有数字1、2、6的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回),再从中任意抽取一张,将上面的数字记为b ,这样的数字a ,b 能使关于x 的一元二次方程x 2-2(a -3)x -b 2+9=0有两个正根的概率为__13__.三、解答题(共72分)17.(6分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率. (2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.解:(1)13(2)画树状图略,所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=1618.(6分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.解:画树状图略,共有12种等可能的结果,甲抽到的牌面数字比乙大的有5种情况,小于等于乙的有7种情况,∴P(甲胜)=512,P(乙胜)=712,∴甲、乙获胜的机会不相同19.(7分)(日照中考)若n 是一个两位正整数,且n 的个位数字大于十位数字,则称n 为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个 (2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=315=1520.(7分)(扬州中考)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为________; (2)求他们三人在同一个半天去游玩的概率. 解:(1)14(2)由树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为28=1421.(8分)在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上. (1)从A 、D 、E 、F 四个点中任意取一点,以所取的这一点及点B 、C 为顶点画三角形,则所画三角形是等腰三角形的概率是______;(2)从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).解:(1)14(2)用树状图列出所有可能的结果:∵以点A 、E 、B 、C 为顶点及以D 、F 、B 、C 为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P =412=1322.(10(1)(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(直接写出结果,精确到0.01)(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率;(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为14,求取出了多少个黑球?解:(1)如图 (2)0.95 (3)18 (4)设取出了x 个黑球,则放入了x 个黄球,则5+x 5+13+22=14,解得x =5.答:取出了5个黑球23.(8分)随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab ≥0,∴满足ab ≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.解:(1)0.33(2)当x =7时,则两个小球上数字之和为9的概率是:212=16,故x 的值不可以取7,∵出现和为9的概率是三分之一,即有3种可能,∴3+x =9 或 5+x =9 或 4+x =9,解得 x =4,x =5,x =6,当x =6时,出现和为8的概率为16,故x =6舍去,故x 的值可以为4,5其中一个24.(10分)小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个求,摸后放回)得20分,问小明有哪几种摸法?解:(1)1个(2)画树状图如下,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。
九年级数学上册(第三章)同步练习试题

轧东卡州北占业市传业学校睢宁县新世纪九年级数学上册<第三章>同步练习一、选择题1、如果一个数的平方根与它的立方根相同,那么这个数是〔 〕 A 、±1 B 、0 C 、1 D 、0和12、在316x 、32-、5.0-、xa 、325中,最简二次根式的个数是〔 〕A 、1B 、2C 、3D 、4 3、以下说法正确的选项是〔 〕A 、0没有平方根B 、-1的平方根是-1C 、4的平方根是-2D 、()23-的算术平方根是34、164+的算术平方根是〔 〕A 、6B 、-6C 、6 D 、6±5、对于任意实数a ,以下等式成立的是〔 〕A 、a a =2B 、a a =2C 、a a -=2D 、24a a =6、设7的小数局部为b ,那么)4(+b b 的值是〔 〕A 、1B 、是一个无理数C 、3D 、无法确定7、假设121+=x ,那么122++x x的值是〔 〕A 、2 B 、22+ C 、2 D 、12-8、如果1≤a ≤2,那么2122-++-a a a 的值是〔 〕A 、a +6B 、a --6C 、a -D 、19、二次根式:①29x -;②))((b a b a -+;③122+-a a ;④x1;⑤75.0中最简二次根式是〔 〕A 、①②B 、③④⑤C 、②③D 、只有④10、式子1313--=--x xx x 成立的条件是〔 〕 A 、x ≥3 B 、x ≤1 C 、1≤x ≤3 D 、1<x ≤3 11、以下等式不成立的是〔 〕A 、()a a =2B 、aa =2 C 、33a a -=- D 、a aa -=-112、假设x <2,化简()xx -+-322的正确结果是〔 〕A 、-1B 、1C 、52-xD 、x 25- 13、式子3ax --〔a >0〕化简的结果是〔 〕A 、ax x- B 、ax x -- C 、ax x D 、ax x -14、231+=a ,23-=b ,那么a 与b 的关系是〔 〕A 、b a =B 、b a -=C 、ba 1=D 、1-=ab 15、以下运算正确的选项是〔 〕A 、()ππ-=-332B 、()12211-=-- C 、()0230=-D 、()6208322352-=-二、填空题1、当a 时,23-a 无意义;322xx +-有意义的条件是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学第三章测试题
班级 姓名 号次
一、填空题:(38%,1——6题每一个空格1分,第7题3分。
)
1、二次函数5322+-=x x y 中,二次项系数是 ,一次项系数是 , 常数项是 。
2、二次函数1)3(42-+-=x y 中,图象是 ,开口 ,对称轴是直线 ,顶点坐标是( ),当X 时,函数Y 随着X 的增大而增大,当X 时,函数Y 随着X 的增大而减小。
当X= 时,函数Y 有最 值是 。
3、抛物线232++=x x y 中,对称轴是 ,图象与Y 轴的交点是( ),这点关于对称轴的对称点的坐标是( ),图象与X 轴的交点的坐标是( ),( )。
当X 时,Y=0,当 X 时,Y 〈0,当X 时,Y 〉0。
4、抛物线4)2(2
12+-=x y ,是由抛物线 ,先向 平移 单位,再向 平移 单位得到的。
5、已知函数,2)1(2m x x m y ++-=当=m 时,图象是直线;当 m 时,图象是抛物线;当=m 时,抛物线过坐标原点。
6、已知抛物线c bx ax y ++=2(如图),与x 轴交于
点A ),0,(),0,(21x B x 则a 的符号是 ,b 的符号是 ,
c 的符号是 ,ac b 42-的是 ,c b a ++的符号是 ,
c b a +-的符号是 ,b a +2的符号是 。
7、用配方法把二次函数5822-+-=x x y 化成k m x a y ++=2)(的形式,即=y。
二、选择题:(30%)
1、在同一坐标系中,三条抛物线2222
1,2,2x y x y x y =-==的共同点是( ) A 、关于x 轴对称,开口向上; B 、关于x 轴对称,y 随x 的增大而增大;
C 、关于y 轴对轴,顶点在原点;
D 、关于y 轴对称,y 随x 的增大而减少。
1
2、在函数12),2(,35,522-+-=--=-=
-=x x y x x y x x
y x y ,以x 为自变量的二次函数有( ) A 、1个; B 、2个; C 、3个; D 、4个。
3、二次函数1692+-=x x y 的图象与x 轴的交点个数是( )
A 、1个;
B 、2个;
C 、1个或者2个;
D 、0个。
4、周长为30的等腰三角形,设腰长为x ,则x 的取值范围为( )
A 、150<<x ;
B 、1510<<x ;
C 、1557<<⋅x
D 、1557<≤⋅x 。
2
A 、3>x ;
B 、2-<x ;
C 、32<<-x ;
D 、2-<x 或3>x 。
6、二次函数c bx ax y ++=2的图象的对称轴位置( )
A 、只与a 有关;
B 、只与b 有关;
C 、只与b a ,有关;
D 、与c b a ,,都有关。
7、一元二次方程02=++c bx ax 的两根为-3,-1,则抛物线c bx ax y ++=2的对称轴是( )
A 、直线2=x ;
B 、直线2-=x ;
C 、直线2=y ;
D 、直线1-=x 。
8、已知二次函数c bx ax y ++=2的图象如图,
则在“①0<a ②b 0> ③0<c ④042>-ac b ”
正确的个数是( )
A 、1;
B 、2;
C 、3;
D 、4。
9、如果抛物线c bx ax y ++=2)0(<a 的顶点在x 轴的下方,那么ac b 42-是( )
A 、大于零;
B 小于零;
C 大于等于零;
D 、小于等于零。
10、一个二次函,当0=x 时,5-=y ;当1-=x 时,4-=y ;当2=x 时,5=y ,
这个二次函数解析式是( )
A 、522--=x x y ;
B 、522++=x x y ;
C 、522+-=x x y ;
D 、522-+=x x y 。
三、解答题:(32%)
1、已知二次函数c bx x y ++-=2的顶点坐标为(-1,-3),求c b ,的值。
2
2、已知二次函数的图象过点(4,-3),且当3=x 时,4=最大值y ,求这个二次函数的解析式。
3、如图,用长20米的篱笆,一面靠墙围成一个长方形的园子,怎样围才使园子的面积最大?最大面积是多少?
4、已知二次函数22-+-=m mx x y 。
(1) 证明不论m 为何实数,二次函数的图象与x 轴有两个交点;
(2) 当函数图象经过点(3,6)时,确定m 的值。
3
(住宿必做)
5、抛物线)0(2≠++=a c bx ax y 的顶点为(-2,1),且02=++c bx ax 两根之差的绝对值等于2,求抛物线的函数解析式。
(8%)
6、已知二次函数12)3(2-++-=k x k x y 。
(1) 当它的图象与y 轴交于点A (0,5)时,求k 的值;
(2) 对于(1)所求出的二次函数,设其图象与x 的交点从左到右依次是B ,C ,若点P )0,(x 是
BC 上的一个动点(可以与B 重合,但不能与C 重合),点D 的坐标为(0,3),写出四边形ADPC 的面积S 关于x 的函数关系式;
(3) 当x 为何值时S 最大,这个最大值是多少?
4。