高数阶段练习第三章参考答案
高数习题(第三章)第八周

中值及相关定理:连续函数的介值定理,零点定理,费马引理Cauthy Lagrange Rolle ,,注意要点:1.验证定理条件2.构造辅助函数中值定理条件:1)在闭区间[],a b 上连续 2)在开区间(),a b 内可导 罗尔定理:1)+2)+3)()()()()(),,,'0.f a f b a b a b f ξξξ=⇒<<=有一点使得 拉格朗日:1)+2)=有一点()()()(),'.f b f a a b f b aξξξ-<<=-使得 柯西:1)+2)+3)()()()()()()()''0.'f b f a f F x F b F a F ξξ-≠⇒=-例题:1若)(x f 在),(b a 可导且)()(b f a f =,则存在什么样的点属于),(b a ,使0)('=ξf 2一些构造函数+中值定理的题:[])(')()()(222ξξf a b a f b f -=-.2211sin '()tan '()2cos a b f f ξξξξ+= 3设R x x f ∈>,0)(",任取),(,b a c x ∈且c x ≠, 求证:)()()()()()())(('a f a x ab a f b f x fc f c x c f +---<<+-,即曲线介于切线与割线之间.3.2洛必达 4求极限:211000lim .xx e x-→ 5设函数()f x 具有一阶连续导数,且 ()()()201cos 00,'02,lim tan x f x f f x →-=== 3.3泰勒公式:6.一些类似的taylor 展开题:1.)(x f 在),(b a 上连续,在),(b a 内有二阶导,若|)("|4)(|)()(|,0)(')('2ξf a b a f b f b f a f -≤-==2.)(x f 在[]1,0有二阶导,b a b x f a x f ,,|)("|,|)(|≤≤非负,)1,0(∈c ,求证:.22|)('|b a c f +≤ 3.)(x f 在()+∞∞-,上具有二阶导数,且220)("|,|)(|M x f M x f ≤≤,求证:202|)('|M M x f ≤4. 设在[]0,a 上有()()'',f x M f x ≤在()0,a 内存在最大值, 证明:()()'0'f f a aM +≤。
精选-高一上册数学第三章测试题及答案:函数的应用-文档资料

高一上册数学第三章测试题及答案:函数的应用函数是发生在非空数集之间的一种对应关系。
查字典数学网为大家推荐了高一上册数学第三章测试题及答案,请大家仔细阅读,希望你喜欢。
1.设U=R,A={x|x0},B={x|x1},则A?UB=( )A{x|01} B.{x|0C.{x|x0}D.{x|x1}【解析】 ?UB={x|x1},A?UB={x|0【答案】 B2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=( )A.log2xB.12xC.log12xD.2x-2【解析】 f(x)=logax,∵f(2)=1,loga2=1,a=2.f(x)=log2x,故选A.【答案】 A3.下列函数中,与函数y=1x有相同定义域的是( )A.f(x)=ln xB.f(x)=1xC.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+).故选A.【答案】 A4.已知函数f(x)满足:当x4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=( )A.18B.8C.116D.16【解析】 f(3)=f(4)=(12)4=116.【答案】 C5.函数y=-x2+8x-16在区间[3,5]上( )A.没有零点B.有一个零点C.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,函数在[3,5]上只有一个零点4.【答案】 B6.函数y=log12(x2+6x+13)的值域是( )A.RB.[8,+)C.(-,-2]D.[-3,+)【解析】设u=x2+6x+13=(x+3)2+44y=log12u在[4,+)上是减函数,ylog124=-2,函数值域为(-,-2],故选C.【答案】 C7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )A.y=x2+1B.y=|x|+1C.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选C.【答案】 C8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是( )A.(0,1)B.(1,2)C(2,3) D.(3,4)【解析】由函数图象知,故选B.【答案】 B9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a 的取值范围是( )A.a-3B.a3C.a5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-,4)上为减函数,只须使(-,4)?(-,-3a+12)即-3a+124,a-3,故选A.【答案】 A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是( )A.y=100xB.y=50x2-50x+100C.y=502xD.y=100log2x+100【解析】对C,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选C. 【答案】 C11.设log32=a,则log38-2 log36可表示为( )A.a-2B.3a-(1+a)2C.5a-2D.1+3a-a2【解析】 log38-2log36=log323-2log3(23)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】 A12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lg x)f(1),则x的取值范围是( )A.110,1B.0,110(1,+)C.110,10D.(0,1)(10,+)【解析】由已知偶函数f(x)在[0,+)上递减,则f(x)在(-,0)上递增,f(lg x)f(1)?01,或lg x0-lg x1?110,或0-1?110,或110x的取值范围是110,10.故选C.【答案】 C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若?UA={1},则实数a的值是________.【答案】 -1或214.已知集合A={x|log2x2},B=(-,a),若A?B,则实数a 的取值范围是(c,+),其中c=________.【解析】 A={x|04,即a的取值范围为(4,+),c=4.【答案】 415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+).【答案】 [1,+)16.有下列四个命题:①函数f(x)=|x||x-2|为偶函数;②函数y=x-1的值域为{y|y③已知集合A={-1,3},B={x|ax-1=0,aR},若AB=A,则a的取值集合为{-1,13};④集合A={非负实数},B={实数},对应法则f:求平方根,则f是A到B的映射.你认为正确命题的序号为:________. 【解析】函数f(x)=|x||x-2|的定义域为(-,2)(2,+),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;函数y=x-1的定义域为{x|x1},当x1时,y0,即命题②正确;因为AB=A,所以B?A,若B=?,满足B?A,这时a=0;若B?,由B?A,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1【解析】 A={x|x-2,或x5}.要使AB=?,必有2m-1-2,3m+25,3m+22m-1,或3m+22m-1,解得m-12,m1,m-3,或m-3,即-121,或m-3.18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.【解析】 (1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x[-5,5].由于f(x)的对称轴为x=1,结合图象知,当x=1时,f(x)的最小值为1,当x=-5时,f(x)的最大值为37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,∵f(x)在区间[-5,5]上是单调函数,-a-5或-a5.故a的取值范围是a-5或a5.19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.【解析】 (1)原式=25912+(lg5)0+343-13=53+1+43=4.(2)由方程log3(6x-9)=3得6x-9=33=27,6x=36=62,x=2.经检验,x=2是原方程的解.20.(本小题满分12分)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x440.118(xN).去乙商场花费80075%x(xN*).当118(xN*)时y=(800-20x)x-600x=200x-20x2,当x18(xN*)时,y=440x-600x=-160x,则当y0时,1当y=0时,x=10;当y0时,x10(xN).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;【解析】 (1)由1+x0,1-x0,得-1函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x(-1,1),有-x(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x)f(x)为奇函数.22.(本小题满分14分)设a0,f(x)=exa+aex是R上的偶函数.(1)求a的值;(2)证明:f(x)在(0,+)上是增函数.【解析】 (1)解:∵f(x)=exa+aex是R上的偶函数,f(x)-f(-x)=0.小编为大家提供的高一上册数学第三章测试题及答案,大家仔细阅读了吗?最后祝同学们学习进步。
《高等数学一》第三章 导数与微 试题模拟课后习题汇总(含答案解析)

第三章导数与微分[单选题]1、设函数,则高阶导数=()A、12!B、11!C、10!D、0【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考察高阶导数计算.因为多项式的最高次幂为11,故=0.[单选题]2、f(x)=4x-x3在点(-1,-3)处的切线方程为( )A、y=x-2B、y=x+2C、y=-x+2D、y=-2x+1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】f(x)=4x-x3, f(-1)=-4+1=-3,故(-1,-3)在所给的曲线上. 又f ' (x)=4-3x2故f ' (-1)=4-3=1∴过(-1,-3)的切线方程为y=(x+1)-3=x-2.[单选题]3、y=cos3x-cos3x的导数为( )A、3(sin3x-sinxcos2x)B、3(sin3x+sinxcos2x)C、3(sinx-sinxcos2x)D、3(sin3x-sin3xcos2x)【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】 y’=(cos3x)' -(cos3x) '=3cos2x(-sinx)-(-sin3x)×3=3(sin3x-sinxcos2x)[单选题]4、设y=x n+e-x,则y(n)(0)=()A、n!+(-1)nB、n!C、n!+(-1)n-1D、n!-1【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】y(n)(x)=n!+(-1)n e-x,从而y(n)(0)=n!+(-1)n[单选题]5、设函数f(x)=arctanx,求=( )A、-2B、1C、3D、0【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]6、设y=lnx,则y(n)=()A、(-1)n n!x-nB、(-1)n(n-1)!x-2nC、(-1)n-1(n-1)!x-nD、(-1)n-1n!x-n+1【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】y′=x-1,y′′=-1!x-2, y′′′=2!x-3,…. y(n)= (-1)n-1(n-1)!x-n[单选题]7、已知函数,则f(x)在点x=0处()A、连续但导数不存在B、间断C、导数f ’(0)=-1D、导数f ’(0)=1【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】所以,f(x)在点x=0处间断,答案为B.[单选题]8、y=(2x2-x+1)2的导数为( )A、2(2x2-x+1)(4x-1)B、(2x2-x+1)(4x-1)C、(2x2-x+1)(4x+1)D、(2x2+x+1)(4x-1)【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】y’=2(2x2-x+1)(2x2-x+1)’=2(2x2-x+1)(4x-1)[单选题]9、设函数f(x)在x0点可微是f(x)在该点可导的( )A、充分必要条件B、充分条件C、必要条件D、无关条件【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】设函数f(x)在x0点可导是f(x)在该点可微的充要条件,对于一元函数,两者是等价的。
职高数学第三章函数习题集及答案

3.1函数的概念及其表示法习题练习3.1.11、求y=3x-1的定义域:2、指出下列各函数中,哪个与函数y x=是同一个函数:(1)2xyx=;(2)y;(3)s t=.3、已知f(x)=3x+6,求f(0)、f(2)、f(-2)。
参考答案:1、R2、(3)3、6、12、0练习3.1.21、利用“描点法”作出函数xy=的图像,并判断点(16,4)是否为图像上的点2、市场上苹果的价格是8元/kg ,应付款额y是购买苹果数量x的函数.请写出其解析法。
3、市场上中性笔的价格是2元/只,应付款额y是购买中性笔数量x的函数.请写出其解析法。
参考答案:1、作图略,在。
2、y=8x,(x为正整数)3、y=2x(x为正整数)3.2函数的性质习题练习3.2.11、判断函数y=-2x+3的单调性.23、判断函数y=8X+3的单调性.参考答案:1、减2、左增、右减3、增练习3.2.21、判断y=8X+3的奇偶性:2、判断y=4X 的奇偶性3、判断y=X 2的奇偶性 参考答案:1、非奇非偶函数2、奇函数3、偶函数3.3函数的实际应用举例习题练习3.31、.求()221,20,1,0 3.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩的定义域; 2、求函数()221,0,,0.x x y f x x x -⎧⎪==⎨>⎪⎩的定义域;3、求函数() 1.6,010,2.812,10.x x y f x x x <⎧==⎨->⎩的定义域; 4、作出函数()1,0,1,0x x y f x x x -<⎧==⎨+⎩的图像 5、设函数()221,20,1,0 3.x x f x x x +-<⎧⎪=⎨-<<⎪⎩作出函数的图像.6、设函数7,03,4,310,1.51,10.x y x x x x <⎧⎪=+<⎨⎪->⎩作出函数的图像 参考答案:1、-2<=x<=32、R3、x>=04、略5、略6、略。
高考数学一轮复习练习第三章 导数及其应用 第2讲 Word版含答案

一、填空题.(·南京、盐城调研)函数()=(-)的单调递增区间是.解析函数()=(-)的导数为′()=[(-)]′=+(-)=(-).由函数导数与函数单调性的关系,得当′()>时,函数()单调递增,此时由不等式′()=(-)>,解得>.∴()单调递增区间是(,+∞).答案(,+∞).若函数()=-在区间(,+∞)单调递增,则的取值范围是.解析依题意得′()=-≥在(,+∞)上恒成立,即≥在(,+∞)上恒成立,∵>,∴<<,∴≥.答案[,+∞).已知=++(+)+在上不是增函数,则的取值范围是.解析′=+++,由题意知Δ=-(+)>,解得>或<-.答案(-∞,-)∪(,+∞).函数()在定义域内可导,若()=(-),且当∈(-∞,)时,(-)′()<,设=(),=,=(),则,,从小到大的顺序为.解析依题意得,当<时,′()>,()为增函数;又()=(-),且-<<<,因此(-)<()<,即有()<()<,<<.答案<<.函数()=+的单调递减区间为.解析′()=-(≠),由′()<得-<<或<<.故()的单调递减区间为(-,),(,).答案(-,),(,).如果函数()=-+-在上单调递增,则的取值范围是.解析′()=-+,由题意知′()=-+≥在上恒成立,则解得≥.答案.(·安徽卷改编)函数()=+++的图象如图所示,给出以下命题:①>,<,>,>;②>,<,<,>;③<,<,>,>;④>,>,>,<.则以上命题正确的是(填序号).解析∵函数()的图象在轴上的截距为正值,∴>.∵′()=++,且函数()=+++在(-∞,)上单调递增,(,)上单调递减,(,+∞)上单调递增,∴′()<的解集为(,),∴>,又,均为正数,∴>,->,可得>,<.答案①.若函数()=-++在上存在单调递增区间,则的取值范围是.解析对()求导,得′()=-++=-++.当∈时,′()的最大值为′=+.令+>,解得>-.所以的取值范围是.答案二、解答题.设()=(-)+,其中∈,曲线=()在点(,())处的切线与轴相交于点(,).()确定的值;()求函数()的单调区间.解()因为()=(-)+,故′()=(-)+.令=,得()=,′()=-,所以曲线=()在点(,())处的切线方程为-=(-)(-),由点(,)在切线上,可得-=-,解得=.()由()知,()=(-)+ (>),′()=-+=.令′()=,解得=或.当<<或>时,′()>,故()的递增区间是(,),(,+∞);当<<时,′()<,故()的递减区间是(,). .(·苏、锡、常、镇调研)已知函数()满足()=+′-+(其中′为()在点=处的导数,为常数).()求函数()的单调区间;。
高等数学练习题解析 第3章 导数与微分

所以 在 处可导,且 。
当 时, , ,
所以 在 处可导,且 。
。
10、解: 时,
时,容易判断,当 时, 不连续,因而函数 在 处不可导,当 时, 在 处连续,但由于 不存在,所以极限 不存在,这时我们要根据导数的定义来判断函数 在 处的可导性,由导数定义:
可知: 在 可导,且 。
所以当 时,
B类
1、解:割线的斜率为 ,而
由题设知 ,即 ,所以, 上点 处的切线平行于上述割线。
2、解:由定义:
3、解:
4、解:
5、证:由于 , 在 处可微,所以有:
而
6、解:方法1:令 ,则:
从而
。
所以 ,即 。
方法2:利用公式 ,得原式
而 ,
故原式
7、证:设 ,则由 连续性, ,使当 时, ,于是任意 。
所以有:
7、解:要 在 处可导,必须在 处连续,故有 ,即有 ,要 在 处可导,必须
而 ,
故有 ,所以 在 处可导时, 。
8、证:1)由 ,而
故 为奇函数。
由 ,而
故 为偶函数。
2)设 的周期为 ,即
而
所以 是周期仍为 的周期函数。
9、解:因为 在 处连续,于是
故
10、证:对于 ,有,
令 ,则得 ,由 的任意性知, 。
第
§3—1导数的概念
A类
1、解:
2、解:1)
故 ;
2) ,故 ;
3)
,故 ;
4) ;
,由3)知
故
3、解:1)
2)
4、解:由
,故 (米/秒)
5、解:1)由 ,故 在 处连续。
而
,所以 不存在,故 在 处不可导。
高考数学(理)大一轮复习习题:第三章 导数及其应用 word版含答案
第三章⎪⎪⎪导数及其应用第一节变化率与导数、导数的计算突破点(一) 导数的运算基础联通 抓主干知识的“源”与“流” 1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx. 2.函数f (x )的导函数 称函数f ′(x )=li m Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.3.基本初等函数的导数公式 原函数 sin x cos x a x (a >0) e x log a x (a >0,且a ≠1)ln x 导函数cos x-sin_xa x ln_ae x1x ln a1x(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.考点贯通 抓高考命题的“形”与“神”已知函数的解析式求导数[例1] 求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln x x ; (3)y =tan x ;(4)y =3x e x -2x +e ; (5)y =ln (2x +3)x 2+1.[解] (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2 =1x ·x -ln x x 2=1-ln xx 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x=1cos 2x. (4)y ′=(3x e x )′-(2x )′+(e)′ =(3x )′e x +3x (e x )′-(2x )′ =3x (ln 3)·e x +3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.(5)y ′=[ln (2x +3)]′(x 2+1)-ln (2x +3)(x 2+1)′(x 2+1)2=(2x +3)′2x +3·(x 2+1)-2x ln (2x +3)(x 2+1)2=2(x 2+1)-2x (2x +3)ln (2x +3)(2x +3)(x 2+1)2.[方法技巧]导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.(6)复合函数:确定复合关系,由外向内逐层求导.导数运算的应用[例2] (1)(2016·济宁二模)已知函数f (x )=x (2 017+ln x ),f ′(x 0)=2 018,则x 0=( ) A .e 2 B .1 C .ln 2 D .e(2)已知f (x )=12x 2+2xf ′(2 017)+2 017ln x ,则f ′(1)=________.[解析] (1)由题意可知f ′(x )=2 017+ln x +x ·1x =2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,解得x 0=1.(2)由题意得f ′(x )=x +2f ′(2 017)+2 017x , 所以f ′(2 017)=2 017+2f ′(2 017)+2 0172 017, 即f ′(2 017)=-(2 017+1)=-2 018. 故f ′(1)=1+2×(-2 018)+2 017=-2 018. [答案] (1)B (2)-2 018[方法技巧]对抽象函数求导的解题策略在求导问题中,常涉及一类解析式中含有导数值的函数,即解析式类似为f (x )=f ′(x 0)x +sin x +ln x (x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,即可得到f ′(x 0)的值,进而得到函数解析式,求得所求的导数值.能力练通 抓应用体验的“得”与“失” 1.[考点一]已知y = 2 017,则y ′=( ) A.12 2 017 B .-12 2 017C.2 0172 017D .0解析:选D 因为常数的导数为0,又y = 2 017是常数函数,所以y ′=0. 2.[考点二]已知函数f (x )=x sin x +ax ,且f ′⎝⎛⎭⎫π2=1,则a =( ) A .0 B .1 C .2D .4解析:选A ∵f ′(x )=sin x +x cos x +a ,且f ′⎝⎛⎭⎫π2=1,∴sin π2+π2cos π2+a =1,即a =0.3.[考点二]已知函数f (x )的导数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.故选C.4.[考点二]在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.又数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=4 096.答案:4 0965.[考点一]求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ; (3)y =cos xe x; (4)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x . (4)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .突破点(二) 导数的几何意义基础联通抓主干知识的“源”与“流”函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).特别地,如果曲线y=f(x)在点(x0,y0)处的切线垂直于x轴,则此时导数f′(x0)不存在,由切线定义可知,切线方程为x=x0.考点贯通抓高考命题的“形”与“神”求切线方程[例1]已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.[解](1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y-4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,∴经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.[方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程(高考常考类型),则点P(x0,y0)为切点,切线斜率为k=f′(x0),有唯一的一条切线,对应的切线方程为y-y0=f′(x0)(x -x0).(2)求“过”曲线y=f(x)上一点P(x0,y0)的切线方程,则切线经过点P,点P可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A(x1,y1),则以A为切点的切线方程为y-y1=f′(x1)(x-x1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1),求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.[提醒] “过点A 的曲线的切线方程”与“在点A 处的曲线的切线方程”是不相同的,后者A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.求切点坐标[例2] 设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P的坐标为________.[解析] y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x (x >0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1). [答案] (1,1)求参数的值[例3] 直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( ) A .2 B .-1 C .1D .-2[解析] 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a ×1+b =3,3×12+a =k ,k ×1+1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C.[答案] C[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.能力练通 抓应用体验的“得”与“失”1.[考点一]已知f (x )=2e x sin x ,则曲线f (x )在点(0,f (0))处的切线方程为( ) A .y =0 B .y =2x C .y =xD .y =-2x解析:选B ∵f (x )=2e x sin x ,∴f (0)=0,f ′(x )=2e x (sin x +cos x ),∴f ′(0)=2,∴曲线f (x )在点(0,f (0))处的切线方程为y =2x .2.[考点三]曲线f (x )=x 2+a x +1在点(1,f (1))处的切线的倾斜角为3π4,则实数a =( )A .1B .-1C .7D .-7解析:选C f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,∵f ′(1)=tan 3π4=-1,即3-a 4=-1,∴a =7.3.[考点二]在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x +1上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:由y ′=3x 2-1=2,得x =±1,又点M 在第二象限内,故x =-1,此时y =1,故点M 的坐标为(-1,1).答案:(-1,1)4.[考点三](2017·衡阳八中模拟)已知函数f (x )=a x ln x ,x ∈(0,+∞),其中a >0且a ≠1,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.解析:因为f (x )=a xln x ,所以f ′(x )=ln a ·a xln x +a xx .又f ′(1)=3,所以a =3.答案:35.[考点二]若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是________.解析:由题意得y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e).答案:(e ,e)6.[考点一]如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x ) 是g (x )的导函数,则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝⎛⎭⎫-13=0.则曲线g (x )在x =3处的切线方程为y -3=0. 答案:y -3=0[全国卷5年真题集中演练——明规律]1.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 2.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1·x +ln x 1+1,y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1.根据题意,有⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以f ′(x )=1x -3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -14.已知函数f (x )=(x +1)ln x -a (x -1).(1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞).当a=4时,f(x)=(x+1)ln x-4(x-1),f(1)=0,f′(x)=ln x+1x-3,f′(1)=-2.故曲线y=f(x)在(1,f(1))处的切线方程为y-0=-2(x-1),即2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x-a(x-1)x+1>0.设g(x)=ln x-a(x-1) x+1,则g′(x)=1x-2a(x+1)2=x2+2(1-a)x+1x(x+1)2,g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;②当a>2时,令g′(x)=0得x1=a-1-(a-1)2-1,x2=a-1+(a-1)2-1.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<0.综上,a的取值范围是(-∞,2].[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.函数f(x)=(x+2a)(x-a)2的导数为()A.2(x2-a2) B.2(x2+a2)C.3(x2-a2) D.3(x2+a2)解析:选C∵f(x)=(x+2a)(x-a)2=x3-3a2x+2a3,∴f′(x)=3(x2-a2).2.曲线y=sin x+e x在点(0,1)处的切线方程是()A.x-3y+3=0 B.x-2y+2=0C.2x-y+1=0 D.3x-y+1=0解析:选C∵y=sin x+e x,∴y′=cos x+e x,∴y′|x=0=cos 0+e0=2,∴曲线y=sin x+e x在点(0,1)处的切线方程为y-1=2(x-0),即2x-y+1=0.3.给出定义:设f′(x)是函数y=f(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知函数f(x)=3x+4sin x-cos x的拐点是M(x0,f(x0)),则点M()A.在直线y=-3x上B.在直线y=3x上C.在直线y=-4x上D.在直线y=4x上解析:选B f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题可知f ″(x 0)=0,即4sin x 0-cos x 0=0,所以f (x 0)=3x 0,故M (x 0,f (x 0))在直线y =3x 上.故选B.4.曲线y =x e x 在点(1,e)处的切线与直线ax +by +c =0垂直,则ab 的值为( ) A .-12eB .-2e C.2e D.12e解析:选D y ′=e x +x e x ,则y ′|x =1=2e.∵曲线在点(1,e)处的切线与直线ax +by +c =0垂直,∴-a b =-12e ,∴a b =12e,故选D.5.已知直线y =-x +1是函数f (x )=-1a e x 图象的切线,则实数a =________. 解析:设切点为(x 0,y 0).f ′(x )=-1a e x ,则f ′(x 0)=-1a ·e x 0=-1,∴e x 0=a ,又-1a ·e x 0=-x 0+1,∴x 0=2,∴a =e 2.答案:e 2[练常考题点——检验高考能力]一、选择题1.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π解析:选C 由题可知,f (π)=-1π,f ′(x )=-1x 2cos x +1x (-sin x ),则f (π)+f ′⎝⎛⎭⎫π2=-1π+2π×(-1)=-3π. 2.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2D .2解析:选A ∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a =-1,∴a =-1. 3.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B.2 C.22D. 3 解析:选B 由题可得,y ′=2x -1x .因为y =x 2-ln x 的定义域为(0,+∞),所以由2x -1x =1,得x =1,则P 点坐标为(1,1),所以曲线在点P 处的切线方程为x -y =0,所以两平行线间的距离为d =22=2,即点P 到直线y =x -2距离的最小值为 2. 4.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,πB.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6 解析:选C 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 5.已知函数f (x )=2e x+1+sin x ,其导函数为f ′(x ),则f (2 017)+f (-2 017)+f ′(2 017)-f ′(-2 017)的值为( )A .0B .2C .2 017D .-2 017解析:选B ∵f (x )=2e x +1+sin x ,∴f ′(x )=-2e x (e x +1)2+cos x ,f (x )+f (-x )=2e x +1+sin x +2e -x +1+sin(-x )=2,f ′(x )-f ′(-x )=-2e x (e x +1)2+cos x +2e -x (e -x +1)2-cos(-x )=0,∴f (2 017)+f (-2 017)+f ′(2 017)-f ′(-2 017)=2.6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1,又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 二、填空题7.已知函数f (x )在R 上可导,且f (x )=x 2+2x ·f ′(2),则函数f (x )的解析式为________. 解析:由题意得f ′(x )=2x +2f ′(2),则f ′(2)=4+2f ′(2),所以f ′(2)=-4,所以f (x )=x 2-8x .答案:f (x )=x 2-8x8.若直线l 与幂函数y =x n 的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,∴2n =8,∴n =3,∴y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).∴y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=09.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x =0,即a =-13x3(x >0),故a ∈(-∞,0).答案:(-∞,0)10.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=________;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为________.(用“<”连接)解析:(1)依题意,f ′(x )=x ,g ′(x )=x 2, 设f (x )=ax 2+bx +c (a ≠0), g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2, 故a =12,b =0,d =13,e =m =0,f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n ,则有h (-1)=56+c -n ,h (0)=c -n ,h (1)=16+c -n ,故h (0)<h (1)<h (-1).答案:(1)1 (2)h (0)<h (1)<h (-1) 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).12.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2, 对于C 2:y =-x 2+ax +b ,有y ′=-2x +a , 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直. ∴(2x 0-2)(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0,① 又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b , 即2x 20-(a +2)x 0+2-b =0.② 由①②消去x 0,可得a +b =52.第二节导数与函数的单调性突破点(一) 利用导数讨论函数的单调性或求函数的单调区间1.函数的单调性与导数的关系 函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 2.由函数的单调性与导数的关系可得的结论(1)函数f (x )在(a ,b )内可导,且f ′(x )在(a ,b )任意子区间内都不恒等于0.当x ∈(a ,b )时,f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减.(2)f ′(x )>0(<0)在(a ,b )上成立是f (x )在(a ,b )上单调递增(减)的充分条件.考点贯通 抓高考命题的“形”与“神”证明或讨论函数的单调性判断函数单调性的三种方法 定义法在定义域内(或定义域的某个区间内)任取x 1,x 2,且x 1<x 2,通过判断f (x 1)-f (x 2)与0的大小关系来确定函数f (x )的单调性图象法利用函数图象的变化趋势直观判断,若函数图象在某个区间内呈上升趋势,则函数在这个区间内是增函数;若函数图象在某个区间内呈下降趋势,则函数在这个区间内是减函数导数法利用导数判断可导函数f (x )在定义域内(或定义域的某个区间内)的单调性[例1] 已知函数f (x )=(a -1)ln x +ax +1,讨论函数f (x )的单调性. [解] f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x . (1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; (3)当0<a <1时,令f ′(x )=0,解得x = 1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减,在 1-a2a,+∞上单调递增.[方法技巧]导数法证明或讨论函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)得出结论:当f ′(x )>0时,函数f (x )在(a ,b )内单调递增;当f ′(x )<0时,函数f (x )在(a ,b )内单调递减.[提醒] 讨论含参函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,求函数f (x )的单调区间.[解] 对f (x )求导得f ′(x )=14-a x 2-1x,由曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.所以f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2,令f ′(x )=0,解得x =-1或x =5,因x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 所以函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5). [方法技巧]用导数求函数单调区间的三种类型及方法(1)当不等式f ′(x )>0或f ′(x )<0可解时,确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间.(3)不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时求导并化简,根据f ′(x )的结构特征,选择相应基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间.1.[考点二]函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)解析:选D 依题意得f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,所以f (x )的单调递增区间是(2,+∞).故选D.2.[考点一]下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e x C .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.3.[考点二]函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,+∞)C .(1,+∞)D .(0,2)解析:选A 对于函数y =12x 2-ln x ,易得其定义域为(0,+∞),y ′=x -1x =x 2-1x ,令x 2-1x <0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).4.[考点一]已知函数f (x )=ln x -ax (a ∈R),讨论函数f (x )的单调性. 解:f (x )的定义域为(0,+∞),f ′(x )=1x -a (x >0), ①当a ≤0时,f ′(x )=1x -a >0, 即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0; 当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 由①②知,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 5.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b , 由已知可得⎩⎪⎨⎪⎧f (1)=a +1=c ,g (1)=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6.∴函数f (x )+g (x )的单调递增区间是⎝⎛⎭⎫-∞,-a 2,⎝⎛⎭⎫-a6,+∞;单调递减区间为⎝⎛⎭⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.考点贯通 抓高考命题的“形”与“神”已知函数的单调性求参数的取值范围由函数的单调性求参数取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围;(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围;(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.[例1] 已知函数f (x )=x 3-ax -1.(1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].(2)因为f (x )在区间(-1,1)上为减函数,所以f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,即a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3.即a 的取值范围为[3,+∞).(3)因为f (x )=x 3-ax -1,所以f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 因为f (x )的单调递减区间为(-1,1), 所以3a3=1,即a =3. 应用结论“函数f (x )在(a ,b )上单调递增⇔f ′(x )≥0恒成立;函数f (x )在(a ,b )上单调递减⇔f ′(x )≤0恒成立”时,切记检验等号成立时导数是否在(a ,b )上恒为0. [易错提醒]比较大小或解不等式[例2] (1)若0<x 1<x 2<1,则( ) A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)构造函数f (x )=e x-ln x ,则f ′(x )=e x-1x =x e x -1x .令f ′(x )=0,得x e x -1=0.根据函数y =e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此f (x )=e x -ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A ,B 错;构造函数g (x )=e xx ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2,故函数g (x )=e x x 在(0,1)上单调递减,故g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,则x 2e x 1>x 1e x 2,故选C.(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)C (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.1.[考点一]已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)解析:选C ∵f (x )的定义域为(0,+∞),f ′(x )=2x +4+a x =2x 2+4x +ax ,f (x )在(1,2)上是单调函数,∴f ′(x )≥0或f ′(x )≤0在(1,2)上恒成立,即2x 2+4x +a ≥0或2x 2+4x +a ≤0在(1,2)上恒成立,即a ≥-(2x 2+4x )或a ≤-(2x 2+4x )在(1,2)上恒成立.记g (x )=-(2x 2+4x ),1<x <2,则-16<g (x )<-6,∴a ≥-6或a ≤-16,故选C.2.[考点二]已知函数f (x )=x 3-3x ,若在△ABC 中,角C 是钝角,则( ) A .f (sin A )>f (cos B ) B .f (sin A )<f (cos B ) C .f (sin A )>f (sin B ) D .f (sin A )<f (sin B )解析:选A ∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3=3(x +1)(x -1),故函数f (x )在区间(-1,1)上是减函数,又A 、B 都是锐角,且A +B <π2,∴0<A <π2-B <π2,∴sin A <sin ⎝⎛⎭⎫π2-B =cos B ,故f (sin A )>f (cos B ),故选A.3.[考点一]若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:因为f ′(x )=3x 2-12,由f ′(x )>0,得函数的增区间是(-∞,-2)及(2,+∞),由f ′(x )<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3.答案:(-3,-1)∪(1,3)4.[考点一]已知函数f (x )=x 33-(4m -1)x 2+(15m 2-2m -7)x +2在R 上为单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意可得f ′(x )≥0在x ∈R 上恒成立,所以Δ=4(4m -1)2-4(15m 2-2m -7)=4(m 2-6m +8)≤0,解得2≤m ≤4.答案:[2,4]5.[考点二]已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.解析:令g (x )=f (x )-3x +15,则f (x )<3x -15的解集即为g (x )<0的解集.又g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以g (x )<g (4),故x >4.所以f (x )<3x -15的解集为(4,+∞).答案:(4,+∞)[全国卷5年真题集中演练——明规律] 1.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎡⎦⎤-1,13 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-1,-13 解析:选C 取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.2.设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.3.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x . 因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x ≥0恒成立, 即k ≥1x 在区间(1,+∞)上恒成立. 因为x >1,所以0<1x <1,所以k ≥1.故选D.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)解析:选D 由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 2.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A f ′(x )=32x 2+a ,当a >0时,f ′(x )>0,即a >0时,f (x )在R 上单调递增,由f (x )在R 上单调递增,可得a ≥0.故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.3.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )解析:选D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.4.若函数f (x )=sin x +ax 为R 上的减函数,则实数a 的取值范围是________. 解析:∵f ′(x )=cos x +a ,由题意可知,f ′(x )≤0对任意的x ∈R 都成立,∴a ≤-1,故实数a 的取值范围是(-∞,-1].答案:(-∞,-1]5.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.解析:∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,∴所求不等式变形为f (1-x )<f (x 2-1),∵导函数值恒大于0,∴原函数在定义域上单调递增,又f (x )的定义域为(-1,1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).答案:(1,2)[练常考题点——检验高考能力]一、选择题1.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫0,12和(1,+∞) B .(0,1)和(2,+∞) C.⎝⎛⎭⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x =(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12,(2,+∞).2.若函数f (x )=x 3-tx 2+3x 在区间[]1,4上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B.(]-∞,3 C.⎣⎡⎭⎫518,+∞ D.[)3,+∞解析:选C f ′(x )=3x 2-2tx +3,由于f (x )在区间[]1,4上单调递减,则有f ′(x )≤0在[]1,4上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝⎛⎭⎫x +1x 在[]1,4上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[]1,4上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 3.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2x 2+23bx +c 3的单调递减区间为( )A.⎣⎡⎭⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).4.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.5.若函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,∴当1-bx 2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意,故选D.6.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f (x )x>0,则对于任意的a ,b ∈(0,+∞),当a >b 时,有( )A .af (a )<bf (b )B .af (a )>bf (b )C .af (b )>bf (a )D .af (b )<bf (a )解析:选B 由f ′(x )+f (x )x >0得xf ′(x )+f (x )x >0,即[xf (x )]′x>0,即[xf (x )]′x >0.∵x >0,∴[xf (x )]′>0,即函数y =xf (x )为增函数,由a ,b ∈(0,+∞)且a >b ,得af (a )>bf (b ),故选B.二、填空题7.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________.解析:设幂函数为f (x )=x α,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x (x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)8.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43.答案:⎣⎡⎭⎫43,+∞ 9.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为________.解析:由题图可知,⎩⎪⎨⎪⎧f ′(x )>0,x ∈(1,+∞)∪(-∞,-1),f ′(x )<0,x ∈(-1,1),不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧ f ′(x )>0,x 2-2x -3>0或⎩⎪⎨⎪⎧f ′(x )<0,x 2-2x -3<0,解得x ∈(-∞,-1)∪(3,+∞)∪(-1,1).答案:(-∞,-1)∪(3,+∞)∪(-1,1)10.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a .当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝⎛⎭⎫-19,+∞.答案:⎝⎛⎭⎫-19,+∞ 三、解答题11.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.12.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x .当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x. ∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9, 即m <-9;由g ′(3)>0,得m >-373.所以-373<m <-9. 即实数m 的取值范围是⎝⎛⎭⎫-373,-9.第三节导数与函数的极值、最值 突破点(一) 利用导数解决函数的极值问题1.函数的极小值函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近的其他点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.2.函数的极大值函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0,而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.3.函数的极值极小值点和极大值点统称为极值点,极小值和极大值统称为极值.。
高考数学(理)大一轮复习习题:第三章 导数及其应用 Word版含答案
第三章⎪⎪⎪导数及其应用 第一节变化率与导数、导数的计算突破点(一) 导数的运算1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率li m Δx→0ΔyΔx =li m Δx →0f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx→0ΔyΔx =li m Δx →0f (x 0+Δx )-f (x 0)Δx .2.函数f (x )的导函数 称函数f ′(x )=li m Δx→f (x +Δx )-f (x )Δx 为f (x )的导函数.3.基本初等函数的导数公式(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.本节主要包括2个知识点: 1.导数的运算;导数的几何意义.[例1] 求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln xx ; (3)y =tan x ;(4)y =3x e x -2x +e ; (5)y =ln (2x +3)x 2+1.[解] (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2.(3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x=cos x cos x -sin x (-sin x )cos 2x=1cos 2x. (4)y ′=(3x e x )′-(2x )′+(e)′ =(3x )′e x +3x (e x )′-(2x )′ =3x (ln 3)·e x +3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.(5)y ′=[ln (2x +3)]′(x 2+1)-ln (2x +3)(x 2+1)′(x 2+1)2=(2x +3)′2x +3·(x 2+1)-2x ln (2x +3)(x 2+1)2=2(x 2+1)-2x (2x +3)ln (2x +3)(2x +3)(x 2+1)2.[方法技巧]导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.导数运算的应用[例2] (1)(2016·济宁二模)已知函数f (x )=x (2 017+ln x ),f ′(x 0)=2 018,则x 0=( ) A .e 2 B .1 C .ln 2 D .e(2)已知f (x )=12x 2+2xf ′(2 017)+2 017ln x ,则f ′(1)=________.[解析] (1)由题意可知f ′(x )=2 017+ln x +x ·1x =2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,解得x 0=1.(2)由题意得f ′(x )=x +2f ′(2 017)+2 017x , 所以f ′(2 017)=2 017+2f ′(2 017)+2 0172 017, 即f ′(2 017)=-(2 017+1)=-2 018. 故f ′(1)=1+2×(-2 018)+2 017=-2 018. [答案] (1)B (2)-2 018[方法技巧]对抽象函数求导的解题策略在求导问题中,常涉及一类解析式中含有导数值的函数,即解析式类似为f (x )=f ′(x 0)x +sin x +ln x (x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,即可得到f ′(x 0)的值,进而得到函数解析式,求得所求的导数值.能力练通抓应用体验的“得”与“失”1.[考点一](2017·东北四市联考)已知y = 2 017,则y ′=( ) A.12 2 017 B .-12 2 017C.2 0172 017D .0解析:选D 因为常数的导数为0,又y = 2 017是常数函数,所以y ′=0. 2.[考点二](2016·大同二模)已知函数f (x )=x sin x +ax ,且f ′⎝⎛⎭⎫π2=1,则a =( ) A .0 B .1 C .2D .4解析:选A ∵f ′(x )=sin x +x cos x +a ,且f ′⎝⎛⎭⎫π2=1,∴sin π2+π2cos π2+a =1,即a =0.3.[考点二](2017·湖北重点中学月考)已知函数f (x )的导数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.故选C.4.[考点二]在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.又数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=4 096.答案:4 0965.[考点一]求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos xe x; (4)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x .(4)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .突破点(二) 导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.[例1] 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程(高考常考类型),则点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程,则切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1),求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.[提醒]“过点A 的曲线的切线方程”与“在点A 处的曲线的切线方程”是不相同的,后者A必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.求切点坐标[例2]设曲线y=e x在点(0,1)处的切线与曲线y=1x(x>0)上点P处的切线垂直,则点P 的坐标为________.[解析]y=e x的导数为y′=e x,则曲线y=e x在点(0,1)处的切线斜率k1=e0=1.y=1x(x>0)的导数为y′=-1x2(x>0),设P(m,n),则曲线y=1x(x>0)在点P处的切线斜率k2=-1m2 (m>0).因为两切线垂直,所以k1k2=-1,所以m=1,n=1,则点P的坐标为(1,1).[答案](1,1)求参数的值[例3]直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于() A.2 B.-1 C.1 D.-2[解析]依题意知,y′=3x2+a,则⎩⎪⎨⎪⎧13+a×1+b=3,3×12+a=k,k×1+1=3,由此解得⎩⎪⎨⎪⎧a=-1,b=3,k=2,所以2a+b=1,选C.[答案] C[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P(x0,y0)既在曲线上又在切线上构造方程组求解.能力练通抓应用体验的“得”与“失”1.[考点一]已知f(x)=2e x sin x,则曲线f(x)在点(0,f(0))处的切线方程为()A .y =0B .y =2xC .y =xD .y =-2x解析:选B ∵f (x )=2e x sin x ,∴f (0)=0,f ′(x )=2e x (sin x +cos x ),∴f ′(0)=2,∴曲线f (x )在点(0,f (0))处的切线方程为y =2x .2.[考点三]曲线f (x )=x 2+a x +1在点(1,f (1))处的切线的倾斜角为3π4,则实数a =( )A .1B .-1C .7D .-7解析:选C f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,∵f ′(1)=tan 3π4=-1,即3-a 4=-1,∴a =7.3.[考点二]在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x +1上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:由y ′=3x 2-1=2,得x =±1,又点M 在第二象限内,故x =-1,此时y =1,故点M 的坐标为(-1,1).答案:(-1,1)4.[考点三](2017·衡阳八中模拟)已知函数f (x )=a x ln x ,x ∈(0,+∞),其中a >0且a ≠1,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.解析:因为f (x )=a xln x ,所以f ′(x )=ln a ·a xln x +a xx.又f ′(1)=3,所以a =3.答案:35.[考点二]若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是________.解析:由题意得y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e).答案:(e ,e)6.[考点一]如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y=f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x ) 是g (x )的导函数,则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝⎛⎭⎫-13=0.则曲线g (x )在x =3处的切线方程为y -3=0. 答案:y -3=0[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.2.(2016·全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1·x +ln x 1+1,y=ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1.根据题意,有⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.(2016·全国丙卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以f ′(x )=1x -3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -14.(2016·全国甲卷)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1), f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为y -0=-2(x -1),即2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0.设g (x )=ln x -a (x -1)x +1, 则g ′(x )=1x -2a (x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减, 因此g (x )<0.综上,a 的取值范围是(-∞,2].[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).2.曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x , ∴y ′=cos x +e x , ∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0. 3.(2016·安庆二模)给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=3x +4sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上解析:选B f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题可知f ″(x 0)=0,即4sin x 0-cos x 0=0,所以f (x 0)=3x 0,故M (x 0,f (x 0))在直线y =3x 上.故选B.4.(2016·贵阳一模)曲线y =x e x 在点(1,e)处的切线与直线ax +by +c =0垂直,则a b 的值为( )A .-12eB .-2e C.2e D.12e解析:选D y ′=e x +x e x ,则y ′|x =1=2e.∵曲线在点(1,e)处的切线与直线ax +by +c =0垂直,∴-a b =-12e ,∴a b =12e,故选D.5.已知直线y =-x +1是函数f (x )=-1a e x 图象的切线,则实数a =________.解析:设切点为(x 0,y 0).f ′(x )=-1a e x ,则f ′(x 0)=-1a ·e x 0=-1,∴e x 0=a ,又-1a ·e x=-x 0+1,∴x 0=2,∴a =e 2.答案:e 2[练常考题点——检验高考能力]一、选择题1.(2017·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π解析:选C 由题可知,f (π)=-1π,f ′(x )=-1x 2cos x +1x (-sin x ),则f (π)+f ′⎝⎛⎭⎫π2=-1π+2π×(-1)=-3π. 2.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12C .-2D .2解析:选A ∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a =-1,∴a =-1. 3.(2017·上饶模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( )A .1 B. 2 C.22D. 3 解析:选B 由题可得,y ′=2x -1x .因为y =x 2-ln x 的定义域为(0,+∞),所以由2x-1x =1,得x =1,则P 点坐标为(1,1),所以曲线在点P 处的切线方程为x -y =0,所以两平行线间的距离为d =22=2,即点P 到直线y =x -2距离的最小值为 2. 4.(2016·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,πB.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6 解析:选C 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 5.(2017·重庆诊断)已知函数f (x )=2e x+1+sin x ,其导函数为f ′(x ),则f (2 017)+f (-2 017)+f ′(2 017)-f ′(-2 017)的值为( )A .0B .2C .2 017D .-2 017解析:选B ∵f (x )=2e x +1+sin x ,∴f ′(x )=-2e x (e x +1)2+cos x ,f (x )+f (-x )=2e x +1+sinx +2e -x +1+sin(-x )=2,f ′(x )-f ′(-x )=-2e x(e x +1)2+cos x +2e -x(e -x +1)2-cos(-x )=0,∴f (2 017)+f (-2 017)+f ′(2 017)-f ′(-2 017)=2.6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1,又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 二、填空题7.已知函数f (x )在R 上可导,且f (x )=x 2+2x ·f ′(2),则函数f (x )的解析式为________. 解析:由题意得f ′(x )=2x +2f ′(2),则f ′(2)=4+2f ′(2),所以f ′(2)=-4,所以f (x )=x 2-8x .答案:f (x )=x 2-8x8.若直线l 与幂函数y =x n 的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,∴2n =8,∴n =3,∴y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).∴y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=09.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x =0,即a =-13x3(x >0),故a ∈(-∞,0).答案:(-∞,0)10.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=________;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为________.(用“<”连接)解析:(1)依题意,f ′(x )=x ,g ′(x )=x 2,设f (x )=ax 2+bx +c (a ≠0), g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2, 故a =12,b =0,d =13,e =m =0,f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n ,则有h (-1)=56+c -n ,h (0)=c -n ,h (1)=16+c -n ,故h (0)<h (1)<h (-1). 答案:(1)1(2)h (0)<h (1)<h (-1) 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).12.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2, 对于C 2:y =-x 2+ax +b ,有y ′=-2x +a , 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直. ∴(2x 0-2)(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0,① 又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b ,即2x 20-(a +2)x 0+2-b =0.② 由①②消去x 0,可得a +b =52.第二节导数与函数的单调性突破点(一) 利用导数讨论函数的单调性或求函数的单调区间1.函数的单调性与导数的关系 函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 2.由函数的单调性与导数的关系可得的结论(1)函数f (x )在(a ,b )内可导,且f ′(x )在(a ,b )任意子区间内都不恒等于0.当x ∈(a ,b )时,本节主要包括2个知识点:1.利用导数讨论函数的单调性或求函数的单调区间; 2.利用导数解决函数单调性的应用问题.f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减.(2)f ′(x )>0(<0)在(a ,b )上成立是f (x )在(a ,b )上单调递增(减)的充分条件.考点贯通抓高考命题的“形”与“神”证明或讨论函数的单调性判断函数单调性的三种方法 定义法在定义域内(或定义域的某个区间内)任取x 1,x 2,且x 1<x 2,通过判断f (x 1)-f (x 2)与0的大小关系来确定函数f (x )的单调性图象法利用函数图象的变化趋势直观判断,若函数图象在某个区间内呈上升趋势,则函数在这个区间内是增函数;若函数图象在某个区间内呈下降趋势,则函数在这个区间内是减函数导数法利用导数判断可导函数f (x )在定义域内(或定义域的某个区间内)的单调性2[解]f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;(3)当0<a <1时,令f ′(x )=0,解得x =1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减,在 1-a2a,+∞上单调递增.[方法技巧]导数法证明或讨论函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)得出结论:当f ′(x )>0时,函数f (x )在(a ,b )内单调递增;当f ′(x )<0时,函数f (x )在(a ,b )内单调递减.[提醒] 讨论含参函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,求函数f (x )的单调区间.[解] 对f (x )求导得f ′(x )=14-a x2-1x ,由曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54. 所以f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2,令f ′(x )=0,解得x =-1或x =5,因x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 所以函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5). [方法技巧]用导数求函数单调区间的三种类型及方法(1)当不等式f ′(x )>0或f ′(x )<0可解时,确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间.(3)不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时求导并化简,根据f ′(x )的结构特征,选择相应基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间.能力练通抓应用体验的“得”与“失”1.[考点二]函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)解析:选D 依题意得f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,所以f (x )的单调递增区间是(2,+∞).故选D.2.[考点一]下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e x C .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.3.[考点二]函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,+∞)C .(1,+∞)D .(0,2)解析:选A 对于函数y =12x 2-ln x ,易得其定义域为(0,+∞),y ′=x -1x =x 2-1x ,令x 2-1x <0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).4.[考点一]已知函数f (x )=ln x -ax (a ∈R),讨论函数f (x )的单调性. 解:f (x )的定义域为(0,+∞),f ′(x )=1x -a (x >0), ①当a ≤0时,f ′(x )=1x -a >0, 即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 由①②知,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 5.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b , 由已知可得⎩⎪⎨⎪⎧f (1)=a +1=c ,g (1)=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6.∴函数f (x )+g (x )的单调递增区间是⎝⎛⎭⎫-∞,-a 2,⎝⎛⎭⎫-a6,+∞;单调递减区间为⎝⎛⎭⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.考点贯通抓高考命题的“形”与“神”已知函数的单调性求参数的取值范围由函数的单调性求参数取值范围的方法(1)可导函数在区间(a,b)上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围;(2)可导函数在区间(a,b)上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,即f′(x)max>0(或f′(x)min<0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围;(3)若已知f(x)在区间I上的单调性,区间I上含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而求出参数的取值范围.[例1]已知函数f(x)=x3-ax-1.(1)若f(x)在区间(1,+∞)上为增函数,求a的取值范围;(2)若f(x)在区间(-1,1)上为减函数,求a的取值范围;(3)若f(x)的单调递减区间为(-1,1),求a的值.[解](1)因为f′(x)=3x2-a,且f(x)在区间(1,+∞)上为增函数,所以f′(x)≥0在(1,+∞)上恒成立,即3x2-a≥0在(1,+∞)上恒成立,所以a≤3x2在(1,+∞)上恒成立,所以a≤3,即a的取值范围为(-∞,3].(2)因为f(x)在区间(-1,1)上为减函数,所以f′(x)=3x2-a≤0在(-1,1)上恒成立,即a≥3x2在(-1,1)上恒成立.因为-1<x<1,所以3x2<3,所以a≥3.即a的取值范围为[3,+∞).(3)因为f(x)=x3-ax-1,所以f′(x)=3x2-a.由f′(x)=0,得x=±3a3(a≥0).因为f(x)的单调递减区间为(-1,1),所以3a3=1,即a =3.应用结论“函数f (x )在(a ,b )上单调递增⇔f ′(x )≥0恒成立;函数f (x )在(a ,b )上单调递减⇔f ′(x )≤0恒成立”时,切记检验等号成立时导数是否在(a ,b )上恒为0. [易错提醒][例2] (1)若0<x 1<x 2<1,则( ) A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)构造函数f (x )=e x-ln x ,则f ′(x )=e x-1x =x e x-1x .令f ′(x )=0,得x e x -1=0.根据函数y =e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此f (x )=e x -ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A ,B 错;构造函数g (x )=e xx ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2,故函数g (x )=e x x 在(0,1)上单调递减,故g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,则x 2e x 1>x 1e x 2,故选C.(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)C (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.能力练通抓应用体验的“得”与“失”1.[考点一]已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)解析:选C ∵f (x )的定义域为(0,+∞),f ′(x )=2x +4+a x =2x 2+4x +ax,f (x )在(1,2)上是单调函数,∴f ′(x )≥0或f ′(x )≤0在(1,2)上恒成立,即2x 2+4x +a ≥0或2x 2+4x +a ≤0在(1,2)上恒成立,即a ≥-(2x 2+4x )或a ≤-(2x 2+4x )在(1,2)上恒成立.记g (x )=-(2x 2+4x ),1<x <2,则-16<g (x )<-6,∴a ≥-6或a ≤-16,故选C.2.[考点二](2016·南昌三模)已知函数f (x )=x 3-3x ,若在△ABC 中,角C 是钝角,则( ) A .f (sin A )>f (cos B ) B .f (sin A )<f (cos B ) C .f (sin A )>f (sin B ) D .f (sin A )<f (sin B )解析:选A ∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3=3(x +1)(x -1),故函数f (x )在区间(-1,1)上是减函数,又A 、B 都是锐角,且A +B <π2,∴0<A <π2-B <π2,∴sin A <sin ⎝⎛⎭⎫π2-B =cos B ,故f (sin A )>f (cos B ),故选A.3.[考点一]若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:因为f ′(x )=3x 2-12,由f ′(x )>0,得函数的增区间是(-∞,-2)及(2,+∞),由f ′(x )<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3.答案:(-3,-1)∪(1,3)4.[考点一]已知函数f (x )=x 33-(4m -1)x 2+(15m 2-2m -7)x +2在R 上为单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意可得f ′(x )≥0在x ∈R 上恒成立,所以Δ=4(4m -1)2-4(15m 2-2m -7)=4(m 2-6m +8)≤0,解得2≤m ≤4.答案:[2,4]5.[考点二]已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.解析:令g (x )=f (x )-3x +15,则f (x )<3x -15的解集即为g (x )<0的解集.又g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以g (x )<g (4),故x >4.所以f (x )<3x -15的解集为(4,+∞).答案:(4,+∞)[全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B.⎣⎡⎦⎤-1,13 C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 解析:选C 取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.2.(2015·新课标全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.3.(2014·新课标全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x ≥0恒成立, 即k ≥1x 在区间(1,+∞)上恒成立. 因为x >1,所以0<1x <1,所以k ≥1.故选D.[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)解析:选D 由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 2.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A f ′(x )=32x 2+a ,当a >0时,f ′(x )>0,即a >0时,f (x )在R 上单调递增,由f (x )在R 上单调递增,可得a ≥0.故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.3.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )解析:选D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.4.若函数f (x )=sin x +ax 为R 上的减函数,则实数a 的取值范围是________. 解析:∵f ′(x )=cos x +a ,由题意可知,f ′(x )≤0对任意的x ∈R 都成立,∴a ≤-1,故实数a 的取值范围是(-∞,-1].答案:(-∞,-1]5.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.解析:∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,∴所求不等式变形为f (1-x )<f (x 2-1),∵导函数值恒大于0,∴原函数在定义域上单调递增,又f (x )的定义域为(-1,1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).答案:(1,2)[练常考题点——检验高考能力]一、选择题1.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫0,12和(1,+∞) B .(0,1)和(2,+∞) C.⎝⎛⎭⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x =(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12,(2,+∞).2.若函数f (x )=x 3-tx 2+3x 在区间[]1,4上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B.(]-∞,3C.⎣⎡⎭⎫518,+∞D.[)3,+∞ 解析:选C f ′(x )=3x 2-2tx +3,由于f (x )在区间[]1,4上单调递减,则有f ′(x )≤0在[]1,4上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝⎛⎭⎫x +1x 在[]1,4上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[]1,4上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 3.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2x 2+23bx +c 3的单调递减区间为( )A.⎣⎡⎭⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).4.(2017·甘肃诊断考试)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.5.若函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,∴当1-bx 2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x>b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意,故选D.6.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f (x )x >0,则对于任意的a ,b ∈(0,+∞),当a >b 时,有( )A .af (a )<bf (b )B .af (a )>bf (b )C .af (b )>bf (a )D .af (b )<bf (a )解析:选B 由f ′(x )+f (x )x >0得xf ′(x )+f (x )x >0,即[xf (x )]′x >0,即[xf (x )]′x >0.∵x >0,∴[xf (x )]′>0,即函数y =xf (x )为增函数,由a ,b ∈(0,+∞)且a >b ,得af (a )>bf (b ),故选B.二、填空题7.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________.解析:设幂函数为f (x )=x α,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x (x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)8.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43.答案:⎣⎡⎭⎫43,+∞9.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为________.解析:由题图可知,⎩⎪⎨⎪⎧f ′(x )>0,x ∈(1,+∞)∪(-∞,-1),f ′(x )<0,x ∈(-1,1),不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧ f ′(x )>0,x 2-2x -3>0或⎩⎪⎨⎪⎧f ′(x )<0,x 2-2x -3<0,解得x ∈(-∞,-1)∪(3,+∞)∪(-1,1).答案:(-∞,-1)∪(3,+∞)∪(-1,1)10.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a .当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝⎛⎭⎫-19,+∞. 答案:⎝⎛⎭⎫-19,+∞ 三、解答题11.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2. 所以f (x ),f ′(x )随x 的变化情况如下表:⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.12.(2017·郑州质检)已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x .当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x . ∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0,。
《高等数学一》第三章 导数与微 试题模拟课后习题汇总(含答案解析)
第三章导数与微分[单选题]1、设函数,则高阶导数=()A、12!B、11!C、10!D、0【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考察高阶导数计算.因为多项式的最高次幂为11,故=0.[单选题]2、f(x)=4x-x3在点(-1,-3)处的切线方程为( )A、y=x-2B、y=x+2C、y=-x+2D、y=-2x+1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】f(x)=4x-x3, f(-1)=-4+1=-3,故(-1,-3)在所给的曲线上. 又f ' (x)=4-3x2故f ' (-1)=4-3=1∴过(-1,-3)的切线方程为y=(x+1)-3=x-2.[单选题]3、y=cos3x-cos3x的导数为( )A、3(sin3x-sinxcos2x)B、3(sin3x+sinxcos2x)C、3(sinx-sinxcos2x)D、3(sin3x-sin3xcos2x)【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】 y’=(cos3x)' -(cos3x) '=3cos2x(-sinx)-(-sin3x)×3=3(sin3x-sinxcos2x)[单选题]4、设y=x n+e-x,则y(n)(0)=()A、n!+(-1)nB、n!C、n!+(-1)n-1D、n!-1【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】y(n)(x)=n!+(-1)n e-x,从而y(n)(0)=n!+(-1)n[单选题]5、设函数f(x)=arctanx,求=( )A、-2B、1C、3D、0【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]6、设y=lnx,则y(n)=()A、(-1)n n!x-nB、(-1)n(n-1)!x-2nC、(-1)n-1(n-1)!x-nD、(-1)n-1n!x-n+1【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】y′=x-1,y′′=-1!x-2, y′′′=2!x-3,…. y(n)= (-1)n-1(n-1)!x-n[单选题]7、已知函数,则f(x)在点x=0处()A、连续但导数不存在B、间断C、导数f ’(0)=-1D、导数f ’(0)=1【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】所以,f(x)在点x=0处间断,答案为B.[单选题]8、y=(2x2-x+1)2的导数为( )A、2(2x2-x+1)(4x-1)B、(2x2-x+1)(4x-1)C、(2x2-x+1)(4x+1)D、(2x2+x+1)(4x-1)【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】y’=2(2x2-x+1)(2x2-x+1)’=2(2x2-x+1)(4x-1)[单选题]9、设函数f(x)在x0点可微是f(x)在该点可导的( )A、充分必要条件B、充分条件C、必要条件D、无关条件【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】设函数f(x)在x0点可导是f(x)在该点可微的充要条件,对于一元函数,两者是等价的。
医学高等数学(第二版)第三章习题解答
第三章 一元函数积分学习题题解(P108)一、判断题题解1. 错。
是)(x f 的所有原函数。
2. 错。
)(x f 的任意两个原函数之差为常数。
3. 错。
是C x F +)(。
4. 正确。
5. 错。
被积函数在x =0处无界。
6. 正确。
x y sin =',00='=x y7. 正确。
被积函数是奇函数,积分区间对称。
8. 正确。
二、选择题题解1. )()(x f x x x f -=--=-被积函数是奇函数,积分区间对称,定积分为零。
或⎰-11dx x x =⎰⎰+--12012dx x dx x=1030 133131x x+--=[]0)01(31)1(031=-+---。
(A ) 2.⎰+∞∞-+dx x 211=⎰∞-+0 211dx x +⎰+∞+0 211dx x =0 arctan ∞-x ++∞0arctan x =πππ=-+⎪⎭⎫ ⎝⎛--0220。
(A ) 3. 正确的是C 。
4. dx x f aa⎰-- )(xu dudx -=-=====令du u f aa⎰-- )(=dx x f aa⎰- )(。
(D )5.)()(1)(ax b d ax b f a dx ax b f ---=-⎰⎰=C ax b F a+--)(1。
(B ) 6. 令x e x F -=)(,则x e x f --=)(,dx xe dx x xf x ⎰⎰--=)(=()⎰-x e xd =⎰---dx e xe x x =C x e x++-)1(。
(D )7.⎪⎭⎫ ⎝⎛+⎰dt t dx d x 1 41=)()(14'+x x =x xx x +=+1212112。
(D ) 8. ⎰'''dx x f x f )()(=⎰'')()(x f d x f =[][]C x f x f d +'='⎰22)(21)(21,2)(x e x f -=,22)(x xe x f --='[]C x f +'∴2)(21 =()C xe x +--22221=C e x x +-2222。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 微分中值定理及导数的应用
一、选择题
1. 若30sin(6)()lim 0x x xf x x →+= ,则206()lim x f x x
→+为( ) A. 0 B. 6 C. 36 D. ∞
2. 设在][1,0上,0)(>''x f ,则下列不等式成立的是( )
A . )0()0()1()1(f f f f '>->' B. )0()1()0()1(f f f f ->'>'
C . )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->'
3. 设2()()lim 1()
x a f x f a x a →-=--,则在x a =处( ) A. ()f x 的导数存在 B. ()f x 取得极大值
C . ()f x 取得极小值 D. ()f x 的导数不存在
4. 设k 为任意实数,则方程33x x k -+在[1,1]-上( )
A. 一定没有实根
B. 最多只有一个实根
C. 最多有两个互异实根
D. 最多有三个互异实根
5. 设(),()f x g x 在0x 的某个去心邻域内可导,()0g x '≠,且适合0lim ()0x x f x →=,0lim ()0x x g x →=,则0()lim ()
x x f x g x λ→=是0'()lim '()x x f x g x λ→=的: A. 充分非必要条件 B. 必要非充分条件
C. 充分必要条件
D. 既非充分又非必要条件。
6. 设()f x 在区间(a,b)内二阶可导,0(,)x a b ∈,且00()0,()=0f x f x '''≠,则()f x ( )
A. 在0x x =处不取极值, 但00(,())x f x 是其图形的拐点
B. 在0x x =处不取极值,但00(,())x f x 可能是其图形的拐点
C. 在0x x =处可能取极值, 00(,())x f x 也可能是其图形的拐点
D. 在0x x =处不取极值00(,())x f x 也不是其图形的拐点。
7. 设()f x 在0x =的某个邻域内可导,且0'()1(0)0,lim sin 2
x f x f x →'==-,则( ) A . (0)f 一定是()f x 的一个极大值; B. (0)f 一定是()f x 的一个极小值
C. ))0(,0(f 一定是曲线)(x f y =的拐点;
D. ABC 都不对
8. 设()f x 在0x x =的某邻域内连续,且1)
()(20lim 0-=-→x x x f x x ,则( ) A. 0()1f x '=- B. ()f x 在的某个邻域内单调递减
C. 0()f x 是()f x 的极小值 D . 0()f x 是()f x 的极大值
9. 设()g x 在()+∞∞-,严格单调减少,()f x 在0x x =处取极大值,则0(())g f x x x =在处( )
A. 取极大值 B . 取极小值
C. 一定不取极值
D. 是否取极值不能判定
10. 设()2
()f x x ϕ'=⎡⎤⎣⎦,而()0>x ϕ,)('x ϕ单调减少0)('0=x ϕ,则( ) A. ))(,(00x f x 是曲线)(x f 的拐点; B. 0x x = 为)(x f 的极大值点;
C. 曲线)(x f 在()+∞∞-,内为凹弧;
D. )(0x f 为)(x f 在()+∞∞-,上的最小值。
二、解答题
1. 求极限
(1)0tan lim
sin x x x x x →-- (2)x x x x cos 110sin lim -→⎪⎭⎫ ⎝⎛ (3)()x e x e e x x x x -+-→3sin 0sin ln lim (4) 1lim(23)x x x x x e →∞++
(5) 用拉格朗日中值定理解 x →∞
2. 设()f x 在有限区间(,)a b 内可导,且0
0lim ()lim ()x a x b f x f x A →+→-==(A 为有限值),试证至少存在一点ξ使 ()0f ξ'=.
3.试证:若()f x 满足条件(1)在0x 点连续, (2)在0x 的某去心邻域内可导, (3)0lim ()x x f x A →'=(或∞)
,则0()=f x A '(或∞)
4.设()f x 在区间(,)-∞+∞内连续可导,且x a >时()1f x '>, 证明: 若()0f a <则方程()0f x =在(,())a a f a -内有且仅有一个实根
5.若函数()f x 在(,)a b 内具有二阶导数,且123()()()f x f x f x ==,其中123a x x x b <<<<,证明:在13(,)x x 内至少存在一点ξ,使得()0f ξ''=
6.证明下列不等式
(1) 当b a e >>时,ln ln a a b b
<
(2) 当0x >时,1ln(x x +>(3) 当02x π
<<时,31tan 3
x x x >+ 7.求曲线33cos ,sin x a t y a t ==在0t t =相应点处的曲率。
8.设10021n a a a n +++=+,证明多项式01()n n f x a a x a x =+++在内(0,1)至少有一个零点.
9. 设()f x 在[0,]a 上连续,在(0,a )内可导,且()=(0)0f a f =,证明:存在一点 ξ∈(0,a ),使()()0f f ξξ'+=.
(令g (x ) = e x f (x ) )
三、选作题
1. 设函数()f x 具有二阶导数,且(0)0,(0)1,(0)2f f f '''===,求2
0()lim x f x x x →-. 2. 设在上连续,在(,)a b 内二阶可导,若连接(,())(,())a f a b f b 、
两点的直线和曲线()y f x =相交于(,())()c f c a c b <<点,证明()0f x ''=在至少有一个实根。
3. 设f (x )在[],a b 上连续,(a,b ) 内除仅有的一点外都可导,证明存在,(,)(0,1)c d a b k ∈∈且 使得
()()()(()(1)())f b f a b a kf c k f d ''-=-+-
证明:设x=m 是f(x)在(a,b)内唯一不可导的点,在[a,m ]和[m,b ]上分别用拉格朗日定理,知存在c,d ∈(a,b),使得 f(m)-f(a)=f ´(c)(m-a) , f(b)-f(m)=f ´(d)(b-m) ,
两式相加,
f(b)-f(a)=f ´(c)(m-a)+f ´(d)(b-m),
两边除b-a ,得
()()()()f b f a m a b m f c f d b a b a b a
---''=+--- 令m a k b a
-=-,显然0<k<1,代入上式整理即可。
4. 设()f x 在[0,]a 上可导,且4b a -≥,证明存在一点(,)a b ξ∈,使
2()1()f f ξξ'<+.
证明:设g(x)=arctanf(x),则由拉格朗日定理知,存在ξ∈(a,b),使得
2()arctan ()arctan ()()1()f f b f a b a f ξξ'-=
-+ 又因 arctan ()22f x π
π
-<<
所以 arctan ()arctan ()f b f a π-<
又由已知4b a -≥,得
22()(1())1()4f f f πξξξ'<
+<+
5. 设()0,(0)0,f x f ''<= 证明:120,0,x x >> 都有1212()()()f x x f x f x +<+
注:其他题目课上都讲过!。